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Series Introduction

The primary objectives of the Biostatistics series are to provide useful ref-
erence books for researchers and scientists in academia, industry, and
government, and also to offer textbooks for undergraduate and/or grad-
uate courses in the area of biostatistics. The series provides comprehensive
and unified presentations of statistical designs and analyses of important
applications in biostatistics, such as those in biopharmaceuticals. A well-
balanced summary is given of current and recently developed statistical
methods and interpretations for both statisticians and researchers/scien-
tists with minimal statistical knowledge who are engaged in the field of
applied biostatistics. The series is committed to presenting easy-to-under-
stand, state-of-the-art references and textbooks. In each volume, statistical
concepts and methodologies are illustrated through real-world examples
whenever possible.

Clinical research is a lengthy and costly process that involves drug
discovery, formulation, laboratory development, animal studies, clinical
development, and regulatory submission. This lengthy process is necessary
not only for understanding the target disease but also for providing sub-
stantial evidence regarding efficacy and safety of the pharmaceutical com-
pound under investigation prior to regulatory approval. In addition, it
provides assurance that the drug products under investigation will possess
good characteristics such as identity, strength, quality, purity, and stability
after regulatory approval. For this purpose, biostatistics plays an impor-
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tant role in clinical research not only to provide a valid and fair assess-
ment of the drug product under investigation prior to regulatory approval
but also to ensure that the drug product possesses good characteristics with
the desired accuracy and reliability.

This volume provides a comprehensive summarization of recent
developments regarding methodologies in design and analysis of studies
conducted in clinical research. It covers important topics in early-phase
clinical development such as Bayesian methods for phase I cancer clinical
trials and late-phase clinical development such as design and analysis of
therapeutic equivalence trials, adaptive two-stage clinical trials, and cluster
randomization trials. The book also provides useful approaches to critical
statistical issues that are commonly encountered in clinical research such as
multiplicity, subgroup analysis, interaction, and analysis of longitudinal
data with missing values. It will be beneficial to biostatisticians, medical
researchers, and pharmaceutical scientists who are engaged in the areas of
clinical research and development.

Shein-Chung Chow
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Preface

As the medical sciences rapidly advance, clinical trials biostatisticians and
graduate students preparing for careers in clinical trials need to maintain
knowledge of current methodology. Because the literature is so vast and
journals are published so frequently, it is difficult to keep up with the rel-
evant literature. The goal of this book is to summarize recent methodology
for design and analysis of clinical trials arranged in standalone chapters.

The book surveys a number of aspects of contemporary clinical trials,
ranging from early trials to complex modeling problems. Each chapter
contains enough references to allow those interested to delve more deeply
into an area. A basic knowledge of clinical trials is assumed, along with a
good background in classical biostatistics. The chapters are at the level of
journal articles in Biometrics or Statistics in Medicine and are meant to be
read by second- or third-year biostatistics graduate students, as well as by
practicing biostatisticians.

The book is arranged in three parts. The first consists of two chapters
on the first trials undertaken in humans in the course of drug development
(Phase I and II trials). The second and largest part is on randomized clinical
trials, covering a variety of design and analysis topics. These include design
of equivalence trials, adaptive schemes to change sample size during the
course of a trial, design of clustered randomized trials, design and analysis
of trials with multiple primary endpoints, a new method for survival analy-
sis, and how to report a Bayesian randomized trial. The third section deals
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with more complex problems: including compliance in the assessment of
treatment effects, the analysis of longitudinal data with missingness, and
the particular problems that have arisen in AIDS clinical trials. Several of
the chapters incorporate Bayesian methods, reflecting the recognition that
these have become acceptable in what used to be a frequentist discipline.

The 20 authors of this volume represent five countries and 10 insti-
tutions. Many of the authors are well known internationally for their meth-
odological contributions and have extensive experience in clinical trials
practice as well as being methodologists. Each chapter gives real and rel-
evant examples from the authors’ personal experiences, making use of a
wide range of both treatment and prevention trials. The examples reflect
work in a variety of fields of medicine, such as cardiovascular diseases, neu-
rological diseases, cancer, and AIDS. While it was often the clinical trial
itself that gave rise to a question that required new methodology to answer,
it is likely that the methods will find applications in other medical fields. In
this sense, the contributions are examples of “ideal” biostatistics, tran-
scending the boundary between statistical theory and clinical trials prac-
tice.

I wish to express my deep appreciation to all the authors for their
patience and collegiality and for their fine contributions and outstanding
expositions. I also thank my husband for his constant encouragement
and Marcel Dekker, Inc., for their continuing interest in this project.

Nancy L. Geller
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1

Bayesian Methods for Cancer
Phase | Clinical Trials

James S. Babb and André Rogatko
Fox Chase Cancer Center, Philadelphia, Pennsylvania, U.S.A.

1. INTRODUCTION
1.1. Goal and Definitions

The primary statistical objective of a cancer phase I clinical trial is to
determine the optimal dose of a new treatment for subsequent clinical
evaluation of efficacy. The dose sought is typically referred to as the
maximum tolerated dose (MTD), and its definition depends on the
severity and manageability of treatment side effects as well as on clinical
attributes of the target patient population. For most anticancer regimens,
evidence of treatment benefit, usually expressed as a reduction in tumor
size or an increase in survival, requires months (if not years) of obser-
vation and is therefore unlikely to occur during the relatively short time
course of a phase I trial (O’Quigley et al., 1990; Whitehead, 1997).
Consequently, the phase I target dose is usually defined in terms of the
prevalence of treatment side effects without direct regard for treatment
efficacy. For the majority of cytotoxic agents, toxicity is considered a
prerequisite for optimal antitumor activity (Wooley and Schein, 1979)
and the probability of treatment benefit is assumed to monotonically
increase with dose, at least over the range of doses under consideration in
the phase I trial. Consequently, the MTD of a cytotoxic agent typically
corresponds to the highest dose associated with a tolerable level of
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toxicity. More precisely, the MTD is defined as the dose expected to
produce some degree of medically unacceptable, dose limiting toxicity
(DLT) in a specified proportion 6 of patients (Storer, 1989; Gatsonis and
Greenhouse, 1992). Hence we have

Prob{DLT | Dose = MTD} =6 (1)

where the value chosen for the target probability 6 would depend on the
nature of the dose limiting toxicity; it would be set relatively high when the
DLT is a transient, correctable, or nonfatal condition, and low when it is
lethal or life threatening (O’Quigley et al., 1990). Participants in cancer
phase I trials are usually late stage patients for whom most or all alternative
therapies have failed. For such patients, toxicity may be severe before it is
considered an intolerable burden (Whitehead, 1997). Thus, in cancer phase
I trials, dose limiting toxicity is often severe or potentially life threatening
and the target probability of toxic response is correspondingly low,
generally less than or equal to 1/3. As an example, in a phase I trial
evaluating S-fluorouracil (5-FU) in combination with leucovorin and
topotecan (see Sec. 1.4.1), dose limiting toxicity was defined as any treat-
ment attributable occurrence of: (1) a nonhematologic toxicity (e.g.,
neurotoxicity) whose severity according to the Common Toxicity Criteria™
of the National Cancer Institute (1993) is grade 3 or higher; (2) a grade 4
hematologic toxicity (e.g., thrombocytopenia or myelosuppression) per-
sisting at least 7 days; or (3) a 1 week or longer interruption of the treatment
schedule. The MTD was then defined as the dose of 5-FU that is expected
to induce such dose limiting toxicity in one-third of the patients in the
target population. As illustrated with this example, the definition of DLT
should be broad enough to capture all anticipated forms of toxic response
as well as many that are not necessarily anticipated, but may nonetheless
occur. This will reduce the likelihood that the definition of DLT will need
to be altered or clarified upon observation of unanticipated, treatment-
attributable adverse events—a process generally requiring a formal
amendment to the trial protocol and concomitant interruption of patient
accrual and treatment.

It is important to note that there is currently no consensus regard-
ing the definition of the MTD. When the phase I trial is designed

* The Common Toxicity Criteria can be found on the Internet at http://ctep.info.nih.gov/
CTC3/default.htm.
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according to traditional, non-Bayesian methods (e.g., the up-and-down
schemes described in Storer, 1989), an empiric, data-based definition is
most often employed. Thus, the MTD is frequently taken to be the high-
est dose utilized in the trial such that the percentage of patients
manifesting DLT is equal to a specified level such as 33%. For example,
patients are often treated in cohorts, usually consisting of three patients,
with all patients in a cohort receiving the same dose. The dose is changed
between successive cohorts according to a predetermined schedule typi-
cally based on a so-called modified Fibonacci sequence (Von Hoff et al.,
1984). The trial is terminated the first time at least some number of
patients (generally 2 out of 6) treated at the same dose exhibit DLT. This
dose level constitutes the MTD. The dose level recommended for phase 11
evaluation of efficacy is then taken to be either the MTD or one dose level
below the MTD (Kramar et al., 1999). Although this serves as an
adequate working definition of the MTD for trials of nonparametric
design, such an empiric formulation is not appropriate for use with most
Bayesian and other parametric phase I trial design methodologies.
Consequently, it will be assumed throughout the remainder of this chap-
ter that the MTD is defined according to Eq. (1) for some suitable defi-
nition of DLT and choice of target probability 6.

The fundamental conflict underlying the design of cancer phase I
clinical trials is that the desire to increase the dose slowly to avoid
unacceptable toxic events must be tempered by an acknowledgment that
escalation proceeding too slowly may cause many patients to be treated
at suboptimal or nontherapeutic doses (O’Quigley et al., 1990). Thus,
from a therapeutic perspective, one should design cancer Phase I trials to
minimize both the number of patients treated at low, nontherapeutic
doses as well as the number given severely toxic overdoses.

1.2. Definition of Dose

Bayesian procedures for designing phase I clinical trials require the
specification of a model for the relationship between dose level and
treatment related toxic response. Depending on the agent under inves-
tigation and the route and schedule of its administration, the model may
relate toxicity to the physical amount of agent given each patient, or to
some target drug exposure such as the area under the time vs. plasma
concentration curve (AUC) or peak plasma concentration. The choice of
formulation is dependent on previous experience and medical theory and
is beyond the scope of the present chapter. Consequently, it will be
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assumed that the appropriate representation of dose level has been de-
termined prior to specification of the dose-toxicity model.

1.3. Choice of Starting Dose

In cancer therapy, the phase I trial often represents the first time a
particular treatment regimen is being administered to humans. Due to
consequent safety considerations, the starting dose in a cancer phase I
trial is traditionally a low dose at which no significant toxicity is
anticipated. For example, the initial dose is frequently selected on the
basis of preclinical investigation to be one-tenth of the murine equivalent
LD, (the dose that produces 10% mortality in mice) or one-third the
toxic dose low (first toxic dose) in dogs (Geller, 1984; Penta et al., 1992).
Conversely, several authors (e.g., O’Quigley et al., 1990) suggest that the
starting dose should correspond to the experimenter’s best prior estimate
of the MTD, which may not be a conservative initial level. This may be
appropriate since starting the trial at a dose level significantly below the
MTD may unduly increase the time and number of patients required to
complete the trial and since retrospective studies (Penta et al., 1992;
Arbuck, 1996) suggest that the traditional choice of starting dose often
results in numerous patients being treated at biologically inactive dose
levels. In the sequel, it will be assumed that the starting dose is pre-
determined; its choice based solely on information available prior to the
onset of the trial.

1.4. Examples

Selected aspects of the Bayesian approach to phase I trial design will be
illustrated using examples based on two phase I clinical trials conducted
at the Fox Chase Cancer Center.

5-FU Trial

In this trial a total of 12 patients with malignant solid tumors were
treated with a combination of 5-fluorouracil (5-FU), leucovorin, and
topotecan. The goal was to determine the MTD of 5-FU, defined as the
dose that, when administered in combination with 20 mg/m? leucovorin
and 0.5 mg/m? topotecan, results in a probability 8 = 1/3 that a DLT will
be manifest within 2 weeks. The relevant data obtained from this trial are
given in Table 1.
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Table 1 Dose Level of 5-FU (mg/m?) and Binary
Assessment of Treatment-Induced Toxic Response
for the 12 Patients in the 5-FU Phase I Trial

Patient® 5-FU Dose Response
1 140 No DLT
2 210 No DLT
3 250 No DLT
4 273 No DLT
5 291 No DLT
6 306 No DLT
7 318 No DLT
8 328 No DLT
9 337 No DLT
10 345 No DLT
11 352 DLT

12 338 DLT
 Patients are listed in chronological order according to date

of accrual.
PNU Trial

The incorporation of patient-specific covariate information into a Baye-
sian design scheme will be exemplified through a phase I study of PNU-
214565 (PNU) involving patients with advanced adenocarcinomas of
gastrointestinal origin (Babb and Rogatko, 2001). Previous clinical and
preclinical studies demonstrated that the action of PNU is moderated by
the neutralizing capacity of anti-SEA antibodies. Based on this, the MTD
of PNU was defined as a function of the pretreatment concentration of
circulating anti-SEA antibodies. Specifically, the MTD was defined as the
dose level expected to induce DLT in a proportion 8 = .1 of the patients
with a given pretreatment anti-SEA concentration.

2. GENERAL BAYESIAN METHODOLOGY

The design and conduct of phase I clinical trials would benefit from
statistical methods that can incorporate information from preclinical
studies and sources outside the trial. Furthermore, both the investigator
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and patient might benefit if updated assessments of the risk of toxicity
were available during the trial. Both of these needs can be addressed
within a Bayesian framework. In Sections 2.1 through 2.5 we present a
description of selected Bayesian procedures developed for the specific
case where toxicity is assessed on a binary scale (presence or absence of
DLT), only a single agent is under investigation (the levels of any other
agents being fixed) and no relevant pretreatment covariate information
is available to tailor the dosing scheme to individual patient needs.
We discuss extensions and modifications of the selected methods in
Section 3.

2.1. Formulation of the Problem

Dose level will be represented by the random variable X whose realization
is denoted by x. For notational compactness, the same variable will be
used for any formulation of dosage deemed appropriate. Thus, for
example, X may represent some target drug exposure (e.g., AUC), the
physical amount of agent in appropriate units (e.g., mg/m?), or the
amount of agent expressed as a multiple of the starting dose, and might
be expressed on a logarithmic or other suitable scale. It will be assumed
throughout that the MTD is expressed in a manner consistent with X.

The data observed for k patients will be denoted D, = {(x;, y;); i =
1,..., k}, where x;is the dose administered patient i, and y; is an indicator
for dose limiting toxicity assuming the value y; = 1 if the ith patient
manifests DLT and the value y; = 0, otherwise. The MTD is denoted by
v and corresponds to the dose level expected to induce dose limiting
toxicity in a proportion 6 of patients.

In the ensuing sections, a general Bayesian paradigm for the design
of cancer phase I trials will be described in terms of three components:

1. A model for the dose-toxicity relationship. The model specifies
the probability of dose limiting toxicity at each dose level as a
function of one or more unknown parameters.

2. A prior distribution for the vector v containing the unknown
parameters of the dose-toxicity model. The prior will be
represented by a probability density function / defined on the
parametric space O specified for v. It is chosen so that H(I) =
[;h(u) du is an assessment of the probability that v is contained
in I C O based solely on the information available prior to the
onset of the phase I trial.
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3. A loss function quantifying the total cost associated with the
administration of any permissible dose level. The loss will be
expressed through a function L defined on S X O, where S is
the set of dose levels available for use in the trial. Hence, L(x, v)
denotes the loss incurred by treating a patient at dose level x € S
when v € O obtains.

Through an application of Bayes’ theorem the dose-toxicity model
and prior distribution can be used to derive the posterior distribution of v
given D,. Hence, we obtain a function I, defined on the parametric space
O such that [, IT;(u)du is the conditional probability that v is contained
in I C O given the data available after k patients have been observed. We
can then compute

EL;(x) = J@ L(x,u)IL(u)du

representing the posterior expected loss associated with dose x € S after
observation of k patients. When a phase I trial is designed according to
strict Bayesian decision-theoretic principles, dose escalation proceeds by
selecting for each patient the dose level x € S minimizing the posterior
expected loss given the prevailing data. Thus, after the responses of k
patients have been observed, the next patient (or cohort of patients)
would be administered the dose x; satisfying

ELk(ka) = min{ELk(x) X e S}
or, equivalently,

Xpp1 = arg min{ ELg(x)}.
xeS

As an alternative, several authors (e.g., O’Quigley et al., 1990; Gasparini
and Fisele, 2000) consider Bayesian designs wherein dose levels are
chosen to minimize L(x,Uy), where Uy is an estimate of U based on the
data available after k& patients have been observed. Typically, U, corre-
sponds to the mean, median or mode of the posterior distribution I1.

The vast majority of cancer phase I clinical trial designs are
sequential in nature. That is, subsequent to one or more patients being
treated at a prespecified initial dose, dose levels are selected one at a time
on the basis of the data available from all previously treated patients.
However, nonsequential designs (e.g., Tsutakawa, 1972, 1975; Flournoy,
1993) have also been proposed wherein the design vector X, representing
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the entire collection of dose levels to be used in the trial, is chosen prior to
the onset of the trial. In such circumstances, X is chosen to minimize the
expected loss with respect to the prior distribution 4 and patients (or
cohorts of patients) are then randomly assigned to the dose levels so
obtained. In the ensuing formulations only sequential designs will be
explicitly discussed. In other words, we consider designs that select doses
on the basis of the information conveyed by the posterior distribution I,
rather than the prior distribution /.

2.2. Dose-Toxicity Model

A mathematical model is specified for the relationship between dose level
and the probability of dose limiting toxicity. The choice of model is based
on previous experience with the treatment regimen under investigation,
preclinical toxicology studies, medical theory, and computational trac-
tability. We note that the dose to be administered to the first patient or
cohort of patients is typically chosen on the basis of prior information
alone. Thus, its selection does not in general depend on the model for the
dose-toxicity relationship. Consequently, it may be advantageous to
delay the specification of the model until after a pharmacologic and
statistical evaluation of the data from the cohort of patients treated at the
preselected starting dose.

The models most frequently used in cancer phase I clinical trials are
of the form

Prob{DLT|Dose = x} = F(Bg + p1x)° (2)

where F'is a cumulative distribution function (CDF) referred to as the
tolerance distribution, & and (; are both assumed to be positive so that
the probability of dose limiting toxicity is a strictly increasing function of
dose, and one or more of 6, By and B; may be assumed known. Most
applications based on this formulation use either a logit or probit model
with typical examples including the two-parameter logistic (Gatsonis and
Greenhouse, 1992; Babb et al., 1998)

exp(Bo + P1x)
1+ CXp([S() -+ B]X)

Prob{DLT|Dose = x} = (3)

(with 6 = 1 assumed known) and the one-parameter hyperbolic tangent
(O’Quigley et al., 1990).
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tanh(x) + lr. ()

Prob{DLT|Dose = x} = { >

To facilitate comparisons between these two models, the hyperbolic
tangent model can be rewritten as

) o
prbip Do =)= [ 2]

which is consistent with the form given in Eq. (2) with By = 0 and 3; = 2
assumed known. For exposition we consider the two-parameter logistic
model given in (3). With this model the MTD is
_ In(6) —In(1 —6) — B

B .
An illustration of the model is shown in Figure 1 and properties of the
model are given in (Johnson et al., 1995).

Probability of DLT

] I I I T

00 %, MTD 0s 10
Dose

Figure 1 Example of the logistic tolerance distribution used as a model for the
dose-toxicity relationship. In this representation dosage has been standardized so
that the range of permissible doses is contained in the unit interval (i.e., S = [0, 1]).
Forillustration, the starting dose is taken to be x; = 0.1 and the probability of DLT
at x; is denoted by pg. The MTD has arbitrarily been defined as the (standardized)
dose for which the probability of dose limiting toxicity is equal to 8 = 0.5.
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An alternative formulation describes the dose-toxicity relationship as
it applies to the set S= {x1, x», ..., xi} of prespecified dose levels available
for use in the trial. For example, Gasparini and Eisele (2000) present a
curve-free Bayesian phase I design discussed the possibility of using one
prior distribution (the design prior) to determine dose assignments during
the phase I trial and a separate prior (the inference prior) to estimate the
MTD upon trial completion. Although the use of separate priors for design
and inference may appear inconsistent, its usefulness is defended by
arguing that analysis occurs later than design (Tsutakawa, 1972). Con-
sequently, our beliefs regarding the unknown parameters of the dose-
toxicity model may change during the time from design to inference in ways
not entirely accounted for by a sequential application of Bayes’ theorem.

Since estimation of the MTD is the primary statistical aim of a
phase I clinical trial, our subsequent attention will be focused on dose-
toxicity models parameterized in terms of v = [y ] for some choice of
(possibly null) vector w of nuisance parameters. To facilitate elicitation of
prior information, the nuisance vector o should consist of parameters
that the investigators can readily interpret.

As discussed above, the starting dose of a phase I trial is frequently
selected on the basis of preclinical investigation. Consequently, prior
information is often available about the risk of toxicity at the initial dose.
To exploit this, Gatsonis and Greenhouse (1992) and Babb et al., (1998)
considered the logistic model given by (3) parameterized in terms of the

MTD
In(6) — In(1 — 6) — By
’Y =
B1
and
~exp(Po + P1x1)
Po

1 +exp(Bo + Bixy)

the probability of DLT at the starting dose. Due to safety considerations,
the dose for the first patient (or patient cohort) is typically chosen so that
it is believed a priori to be safe for use with humans. Consequently, it is
generally assumed that py < 6. This information about the initial dose
can be expressed through a marginal prior distribution for py whose mass
is concentrated on [0, 6]. Examples include the truncated beta (Gatsonis
and Greenhouse, 1992) and uniform distributions (Babb et al., 1998)
defined on the interval (0, a) for some known value ¢ < 6. Prior in-
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formation about the MTD is frequently more ambiguous. Such prior
ignorance can be reflected through the use of vague or non-informative
priors. Thus, for example, the marginal prior distribution of the MTD
might scheme in which the toxicity probabilities are modeled directly as
an unknown k-dimensional parameter vector. That is, the dose-toxicity
model is given by

Prob{DLT|Dose = x;} =0; i=1,2,...,k (5)

with v = [6; 6, ..., 0] unknown. The authors maintain that by
removing the assumption that the dose-toxicity relationship follows a
specific parametric curve, such as the logistic model in (3), this model
permits a more efficient use of prior information. A similar approach is
based on what has variously been referred to as an empiric discrete model
(Chevret, 1993), a power function (Kramar et al., 1999; Gasparini and
Eisele, 2000) or a power model (Heyd and Carlin, 1999). The model is

given by
Prob{DLT|Dose = x;} = 6° (6)
where 6>0 is unknown and é,— (i=1, 2, ..., k) is an estimate of the

probability of DLT at dose level x; based solely on information
available prior to the onset of the phase I trial. With this model the
toxicity probabilities can be increased or decreased through the param-
eter v = § as accumulating data suggests that the regimen is more or
less toxic than was suggested by prior opinion. As noted by Gasparini
and Eisele (2000), the empiric discrete model of Eq. (6) is equivalent to
the hyperbolic tangent model of Eq. (4) provided one uses as prior
estimates

éi:% i=1.2,.. k.

2.3. Prior Distribution

The Bayesian formulation requires the specification of a prior probability
distribution for the vector v containing the unknown parameters of the
dose-toxicity model. The prior distribution is subjective; i.e., it conveys
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the opinions of the investigators prior to the onset of the trial. It is
through the prior that information from previous trials, clinical and
preclinical experience, and medical theory are incorporated into the
analysis. The prior distribution should be concentrated in some mean-
ingful way around a prior guess Uy (provided by the clinicians), yet it
should also be sufficiently diffuse as to allow for dose escalation in the
absence of dose limiting toxicity (Gasparini and Eisele, 2000). We note
that several authors (e.g., Tsutakawa, 1972, 1975) have be taken to be a
uniform distribution on a suitably defined interval (Babb et al., 1998) or a
normal distribution with appropriately large variance (Gatsonis and
Greenhouse, 1992).

Example: 5-FU Trial (continued)

The statistical goal of the trial was to determine the MTD of 5-FU
when administered in conjunction with 20 mg/m? leucovorin and 0.5 mg/
m? topotecan. The dose-toxicity model used to design the trial was that
given by Eq. (3), reparameterized in terms of v = [y po]. Preliminary
studies indicated that 140 mg/m> of 5-FU was well tolerated when given
concurrently with up to 0.5 mg/m? topotecan. Consequently, this level
was selected as the starting dose for the trial and was believed a priori
to be less than the MTD. Furthermore, previous trials involving 5-FU
alone estimated the MTD of 5-FU as a single agent to be 425 mg/m>.
Since 5-FU has been observed to be more toxic when in combination
with topotecan than when administered alone, the MTD of 5-FU in
combination with leucovorin and topotecan was assumed to be less
than 425 mg/m>. Overall, previous experience with 5-FU led to the
assumption that y € [140, 425] and py < 1/3 with prior probability one.
Based on this, the joint prior probability density function of v was
taken to be

h(v) = 57" e (v, po) = [140,425] x [0,0.2] (7)

where, for example, I5 denotes the indicator function for the set S [i.e.,
Is(x) = 1 or 0 according as x does or does not belong to S]. It follows
from (7) that the MTD and py were assumed to be independently and
marginally distributed as uniform random variables. In the example
above, there was a suitable choice for an upper bound on the range of
dose levels to be searched for the MTD. That is, prior experience with
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5-FU suggested that, when given in combination with topotecan, the
MTD of 5-FU was a priori believed to be less than 425 mg/m?”. In
consequence, the support of the prior for the MTD was finite. In many
contexts, there will not be sufficient information available prior to the
onset of the phase I trial to unambiguously determine a suitable upper
bound for the MTD (and hence for the range of dose levels to be
searched). In this case, one might introduce a hyperparameter X,,,, and
specify a joint prior distribution for the MTD and X, as

h(YJXmaX) :fl (’Y | Xmax)f()(Xmax)

with, to continue the 5-FU example, f(y|Xmax) denoting the probability
density function (pdf) of a uniform random variable on [140, 425] and
fo (Xmax) @ monotone decreasing pdf defined on [425, ~), such as a
truncated normal with mean 425 and suitable standard deviation.

Flournoy (1993) considered the two-parameter logistic model in Eq.
(3) reparameterized in terms of the MTD and the nuisance parameter
o = p°. The parameters y and o were assumed to be independent a priori
with y having a normal and ® having a gamma distribution. Thus, the
joint prior distribution of v = [y %] was defined on ® = % x (0, )
by

h(v) = [[(a)bov/2m] ' B Vexp (LV&;W = %2>

As rationale for the choice of prior distribution for , it was noted that
o' is proportional to the variance of the logistic tolerance distribution
and that the gamma distribution is frequently used to model the inverse
of a variance component. In order to determine values for the hyper-
parameters a, b, p, and o, physicians were asked to graph curves
corresponding to a prior 95% confidence band for the true dose-toxicity
relationship. Values were then chosen for the hyperparameters so that the
95% confidence intervals at selected doses, as determined by the upper
and lower hand drawn graphs at each dose, agreed with the correspond-
ing confidence intervals implied by the prior.

Various authors (e.g., Chevret, 1993; Faries, 1994; Moller, 1995;
Goodman et al., 1995) studying the continual reassessment method
(O’Quigley et al., 1990) have considered monoparametric dose-toxicity
models such as the hyperbolic tangent model of Eq. (4) and the empiric
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discrete model given by (6). Prior distributions used for the unknown
parameter 6 include the exponential

g(®) =exp(—08)  6€(0,) (8)
and the uniform
g®)=1/3  6€(0,3) 9)

corresponding to priors observed to work well in computer simulation
studies (O’Quigley et al., 1990; Chevret, 1993). Since the hyperbolic
tangent model implies that

In 61/8
YT T e

the priors induced for the MTD by the choice of (8) and (9) as the prior
distribution for & are

) =11 | oy

W =z VS

and

B |J| 91/3
h(y) =3 Y€ —OOJHW

respectively, where the Jacobian is given by

B —21n(0)
(14 e)[In(1 4 e2Y) — 2v]°

and |J] is the absolute value of the determinant of J. Chevret (1993)
conducted a simulation study to compare the relative utility of using
exponential, gamma, log-normal, uniform, and Weibull distributions as
priors for the lone unknown parameter in the dose-toxicity models given
by Egs. (4) and (6) or in the two-parameter logistic model with known
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intercept parameter. The results suggested that estimation of the MTD
was not significantly affected by the choice of prior distribution and that
no one prior distribution performed consistently better than the others
under a broad range of circumstances.

An alternative formulation of the prior distribution, suggested by
Tsutakawa (1975) and discussed by Patterson et al. (1999) and Whitehead
(1997), is based on a prior assessment of the probability of DLT at
selected dose levels. As a simple example, consider two prespecified dose
levels z; and z,. These dose levels need not be available for use in the
phase I trial, but often represent doses used in previous clinical inves-
tigations. For i = 1, 2, positive constants #(i) and n(i) are chosen so that
t(i)/n(i) corresponds to a prior estimate of the probability of DLT at the
dose z;. The prior for v is then specified as

2
h(v) =k ll} p(zi | U)t(i)[l — plzi | U)]n(i)—t(i)

where k is the standardizing constant rendering s a proper probability
density function and p(-|v) is the model for the dose-toxicity relationship
parameterized in terms of v. In this formulation the prior is proportional
to the likelihood function for v given a data set in which, for i = 1, 2, n(i)
patients were treated at dose z; with exactly #(i) manifesting DLT.
Consequently, this type of prior is typically referred to as a “pseudo-
data” prior. As noted by Whitehead (1997), the pseudodata might
include observations from previous studies at one or both of z; and z,.
Such data might be downweighted to reflect any disparity between
previous and present clinical circumstances by choosing values for the
n(i) that are smaller than the actual number of previous patients
observed.

The curve-free method of Gasparini and Eisele (2000) is based on
the dose-toxicity model given by (5). Hence, the dose-toxicity relationship
is modeled directly in terms of v = [0; 0, ... 64], the vector of
toxicity probabilities for the k dose levels selected for use in the trial.
The prior selected for v is referred to as the product-of-beta prior and
can be described as follows. Let {5y = 1 — p; and fori = 2,3, ..., k, let
U; = (1 — p)/(1 — p;_y). The product-of-beta prior is the distribution
induced for v by the assumption that the ¢; (i = 1, 2, ... , k) are
independent with 5; distributed as a beta with parameters @; and b;. The
authors provide a method for determining the hyperparameters @; and b;
so that the marginal prior distribution of 6; is concentrated near 0,
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corresponding to the clinicians’ prior guess for 0;, and yet disperse enough
to permit dose escalation in the absence of toxicity. They also discuss why
alternative priors, such as the ordered Dirichlet distribution, may not be
appropriate for use in cancer phase I trials designed according to the
curve-free method.

2.4. Posterior Distribution

Perceptions concerning the unknown model parameters change as the
trial progresses and data accumulate. The appropriate adjustment of
subjective opinions can be made by transforming the prior distribution /
through an application of Bayes’ theorem. Thus, we obtain the posterior
distribution I'l; which reflects our beliefs about v based on a combination
of prior knowledge and the data available after k& patients have been
observed.

The transformation from prior to posterior distribution is accom-
plished through the likelihood function. If we denote the dose-toxicity
model parameterized in terms of v as

p(xjv) = Prob{DLT |Dose = x}

then the likelihood function for v = [y ] given the data Dy is

k
Lwlp) = L ploy 1 = i)y =
Bayes’ theorem then implies that the joint posterior distribution of (y, ®)
given the data Dy is

L(y,0|D)h(y, )

[k (y, 0| Di) = [L(u|Dy)h(u)du

where the integral is over ©. To facilitate exposition, it will hereafter be
assumed that the prior distribution 7/ is defined on some set I' x Q
containing the parameter space ® such that v € I' and ® € Q with prior
probability 1. Whenever necessary, this will entail extending 4 from ® to T’
x () by defining /4 to be identically equal to zero on the difference (I' X
0O)\0. This convention will simplify ensuing formulations without a loss of
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generality. For example, the marginal posterior distribution of the MTD
given the data from k patients can then be simply expressed as

Pe(y) = j [T4(7, u| Dy)du

irrespective of whether or not y and o were assumed to be independent a
priori.

Example: 5-FU Trial (continued)

The dose-toxicity relationship was modeled according to the logistic
tolerance distribution given by (3) reparameterized in terms of v = [y po],
where pg is the probability of DLT at the starting dose x; = 140. As
shown by Eq. (7), the prior distribution for v was taken to be the uniform
on I' x Q) = [140, 425] x [0, .2]. It follows that the marginal posterior
probability density function of the MTD given the data Dy is

(" Cexp{yif (v, ulxi)} ’
Pk('Y)*jO T, [1+6Xp{f(v,u|xi)})d v € [140,425)

where

(v = x)Infu/(1 = w)} + (x: — 140)In{B/(1 = )}
v — 140

f(’y’ u|xi) =

The marginal posterior distribution P, represents a probabilistic summary
of all the information about the MTD that is available after the observa-
tion of k patients. Figure 2 shows the marginal posterior distribution of
the MTD given the data shown in Table 1.

2.5. Loss Function

As each patient is accrued to the trial, a decision must be made regarding
the dose level that the patient is to receive. In a strict Bayesian setting, the
decisions are made by minimizing the posterior expected loss associated
with each permissible choice of dose level. To accomplish this, the set S of
all permissible dose levels is specified and a loss function is chosen to
quantify the cost or loss arising from the administration of each
permissible dose under each possible value of v. The loss may be
expressed in financial terms, in terms of patient well-being, or in terms
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Figure 2 Marginal posterior probability density function of the MTD of 5-FU
given the data from all 12 patients treated in the 5-FU phase I trial.

of the gain in scientific knowledge (Whitehead, 1997). Uncertainty about
v is reflected through the posterior distribution and the expected loss
associated with each permissible dose x is determined by averaging the
loss attributed to x over the parameter space I' X () according to the
posterior distribution II,. Thus, after k patients have been observed,
the posterior expected loss associated with dose x € S is

EL;(x) = J@L(x, u) [T, (u)du

and the next patient would receive the dose

Xpr1 = arg min{EL(x)}.

xes
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For example, the dose for each patient might be chosen to minimize the
posterior expected loss with respect to the loss function L(x, v) = d{0,
p(x,v)} or L(x,v) = m(x, v) for some choice of metrics d and m defined on
the unit square and S X I', respectively. Thus, patients might be treated at
the mean, median, or mode of the marginal posterior distribution of the
MTD, corresponding to the respective choices of loss function L(x, v) =
(x — )%, L(x, v) = |x — v|, and L(x, v) = I (|x — v|), for some
arbitrarily small positive constant €.

Instead of minimizing the posterior expected loss, dose levels can be
chosen so as to minimize the loss function after substituting an estimate
for v. Consequently, given the data from k patients, one might estimate v
as v, and administer to the next patient the dose

X1 = arg min{L(x, D) }.
xeS

In the remainder of this section we describe various loss functions that have
been discussed in the literature concerning cancer phase I clinical trials.
Since the primary statistical aim of a phase I clinical trial is to
determine the MTD, designs have been presented which seek to maximize
the efficiency with which the MTD is estimated. As an example, Tsutakawa
(1972, 1975) considered the following design which, for simplicity, we
describe in terms of a dose-toxicity model whose only unknown parameter
is v. Let x denote the vector of dose levels to be administered to the next
cohort of patients accrued to the trial. Giveny = vy, the posterior variance
of y before observing the response at x is approximated by the loss function

L(x,v0) = {B(h) + I(x,70)} ™"

where B(h) is a nonnegative constant which may depend on the prior /
chosen for vy and I(x, o) is the Fisher information contained in the sample
when using x and +y, obtains. The constant term Bis introduced so that L(x,
Yo) is bounded above (when B > 0) and so that L becomes the exact
posterior variance of iy under suitable conditions. The method is illustrated
using the specific choice B(h) o T ', where T is the variance of the prior
distribution assumed for . After observing the responses of k patients, the
doses to be used for the next cohort are given by the vector X minimizing

ELi(x) = LL(X7 u) I1;(u) du

the expected loss with respect to the posterior distribution Il of v = v.
Methods to accomplish the minimization of G are discussed in Tsutakawa
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(1972, 1975) and presented in (Chaloner and Larntz, 1989). Once x has been
determined, random sampling without replacement can be used to deter-
mine the dose level contained in x that is to be administered each patient in
the next cohort.

For cancer phase I trials, we typically seek to optimize the treatment
of each individual patient. Attention might therefore focus on identifying
a dose that all available evidence indicates to be the best estimate of the
MTD. This is the basis for the continual reassessment method (CRM)
proposed by O’Quigley et al. (1990). In the present context their original
formulation can be described as follows. Let p(-|v) denote the model
selected for the dose-toxicity relationship parameterized in terms of v.
Given the data from k patients, the probability of DLT at any permissible
dose level x € S can be estimated as

Bu(x) = j@p<x|u> T (u)du

or

A

Bk (x) = p(x|or) (10)

where U, denotes an estimate of v. The next patient is then treated at the
dose for which the estimated probability of DLT is as close as possible, in
some predefined sense, to the target probability 6. Thus, for example, after
observation of k patients, the next patient might receive the dose level x 1
satisfying

0k (xxi1) — 0] <[0i(x) — 6] VxeS

In an effort to balance the ethical and statistical imperatives inherent
to cancer phase I trials, methods have been proposed to construct dose
sequences that, in an appropriate sense, converge to the MTD as fast as
possible subject to a constraint on each patient’s predicted risk of being
administered an overdose (Eichhorn and Zacks, 1973, 1981; Babb et al.,
1998) or of manifesting DLT (Robinson, 1978; Shih, 1989). Thus, for
example, the Bayesian feasible methods first considered by Eichhorn and
Zacks (1973) select dose levels for use in the trial so that the expected
proportion of patients receiving a dose above the MTD does not exceed a
specified value a, called the feasibility bound. This can be accomplished by
administering to each patient the dose level corresponding to the a-fractile
of the marginal posterior cumulative distribution function (CDF) of the
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MTD. Specifically, after k patients have been observed, the dose for the
next patient accrued to the trial is

s = (@) (1)
where
A = | TLovw dody (12)

is the marginal posterior CDF of the MTD given Dy. Thus, subsequent to
the first cohort of patients, the dose selected for each patient corresponds to
the dose having minimal posterior expected loss with respect to

a(g — x) if x <+ (i.e., if x is an underdose)
L(x,v) =
(I —a)(x—1) if x >y (i.e., if x is an overdose).

The use of this loss function implies that for any 6 > 0 the loss incurred by
treating a patient at 6 units above the MTD is (1 — o)/ times greater than
the loss associated with treating the patient at 6 units below the MTD. This
interpretation might provide a meaningful basis for the selection of the
feasibility bound (Babb et al., 1998). The value selected for the feasibility
bound will determine the rate of change in dose level between successive
patients. Low values will result in a cautious escalation scheme with
relatively small increments in dose, while high values would result in a
more aggressive escalation. In a typical application the value of the
feasibility bound is initially set at a small value (o« = 0.25, say) and then
allowed to increase in a predetermined manner until @ = 0.5. The rationale
behind this approach is that uncertainty about the MTD is highest at the
onset of the trial and a small value of a affords protection against the
possibility of administering dose levels much greater than the MTD. As
the trial progresses, uncertainty about the MTD declines and the likelihood
of selecting a dose level significantly above the MTD becomes smaller.
Consequently, a relatively high probability of exceeding the MTD can be
tolerated near the conclusion of the trial because the magnitude by which
any dose exceeds the MTD is expected to be small.
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As defined by Eichhorn and Zacks (1973), a dose sequence {x;}}—,
is Bayesian feasible of level 1 — o if Fi(x;+1) <o, Vj =1, ..., 0 — 1,
where F; the marginal posterior CDF of the MTD given D; as defined in
Eq. (12) Correspondingly, the design of a phase I clinical trlal is said to
be Bayesian feasible (of level 1 — «) if the posterior probability that each
patient receives an overdose is no greater than the feasibility bound «.
Zacks et al., (1998) showed that the dose sequence specified by Eq. (11) is
consistent (i.e., under suitable conditions, the dose sequence converges in
probability to the MTD) and is optimal among Bayesian feasible designs
in the sense that it minimizes [/ (v — Xk )1~ o ) (V)T (y, ©) dw dy, the
expected amount by which any given patient is underdosed. Conse-
quently, the method defined by equation (11) is referred to as the optimal
Bayesian feasible design.
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Figure 3 Dose levels for patients 2-5 of the 5-FU trial conditional on the
treatment-attributable toxicities observed.
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Example: 5-FU Trial (continued)

The 5-FU trial was designed according to the optimal Bayesian feasible
dose escalation method known as EWOC (Babb et al., 1998). For this
trial the feasibility bound was set equal to a = 0.25, this value being a
compromise between the therapeutic aim of the trial and the need to
avoid treatment attributable toxicity. Consequently, escalation of 5-FU
between successive patients was to the dose level determined to have
posterior probability equal to 0.25 of being an overdose (i.e., greater than
the MTD). The first patient accrued to the trial received the preselected
dose 140 mg/m?. Based on the EWOC algorithm, as implemented
according to Rogatko and Babb (1998), the doses administered the next
four patients were selected according to the schedule given in Figure 3.

In contrast to the Bayesian feasible methods, the prediction
approaches of Robinson (1978) and Shih (1989) provide sequential search
procedures which control the probability that a patient will exhibit DLT.
Their formulation is non-Bayesian, being based on the coverage distri-
bution (Shih, 1989) rather than the posterior distribution of v.

3. MODIFICATIONS AND EXTENSIONS
3.1. Maximum Likelihood

In its original presentation CRM (O’Quigley et al., 1990) utilized
Bayesian inference. Subsequently, to overcome certain difficulties asso-
ciated with the Bayesian approach (see, for example, Gasparini and
Eisele, 2000) a maximum likelihood based version of CRM (CRML)
was introduced (O’Quigley and Shen, 1996). Essentially, the Bayesian
and likelihood based approaches differ with respect to the method used to
estimate the probability of DLT at each permissible dose level. Thus, for
example, both CRM and CRML might utilize the estimates given by
Eq. (10) with ¥, respectively corresponding to either a Bayesian or
maximum likelihood estimate of v. Simulation studies (Kramar et al.,
1999) comparing Bayesian CRM with CRML showed the methods to
have similar operating characteristics. However, one key distinction
between the Bayesian and likelihood approaches is that the latter requires
a trial to be designed in stages. More specifically, the maximum like-
lihood estimate, ék(x), of the probability of DLT at any dose x will be
trivially equal to either zero or one, or perhaps even fail to exist, until at
least one patient manifests DLT and one fails to exhibit DLT. Hence, the
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use of CRML must be preceded by an initial stage whose design does not
require maximum likelihood estimation. This stage might be designed
according to Bayesian principles (e.g., by original CRM) or by use of
more traditional up-and-down schemes based on a modified Fibonacci
sequence. Once at least one patient manifests and one patient is treated
without DLT, the first stage can be terminated and subsequent dose
escalations can be determined through the use of CRML. Since CRML is
inherently non-Bayesian, it will not be discussed further in this chapter.
Instead we refer interested readers to O’Quigley and Shen (1996) and
Kramar et al. (1999) for details regarding the implementation of CRML.

3.2. Delayed Response

Since cancer patients often exhibit delayed response to treatment, the
time required to definitively evaluate treatment response can be longer
than the average time between successive patient accruals. Consequently,
new patients frequently become available to the study before the
responses of all previously treated patients have unambiguously been
determined (O’Quigley et al., 1990). It is therefore important to note that
Bayesian procedures do not require knowledge of the responses of all
patients currently on study before a newly accrued patient can begin
treatment. Instead, the dose for the new patient can be selected on the
basis of whatever data are currently available (O’Quigley et al., 1990;
Babb et al, 1998). Thus, it can be left to the discretion of the clinician to
determine whether to treat a newly accrued patient at the dose recom-
mended on the basis of all currently known responses, or to wait until the
resolution of one or more unknown responses and then treat the new
patient at an updated determination of dose.

3.3. Rapid Initial Escalation

Recently, ethical concerns have been raised regarding the large number of
patients treated in cancer phase I trials at potentially biologically inactive
dose levels (Hawkins, 1993; Dent and Eisenhauer, 1996). A summary
(Decoster et al., 1990) of the antitumor activity and toxic deaths reported
for 6639 phase I cancer patients revealed that only 0.3% (n = 23) exhibited
a complete response, 4.2% (279) manifested a partial response and toxic
deaths occurred in only 0.5% (31) of the patients. A similar review of 6447
patients found that only 4.2% achieved an objective response (3.5% partial
response, 0.7% complete remission). As a result, the last several years have
seen the production of numerous suggested modifications of the standard
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trial paradigm (ASCO, 1997). Such design alternatives, often referred to as
accelerated titration designs (Simon et al., 1997), begin with an aggressive,
rapid initial escalation of dose and mandate switching to a more con-
servative approach when some prespecified target is achieved. The switch-
ing rule is usually based on a defined incidence of some level of toxicity (e.g.,
the second hematologic toxicity of grade 2 or higher), or a pharmacologic
endpoint such as 40% of the AUC at the mouse LD,. In the context of
Bayesian phase I designs, Moller (1995) and Goodman et al. (1995)
proposed two-stage phase I dose escalation schemes wherein implementa-
tion of a Bayesian design was preceded by a rapid ad hoc dose escalation
phase. There may be considerable advantage in adopting the two-stage trial
design since the first stage may not only reduce the incidence of non-
therapeutic dose assignments, but would also provide meaningful prior
information on which to base the Bayesian design of the second stage.

3.4. Constrained Escalation

In their inception, Bayesian methods were not widely accepted in the
context of cancer phase I clinical trials. The major criticism was that they
might unduly increase the chance of administering overly toxic dose levels
(Faries, 1994). Consequently, many recently proposed Bayesian design
methods (e.g., Faries, 1994; Moller, 1995; Goodman et al., 1995) incorpo-
rate guidelines that limit the magnitude by which the dose level can be
increased between successive patients. As an example, the protocol of the
PNU trial prohibited escalation at any stage of the trial to a dose level
greater than twice the highest dose previously administered without induc-
tion of dose limiting toxicity (Babb and Rogatko, 2001). Similarly, designs
have been proposed (Faries, 1994) wherein each dose is selected from a
small number of prespecified levels according to CRM, but with escalation
between successive cohorts limited to one dose level. As an alternative, the
trial might be designed to provide maximal statistical efficiency subject to
some formal constraint reflecting patient safety. For example, the dose for
each patient might be selected so as to minimize the posterior expected
variance of the MTD (as in Tsutakawa, 1972, 1975; Flournoy, 1993) over
the subset of permissible dose levels that are Bayesian feasible at some level
1 — « (as in Eichhorn and Zacks, 1973; Babb et al., 1998).

3.5. Multinomial and Continuous Response Measures

Phase I trials frequently provide more information about toxicity than is
exploited by the methods described in Section 2. For example, whereas
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the above methods use a binary assessment of toxic response, toxicity is
often measured on a multinomial scale, graded according to NCI toxicity
criteria, or through a variable that can be modeled as continuous (e.g.,
white blood cell count). This additional information can be incorporated
into the trial design through an extension of the dose-toxicity model. To
illustrate this in the multinomial setting, we consider a trinomial response
measure Y that assumes the values 0, 1, and 2 according as each patient
manifests “mild,” “moderate,” or dose limiting toxicity. The variable Y
may represent a summary of all relevant adverse events by recording the
highest level of toxicity observed for each patient. The dose-toxicity
model can then be specified through the functions

bi(x|v) = Prob{¥ = i[Dose = x} i=0,1,2
given by

b (x|v) = Fon + Pax)

b1 (x|v) = Flay + frx) — da(xfv)
and

do(x[v) =1 — do(x[v) — di(x[v)

where F is a tolerance distribution and the elements of v = [a; a» Py
B,] satisfy a; = a» > 0 and B; = B, > 0. Examples include McCullagh’s
(1980) proportional odds regression model, as considered in the context of
phase I and II clinical trials by Thall and Russell (1998).

Wang et al. (2000) propose an extension of CRM for the case where
the definition of DLT includes multiple toxicity grades and/or different
types of toxicity (e.g., a grade 4 hematologic and grade 3 nonhemetalogic
toxicity) having potentially different clinical consequences. As a specific
example, they consider the case where DLT is defined as either a grade 3 or
grade 4 toxicity. The extension requires the specification of a probability
0*, which is strictly less than the target probability 6 used in the definition
of the MTD. The authors propose the specific choice 6* = 6/w where the
weight w reflects the relative seriousness of grade 3 and 4 toxicities. For
example, if grade 4 is considered twice as serious or difficult to manage as
grade 3, then w = 2. Treatment response is still recorded as the binary
indicator for DLT and no changes are made to the dose-toxicity model or
prior distribution underlying CRM. However, whereas CRM will always
select the dose level having estimated probability of DLT closest to the
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target 0, the extended version recommends using the dose with estimated
probability of DLT nearest 6* after the observation of a grade 4 toxicity.
Hence, whenever a grade 3 or lower toxicity is observed, the extended
CRM selects the dose level with estimated DLT probability nearest 6,
exactly as prescribed by standard CRM. Only upon observation of a grade
4 toxicity will the extended version select a dose different from (more
precisely, less than or equal to) that recommended by CRM. As a result,
use of the extended version of CRM will result in a more cautious
escalation of dose level in the presence of severe toxicity.

When toxicity can be modeled as a continuous variable Y the MTD
is defined in terms of a threshold T representing a level of response
deemed clinically unacceptable. For example, if it is desirable that Y not
exceed T, then dose limiting toxicity corresponds to the event { Y > 7}
and the MTD is defined as the dose y such that

Prob{Y>1|Dose =~vy} = 6.

The dose-toxicity model can be specified by assuming that the conditional
distribution of Y given dose = x has some continuous probability density
function with mean

Hx = PBo + P1x

and standard deviation
oy = g(x)o

where g is a function defined on the permissible dose set S. For example,
Eichhorn and Zacks (1973, 1981) consider the case where the conditional
distribution of Y given dose is lognormal. Specifically, it is assumed that
the logarithm of the measured physical response Y, given dose = x, is
normally distributed with mean p, = By + PB; (x — xg) and standard
deviation equal to either o, = (x — xp)o (case 1) or o, = o (case 2),
where o > 0 is known, g and B; are unknown and x; is a predetermined
dose level at which the probability of DLT is assumed negligible.

Upon specification of the dose-toxicity model, a Bayesian designed
trial would proceed according to the steps outlined above: a prior is
specified for the unknown parameters of the model, a loss function is
defined on S x 0O, and dose levels are chosen so as to minimize the
posterior expected loss.
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3.6. Designs for Drug Combinations

In the development of a new cancer therapy, the treatment regimen under
investigation will often consist of two or more agents whose levels are to
be determined by phase I testing. In such contexts, a simple approach is
to conduct the trial in stages with the level of only one agent escalated in
each stage. The methods described above can then be implemented to
design each stage. An example of this is given by the 5-FU trial.

Example: 5-FU Trial (continued)

The protocol of the 5-FU trial actually included two separate stages of dose
escalation. In the first stage, outlined above, 12 patients were each
administered a dose combination consisting of 20 mg/m? leucovorin, 0.5
mg/m? topotecan, and a dose of 5-FU determined by the EWOC algo-
rithm. In the second stage, the level of 5-FU was held fixed at 310 mg/m?>,
corresponding to the dose recommended for the next (i.e., thirteenth)
patient had the first stage been allowed to continue. An additional 12
patients were accrued during the second stage with each patient receiving
310 mg/m? 5-FU, 20 mg/m? leucovorin, and a dose of topotecan deter-
mined by EWOC. For these 12 patients the feasibility bound was initially
set equal to 0.25 (as in the first stage) and then allowed to increase by 0.05
with each successive dose assignment until the value a = 0.5 was attained.
Hence, for example, the first two patients in stage 2 received respective
doses of topotecan determined to have posterior probability 0.25 and 0.3 of
exceeding the MTD. All stage 2 patients including and subsequent to the
sixth patient received a dose of topotecan corresponding to the median of
the marginal posterior distribution of the MTD given the prevailing data.

A single stage scheme was proposed by Flournoy (1993) as a
method to determine the MTD of a combination of cyclophosphamide
(denoted x) and busulfan (y). To define a unique MTD and implement
design methods appropriate for single agent regimens, attention was
restricted to a set S of dose combinations lying along the line segment
delimited by the points (x, y) = (40, 6) and (x, y) = (180, 20). Since for
any (x, y) € S the level of one agent is completely determined by the level
of the other, the design methods described above for single agent trials
can be used to select dose combinations in the multiple agent trial. As an
example, Flournoy (1993) considered a design wherein k patients are to
be treated at each of six equally spaced dose combinations to be selected
from the set S defined above. The single agent design method of
Tsutakawa (1980) was implemented to determine the optimal placement
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and spacing of the dose combinations and so define the set of dose
combinations to be used in the trial. This approach can easily be
generalized to accommodate either nonlinear search regions or combi-
nations of more than two agents. For example, the set S of dose levels to
be searched for an MTD could be chosen so that given any two distinct
dose combinations in S, one will have the levels of all agents higher than
the other. As a result, the combinations in S can be unambiguously
ordered and the dose-toxicity relationship can be meaningfully modeled
as an increasing function of the distance of each permissible dose
combination from the “minimum” combination. Since this formulation
represents each permissible dose combination by a single real number, the
design methods described above for single agent trials can be used to
select dose combinations in the multiple agent trial.

Since the curve-free method of Gasparini and Eisele (2000) is
applicable whenever dose levels can be meaningfully ordered, it can be
used to design a phase I study of treatment combinations. With this
approach one must preselect & dose combinations dy, d, ..., d; ordered
so that, with prior probability one, Prob{DLT|Dose = d;} < Prob
{DLT|Dose = d;} for all i < j. The dose-toxicity relationship is then
modeled according to Eq. (5) and a pseudodata prior is assumed for v =
[6; 0, ... 0], where 6; = Prob{DLT|Dose = d,}. It is important to
note that by not requiring the specification of a parametric curve relating
the toxicity probabilities of different dose combinations, this approach
eliminates the need to model any synergism or interaction between the
agents.

Kramar et al. (1999) describe the application of CRML in a phase [
trial to determine the MTD of the combination of docetaxel and
irinotecan. The method is based on the discrete empiric model given by
Eq. (6). Use of this model requires a procedure for obtaining a prior
estimate of the probability of DLT at each of the k dose combinations
preselected for use in the trial. Kramar et al. (1999) describe how the
estimates can be obtained prior to the onset of the phase I trial by using
data from trials investigating each agent separately. Once these estimates
have been obtained, the multiple agent trial can proceed according to
CRML exactly as it applies to a single agent trial.

3.7. Incorporation of Covariate Information

As defined above, the MTD may well quantify the average response of a
specific patient population to a particular treatment, but no allowance is
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made for individual differences in susceptibility to the treatment (Dillman
and Koziol, 1992). Recent developments in our understanding of the
genetics of drug-metabolizing enzymes and the importance of individual
patient differences in pharmacokinetic and relevant clinical parameters is
leading to the development of new treatment paradigms (ASCO, 1997).
For example, the observation that impaired renal function can result in
reduced clearance of carboplatin, led to the development of dosing
formulas based on renal function that permit careful control over
individual patient exposure (Newell, 1994). Consequently, methods are
being presented for incorporating observable patient characteristics into
the design of cancer phase I trials.

In cancer clinical trials, the target patient population can often be
partitioned according to some categorical assessment of susceptibility to
treatment. Separate phase I investigations can then be conducted to
determine the appropriate dose for each patient sub-population. As an
example, the NCI currently accounts for the contribution of prior
therapy by establishing separate MTDs for heavily pretreated and
minimally pretreated patients. In such contexts, independent phase I
trials can be designed for each patient group according to the methods
outlined above. Alternatively, a single trial might be conducted with
relevant patient information directly incorporated into the trial design.
Thus, the dose-toxicity relationship is modeled as a function of patient
attributes represented by the vector ¢ of covariate measurements. For
exposition, we consider the case where a single covariate observation c is
obtained for each patient. The relationship between dose and response
might then be characterized as

~exp(a+ Bx 4 6c)
1 4exp(a+ Bx + 6¢)

p(x,c) (13)

where

p(x,¢) = Prob[DLT|Dose = x, Covariate = ¢].

The overall design of the trial will depend in part on whether or not the
observation ¢ can be obtained for each patient prior to the onset of
treatment. For example, when the covariate assessment can be made
before the initial course of treatment, the dose recommended for phase 11
testing can be tailored to individual patient needs. Specifically, the MTD
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for patients with covariate c is defined as the dose y(¢) such that p{vy(c), ¢}
= 0. Thus, y(c) is the dose that is expected to induce DLT in a
proportion 6 of patients with pretreatment covariate observation ¢. When
relevant covariate information can only be accumulated after or during
the course of treatment (as would be true for most pharmacokinetic
assessments), the information can be used to improve the efficiency with
which the MTD is determined, but cannot form the basis for a tailored
dosing regimen. In this case, a global MTD is defined representing the
dose recommended for use by all patients in the target population.
Upon specification of a joint prior distribution for the unknown
model parameters, the conduct of the trial would proceed along the lines
given in Sections 2.4 and 2.5 (see, for example, Babb and Rogatko, 2001).
Consequently, we conclude this section with an example illustrating the
specification of the prior distribution in the PNU trial. Alternative
formulations are given in Mick et al. (1994) and Piantadosi and Liu (1996).

Example: PNU Trial (continued)

Preliminary studies with PNU indicated that dose levels should be adjusted
for baseline pretreatment concentrations of circulating anti-SEA anti-
bodies. Consequently, the MTD +v(c) was defined to be the dose level of
PNU (ng/kg) that produces DLT in a proportion 6 = 0.1 of the patients
with baseline anti-SEA equal to ¢, as assessed 3 days prior to the onset of
treatment. The small value chosen for 6 reflects the severity of the treat-
ment induced toxicities (e.g., myelosuppression) observed in previous
studies.

Prior to the recognition of the importance of anti-SEA, a total of 77
patients were treated at dose levels between 0.01 and 37 ng/kg. The results
suggested that, irrespective of anti-SEA concentration, patients could be
safely treated at 0.5 ng/kg and that patients with anti-SEA concentration
equal to ¢ (pmol/ml) could tolerate doses up to M(c) = min{3.5, ¢/30}
ng/kg without significant toxicity. Hence,

X1 (C‘) = [(0‘15](6) + (6/30)1057105](0) + 3.5](105’30)(6')

was chosen as both the starting dose and the minimum permissible dose
for the trial. Due to the nature of the agent and as a precaution, it was
decided not to consider doses above 1000 ng/kg and to never treat a
patient at a dose above his/her pretreatment anti-SEA (in pmol/mL).
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Consequently, the set of permissible doses levels for patients with
pretreatment anti-SEA concentration equal to c is

S(c) = {x: x1(c)< x < min(c, 1000)}.

The model for the dose-toxicity relationship was taken to be the logistic
model given in equation (13) with both dose and anti-SEA expressed on
the natural log scale. To account for the fact that anti-SEA mitigates the
toxic effects of PNU, it was assumed that 6 < 0. To elicit prior
information it was necessary to reformulate the dose-toxicity model in
terms of parameters the clinicians could readily interpret. Since the
clinicians could easily understand the probability of DLT associated
with selected combinations of dose and anti-SEA, the model was
expressed in terms of vy(¢»), p1 = p{0.5, ¢1} and p, = p{0.5, ¢,} for
values ¢; = 0.01 and ¢, = 1800 selected to span the range of anti-SEA
concentrations expected in the trial. We note that p; and p, are the
probabilities of DLT when the minimum allowable dose 0.5 ng/kg is
administered to patients with pretreatment anti-SEA ¢; = 0.05 and ¢, =
1800, respectively. y(c;) is the MTD associated with the maximum
anticipated concentration of anti-SEA. Since the probability of DLT at
a given dose is a decreasing function of anti-SEA, we have p, < p;. Thus,
the parameter space associated with ® = [p;, p,] was taken to be () =
{(x,»):0 <x<6,0 <y < x}. The prior distribution of v = [y(c;), ®] was
specified by assuming y(¢;) and ® to be independent a priori with ®
distributed as a uniform on () and with In{y(c,)} distributed as a uniform
on [In(3.5), In(1000)]. Thus, the prior distribution was taken to be

h{y(c2), 0} o< y(e2) ™ Iis.5,1000{7(c2) Ho ().

3.8. Monitoring Safety and Efficacy in Phase | and Il
Trials

Upon completion of the phase I trial a decision is made to either remove
the treatment from further investigation or to progress to a phase II
evaluation of treatment efficacy. In the phase II setting, patients are
treated at an estimate of the MTD and the primary statistical focus is on
the incidence of some threshold level of antitumor activity. Typically it is

Copyright n 2004 by Marcel Dekker, Inc. All Rights Reserved.



assumed that the agent is sufficiently safe at the recommended phase 11
dose. Consequently, safety considerations are rarely formally accounted
for in the design of phase II trials (Thall et al., 1996). However, since the
phase II dose is generally determined on the basis of data from a
relatively small number (usually 20 or fewer) of phase 1 patients, the
safety of the new agent at the recommended dose may not be well
established (Conaway and Petroni, 1996). Consequently, designs for
early phase clinical trial are being proposed (e.g., Conaway and Petroni,
1996; Thall et al., 1996; Thall and Russell, 1998, Thall et al., 1999) which
permit the monitoring of both patient safety and treatment efficacy. Such
designs are considered here since they represent what can be regarded as
combination phase I/II trials (Thall and Russell, 1998).

For the combination phase I/II trial, both safety and efficacy are
assessed as binary endpoints (Conaway and Petroni, 1996). For example,
safety is represented by the indicator variable for dose limiting toxicity
while efficacy is indicated by the presence or absence of a given level of
antitumor activity (such as complete remission or a reduction of at least
50% in the largest tumor diameter). The method of Thall and Russell
(1998) is based on a trinary assessment of overall treatment response.
Thus, response is represented by a random variable Y such that: ¥ = 0 if
neither DLT nor the desired efficacy outcome is manifest; ¥ = 1 if a
patient exhibits positive response without DLT; and Y = 2 if DLT is
manifest (either with or without positive response to treatment). The
relationship between dose and overall response is modeled by assuming
that the conditional distribution of Y given dose follows McCullagh’s
(1980) proportional odds regression model. Specifically, letting @,(x) =
Prob{ Y > i|Dose = x},i = 0, 1, 2, and writing logit(p) = log[p/(1 — p)],
the dose-toxicity model is given by

logitjoi(x)] = pi+px i=1,2
and

eo(x) = 1—ai(x)
with u; > pp and B > 0. As noted by Thall and Russell (1998), an
important consequence of the model is that the probability of the desired

outcome Y = 1 (i.e., positive response without DLT) is not necessarily a
monotone function of dose, which is in accordance with clinical experi-
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ence. The prior distribution is specified by assuming that py, pt,, and B are
independently distributed as uniform random variables on their respec-
tive domains. The authors present a graphical method for determining
appropriate domains for the model parameters. The design of the trial
requires specification of probabilities 6; and 6, and thresholds T; and 7>
such that a given dose x is considered to be insufficiently efficacious if

[L{p(x) <01} > (14)

and intolerably toxic if

[[ () > 62} > o (15)

where, for i = 1, 2, p;(x) = Prob{ Y = i|Dose = x} and IT{(E) denotes
the posterior probability of the event E given the data available after
observation of k patients. A dose level x is said to be acceptable if it is
deemed neither insufficiently efficacious nor intolerably toxic. The prob-
abilities 8; and 6, are specified by the clinicians and represent standards
defining acceptable rates of toxicity and positive response. The thresholds
71 and 7, are chosen on the basis of simulation studies so that the final
design has adequate operating characteristics. Once these probabilities
and thresholds have been chosen, the trial progresses as follows. A
predetermined number N of patients are treated in cohorts of fixed size
with each patient in a cohort receiving the same dose. The first cohort of
patients is administered the lowest dose in the permissible dose set S =
{x1, X2, ..., Xx}. Subsequently, if the last dose used is:

¢ Unacceptably toxic according to (15), then terminate the trial if
the last dose is the lowest permissible dose x;; or deescalate the
dose one level.

¢ Acceptably toxic, but unacceptably active according to (14), then
terminate the trial if the last dose is the highest permissible dose
Xi; terminate the trial if the next higher dose is unacceptably
toxic; or escalate the dose one level if the next higher dose has
acceptable toxicity.

¢ Acceptable, then treat the next cohort at the acceptable dose x*
€ S minimizing TT; {p;(x*) < 6,}, subject to the constraint that
the dose not be escalated by more than one level unless some
patients have been treated at all intermediate dose levels.
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4. STATISTICAL CONSIDERATIONS

Upon completion of the phase I trial the MTD can be estimated by
minimizing the posterior expected loss with respect to some choice of loss
function L. Thus, the dose that is recommended for use in a subsequent
phase II trial is the level

y—arg min{ | 2y [T, (vw)}
yel' Q

where n is the total number of patients accrued to the trial. Candidate
estimators would include the mean, median, and mode of the marginal
posterior distribution of the MTD. Consideration should be given to
asymmetric loss functions since under- and overestimation of the MTD
would have very different consequences. To reflect the often substantial
difference in the characteristics of the phase I and II patient populations,
estimation of the MTD can be based on a different prior distribution or
loss function than was used to design the phase I trial (Tsutakawa, 1972,
1975). A further separation of the design and inferential aspects of the
phase I trial has been suggested by authors (e.g., Watson and Pelli, 1983)
who recommend the use of Bayesian methods to design the trial and the
use of maximum likelihood to estimate the MTD.

As discussed in Gatsonis and Greenhouse (1992) and indicated by
Eq. (10), Bayesian methods can also be used to derive an estimate 6 (x) of
the probability of DLT at a specific dose x. Such information might be
incorporated into the informed consent process and provide a basis for
statistical stopping rules or for modifying other aspects of the study design.

In addition to being a means to design a phase I trial, Bayesian
procedures provide a useful summary of all the information available at
any time in the trial. For example, the precision with which the phase II
dose has been determined can be reflected through the highest posterior
density (HPD) credible interval for the MTD. The HPD credible
interval is constructed so that it contains the most likely values for
the target dose and so that the posterior probability that it contains the
true MTD is equal to a specified credibility level 6. Since the length of a
credible interval measures our uncertainty about the parameter under
investigation, the HPD credible interval for the MTD would provide a
suitable basis for determining when the phase II dose has been deter-
mined with sufficient precision that no further phase I testing is
required. Similarly, Goodman et al. (1995) suggest a stopping rule based
on the length of the 95% HPD credible interval for the unknown slope
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parameter in the two-parameter logistic dose-toxicity model of Eq. (3)
with known intercept. Heyd and Carlin (1999) present simulation results
for this stopping rule.

5. CONCLUDING REMARKS

One of the challenging aspects associated with cancer phase I clinical trials
is the need to make accurate assessments of the dose levels to be given
patients at the onset trial when only limited information is available. The
Bayesian approach permits full utilization of the information available
from preclinical studies generally conducted prior to the onset of the trial.
Furthermore, since the Bayesian designs do not in general rely on asymp-
totic properties, they are suitable for use in the small sample setting typical
of most cancer phase I trials. As result, many researchers are currently
focused on improving the performance and generality of phase I design
methodologies through the Bayesian perspective.
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1. INTRODUCTION

Clinical trials in humans generally progress from dose finding trials
(phase 1) to first trials of efficacy (phase II) to definitive trials of efficacy
(phase III). In the interest of making development of clinical therapy
more efficient, we propose combining phase I and II trials so that once
dose finding is completed, patients can continue entry at that dose, and
the first assessment of efficacy can be made. The concept itself is simple,

*Nancy L. Geller, Dean Follmann, and Eric Leifer wrote this chapter in their private capacity.
The views expressed in the chapter do not necessarily represent the views of NIH, DHHS, or
the United States.

Copyright n 2004 by Marcel Dekker, Inc. All Rights Reserved.



but has not found widespread application. While the phase I/II portion
may use any of the designs in the literature, we have nested the phase I
escalation portion into frequentist phase II designs with early stopping
rules. In addition, in the phase II portion of the trial, we include Bayesian
stopping rules for safety.

We have applied these designs in a series of allogeneic peripheral
blood stem cell transplantation (PBSC) trials with HLA-identical siblings
as donors. These trials differ from conventional bone marrow trans-
plantation trials in that the preparative regimen is immunosuppressive,
but not myeloablative. However, the sequella of PBSC transplantation
are similar to those of bone marrow transplantation and much is known
about bone marrow transplantation. We incorporate this prior knowl-
edge into our designs.

There are many possibilities for a primary endpoint in transplanta-
tion trials. The earliest endpoint is engraftment, because for a patient to
survive disease-free, the donor cells must first engraft and the engraftment
must be sustained. The goal in transplantation is for the donor’s immune
system to replace the patient’s; this is known as full donor chimerism. Thus
full donor chimerism is a second early endpoint. If mixed donor chimerism
(less than full donor chimerism) is not achieved by day 100, it is unlikely
that full donor chimerism will ever occur. Thus mixed donor chimerism by
day 100 is another early endpoint. Following a transplant, patients are at
risk for acute graft versus host disease (aGVHD), usually defined as occur-
ring prior to day 100. Thus, aGVHD of grade II or less by day 100 might be
used as an endpoint. Failure in any of these endpoints might result in death.
Another cause of early death is infection, which might occur because the
patient is immune-suppressed. Thus transplant-related mortality, that is,
death due to the transplant or its sequella by day 100 or 200, is another
possible primary endpoint.

Aside from these early endpoints, other usual cancer disease end-
points may be considered, such as complete response (absence of disease)
by a certain day, or survival to a certain day. When therapy is well devel-
oped and definitive trials are undertaken, it is commonplace to use disease-
free survival or even overall survival as the trial endpoint.

The choice of the primary endpoint in a transplantation trial depends
on the developmental stage of the therapy. Because our trials were among
the first PBSC transplants, they were designed to select a preparative regi-
men that had high probability of achieving donor engraftment. As treat-
ment became more successful, the primary endpoint of succeeding trials

Copyright n 2004 by Marcel Dekker, Inc. All Rights Reserved.



would focus on endpoints either further along in time or sustained for a
longer period.

2. A PHASE I/11 DESIGN FOR PBSC TRANSPLANTATION
TRIALS

The initial trial was designed as a phase I/II study. The primary goal was
to find the minimal dose of preparative regimen (of three considered)
which would establish that the probability of engraftment by day 42 was
greater than .80. If such a dose were found, we would assess efficacy by
accruing a sufficient number of patients to estimate the proportion of
response (complete or partial response for at least one month’s duration)
with a prespecified precision (e.g., to within +.20).

The null hypothesis H that the proportion p of patients that engraft
by day 42, was at most .80 was tested versus the alternative hypothesis H 4
that the proportion of patients who engraft was at least .95:

Hy:p < .80 versus Hy:p>.95.

We chose a design with overall significance level .05 and power .80.

We used Simon’s optimal two-stage design (1989). Simon’s design is
optimal in the sense that among all two-stage designs (of the prescribed
size and power) that allow for acceptance (but not rejection) of H, after
the first stage, it has the minimum expected sample size under the point-
null hypothesis p=.80. The rationale is that it is often attractive to
investigators to minimize sample size when the treatment is unsuccessful,
but that sample size is less of concern when the treatment is successful.

Patients were to be entered in two stages, with the first (minimum)
dose level of the preparative regimen stopped after the first stage if there
were not a sufficient number of engraftments. If, among the first 9 patients
treated, 7 or fewer engrafted, H, would be accepted and the trial would
stop. Thus we could stop with as few as two failures, even if they were the
first two patients entered into the trial. In that case, the preparative regi-
men would be escalated to the second dose level. However, if at least 8
patients engrafted at the first dose level, up to 20 additional patients would
be enrolled at that dose. If there were three failures (even before all 20
additional patients were enrolled), we would stop using the first prepara-
tive regimen, in this case accepting H,, and the dose of the preparative
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regimen would be escalated. In any case, a 95% confidence interval for the
proportion of engraftment would be given which considered the two-stage
design (Jennison and Turnbull, 1983).

If the initial preparative regimen were found to have a low
proportion of engraftment (i.e., Hy was accepted), we would proceed to
the second preparative regimen dose level. We would then use the same
design as described above to test the same hypotheses with the second
preparative regimen. If the second preparative regimen were found to
have a low proportion of engraftment (i.e., we accept Hy), the third
preparative regimen would be used and the same hypotheses tested.

The first preparative regimen at which Hy was not accepted in favor
of H, would be the recommended dose for further study. For such a
regimen, a 95% confidence interval for response (conditional on engraft-
ment) would be given. If the null hypothesis were accepted for any of the
three preparative regimens, other preparative regimens would need to be
considered in another trial. In addition, a 95% confidence interval for
response to this preparative regimen (counting graft failures as treatment
failures) may be given.

An attractive feature of this design is that it uses the same patients
to undertake phase I and II activities, i.e., dose finding and hypothesis
testing, all while using the optimality properties of Simon’s design, which
was developed for phase I designs. For the specific design described above,
we note that for a particular dose under investigation, Hy is accepted when
either a second patient fails to engraft among the first nine patients tested
at that dose, or a third patient fails in any case. In this way, the expected
number of patients given an inadequate dose of the preparative regimen
is minimized.

There are, of course, other ways in which phase I and II activities
could be combined. Instead of Simon’s design, we have sometimes used
Fleming’s (1982) design in the same fashion as described above. Fleming’s
(1982) design allows early stopping to ecither accept or reject the null
hypothesis. Since Fleming’s design is ultimately based on Wald’s (1947)
sequential probability ratio test, it approximately minimizes expected
sample sizes under the point-null and point-alternative hypotheses. These
designs are preferable in certain situations to Simon’s designs which, as
discussed above, only minimizes expected sample size under the point-null
hypothesis.

Alternatively, doses could be escalated according to methods of
O’Quigley, et al. (1990, 2001) or Stylianou and Flournoy (2002) or Ro-
gatko and Babb (2003). Such escalation schemes were designed to under-
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take dose finding efficiently and if they are used in a phase I/II trial, it is
likely that additional patients for the phase II portion of the trial will be
required. The phase I/II trial proposed here does not require additional
patients for phase II.

When there are a sufficient number of engraftments to accept a
preparative regimen in the particular design we propose, we can estimate
the response proportion (conditional on engraftment) in addition to
performing hypothesis testing on the proportion of patients that engraft.
If there were no responders in 19 engrafters, we could also conclude that
the response proportion (conditional on engraftment) is .15 or less with
95% confidence. If there were no responders in 29 engrafters, we could
conclude with 95% confidence that the response proportion (conditional
on engraftment) is .10 or less.

3. BAYESIAN STOPPING RULE FOR SAFETY

The trial described in Section 2 was monitored by a data and safety
monitoring board, which expressed a concern that engraftment by day
42 was not sufficient to assure the longer term safety of the patients who
underwent this procedure. They requested a stopping rule for a longer term
endpoint to monitor safety. We chose 100 day transplant-related mortality
(TRM) as the safety endpoint. TRM encompasses multiple causes of death
and so serves as a suitable safety endpoint. Thus patients who died because
of failure to engraft, graft failure after engraftment, toxicity from the
preparative regimen, graft versus host disease or infection would count as
failures in the safety endpoint. Day 100 was chosen to include the early
sequella of the transplant, but not later events, such as chronic graft versus
host disease or recurrence. To monitor day 100 TRM, we adopted a
Bayesian approach which formally incorporated “prior” expectations
about the proportion of patients experiencing TRM.

Several authors have used Bayesian methods in other settings. Thall
and Simon (1994) discuss Bayesian guidelines for phase II trials where
comparison to a previously established standard will be made and the
data are monitored continuously. Thall et al., (1995) discuss Bayesian
sequential monitoring in phase II trials with multiple outcomes. Foll-
mann and Albert (1999) discuss Bayesian monitoring with censored data.
Thall and Russell (1998) use a Bayesian approach to assess dose and
efficacy simultaneously by defining adverse, efficacious and neither as
outcomes and using a cumulative odds model.
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The proportion of patients experiencing TRM up through day 100
post-transplant, ptrm, Was assumed to follow a binomial distribution.
For the prior distribution of prry, we used the beta distribution. This
was done for two reasons. First, it is a “natural” conjugate prior for the
binomial distribution; that is, the likelthood functions for both the beta
and the binomial distributions have the same functional form (Berger,
1985). Thus, the posterior distribution may be easily recalculated each
time a patient is evaluated. Second, using a beta prior has the following
attractive property: Suppose a beta prior distribution with parameters
a and b is used, and so its mean is a/(a + b) and variance is ab/[(a + b)*
(a + b + 1)]. Further, suppose that among n patients enrolled, y have not
engrafted (failure), and the remaining n — y have engrafted (success).
Then the posterior beta distribution has parameters ¢ + y and b + (n—y)
and mean (¢+y) / (n+ a+ b). This mean is the maximum likelihood
estimate of prry based on a + y successes and (n—y)+ b failures. Thus
the prior may be thought of as contributing a “imaginary” failures and
b “imaginary” successes to the posterior distribution and so is “worth”
a+ b “patients” compared to the n “real” patients that have been en-
rolled (Santner and Duffy, 1989).

This interpretation provides a simplified approach to specifying the
prior distribution. We specify the prior mean at say r and take the worth
of the prior to be a modest proportion of the total planned sample size,
that is, a + b is a modest proportion of n. This assures that the prior will
be influential in the early stage of the study, but that later, the data will
dominate the prior.

A stopping boundary would be reached if the proportion experienc-
ing TRM exceeds the anticipated proportion with posterior probability
at some threshold, say .90 or .95. From prior experience we anticipated
the mean to be .20 and we take our prior to be “worth” six patients. Thus
the parameters of the prior distribution were 1.2 and 4.8 which also im-
plies that the variance of the prior distribution is .0229.

We took the threshold probability for stopping as .90. That is, we
would recommend stopping if the number of patients patients experienc-
ing TRM implied the posterior distribution had .90 of its probability mass
exceeding the mean of the prior, .20. For the purpose of preserving power,
we did not allow for stopping after every patient, but, instead, after groups
of patients. The resulting stopping boundaries are given in Table 1.

In implementing this stopping rule, it is important to be even-
handed in counting those alive and dead by 100 days. Strictly speaking,
we should not tally a patient as having 100 day TRM or not until their
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Table 1 Bayesian Stopping Rule for

100 Day TRM
Stop if number of
transplant-related
deaths by day 100
No. patients reaches or exceeds
9 4
19 7
28 9

100 day enrollment anniversary has passed. However, if meeting the
boundary is certain to occur, we can relax this restriction. For example,
if the first four patients enroll simultaneously and all die within 10 days,
there is no need to wait an additional 90 days to say the boundary has
been crossed.

The stopping rule was assessed by simulation. Based on 10,000
repetitions, the probability of meeting the stopping boundary was .16
under the null hypothesis of prrm = .80 and .88 under the alternative
hypothesis that ptrm = .40. We concluded that the likelihood of stopping
was satisfactory to protect patient safety for 100 day TRM. It is
important to undertake simulations to evaluate the repeated sampling
behavior of planned stopping rules in order to feel comfortable about
their performance.

S+ programs for Bayesian stopping rules and their assessment are
available from the authors.

4. A PHASE Il TRIAL DESIGN WITH AN INTERMEDIATE
ENDPOINT AND BAYESIAN STOPPING RULES FOR
EARLY FAILURE

Several phase I/II PBSC transplantation clinical trials were designed for
different diseases using the paradigm above. The new treatment method
was considered successful, in that there was one preparative regimen that
gave engraftment in a high proportion of cases in several different trials.
Because of this progress, the next set of trials used a longer term primary
endpoint, 200 day disease-free survival. A Bayesian stopping rule for
earlier failure was also included.
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Here is an example of a design to estimate the 200 day disease-free
survival which was used in a PBSC transplant trial of patients with
debilitating non-malignant hematological diseases. The expected 200 day
disease-free survival for such patients was .30. Forty-five patients were to
be enrolled. After all patients had been followed for 200 days, a 95%
confidence interval for the 200 day survival was to be given based on the
Kaplan—Meier (1958) estimate and Greenwood’s formula (1926) for the
variance. This sample size is the number of patients required (assuming
that no early stopping was permitted) to estimate the true 200 day
survival proportion to within approximately +.13 with 95% confidence
if the Kaplan—Meier estimate of 200 day survival was in the range of .30-
.40 (Simon and Lee, 1982).

In this trial, we also considered Bayesian stopping rules for early
failure. We illustrate with a stopping rule for acute GVHD (grade 3 or
higher up to day 100) based on a Bayesian formulation. Prior experience
in transplantation has resulted in the proportion of patients with grade 3
or higher acute GVHD. p,gvup, is most likely to be .20. Given that there
would be 45 patients in the trial, we used a beta prior distribution with
mean .20 and “worth” 18 patients, i.e., with parameters 4 and 16 (var-
iance 0.0076). With this prior distribution, the probability of grade 3 or
higher acute GVHD was unlikely to be less than .08 (prior probability
.06) or greater than .40 (prior probability .02), also consistent with ex-
perience. Stopping would be recommended whenever the posterior dis-
tribution had .95 of its mass exceeding the mean of the prior distribution,
.20. The stopping rule is shown in Table 2.

Table 2 Bayesian Stopping Rule for Acute

GVHD
No. cases to

No. patients recommend stopping
5-6 5
7-10 6
11-13 7
14-17 8
18-21 9
22-25 10
26-29 11
30-33 12
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This stopping rule was assessed by simulation. Based on 10,000 repe-
titions, the probability of stopping early for an excess of acute GVHD
over the course of the trial was .04 when p,gvagp = .20 and .76 when
Pacuvp = -40. This was deemed reasonable for protecting patient safety.

5. A PHASE Il DESIGN WITH MULTIPLE PRIORITIZED
ENDPOINTS

Other designs are feasible for the phase II portion of a phase I/II trial.
Several authors have considered trials with multiple endpoints in the phase
IT setting. Conaway and Petroni (1995), Jennison and Turnbull (1993), and
Thall et al. (1995) design trials which evaluate bivariate responses and such
designs might be considered in the phase II portion of a phase I/1I trial.

Below we present a method for a phase II portion of a phase I/II
trial, where a priority among multiple endpoints can be specified. As an
example, consider using mixed chimerism by day 100 and absence of
disease at day 100 as joint endpoints. Suppose we are interested in testing
if the proportion of those with mixed chimerism at day 100 is .75, but this
is only of interest if the proportion of those with absence of disease at day
100 is at least .50.

1. Test
Hy, : p (disease at day 100) < .50 Versus
Hy : p (disease at day 100) > .50

2. 1If Hy is rejected (at, say, a = .05), test
Hy; : p (mixed chimerism) < .75 Versus
H > : p (mixed chimerism) > .75

at the same level o = .05.

Because the two hypotheses are prioritized and H, is not tested
unless Hy is rejected, the overall type I error of this procedure is .05, that is
P(Reject Hy, or Hy, | Hy, and/or Hy, is true) = .05. The procedure
preserves a because the second hypothesis is tested only if the first is
rejected, but not otherwise. Of course if Hy, were tested regardless of
whether Hy; was rejected, then the overall type I error would be inflated to
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P(Reject Hyy | Hyy is true) + P(Reject Hy, | Ho, is true); this quantity could
be as large as .10.

Suppose we set sample size to have adequate power to test the first
hypothesis. With two-sided a = .05 and power .90, for example, a sample
size of 65 can detect the alternative that the proportion of patients with
disease at day 100 is .70. We might introduce some planned interim analy-
ses, which would lower the power slightly. We recommend sample size be
set based on the power to detect an alternative of interest on the endpoint
with first priority, since the lower priority hypotheses may not be tested.
One would also calculate the power to detect a difference of interest on the
secondary hypothesis. If a larger sample size is needed for the secondary
endpoint than the primary endpoint, it might seem natural to increase the
difference of interest on the secondary hypothesis. However, we recom-
mend reconsidering if the priority of the endpoints is correct, and, in par-
ticular, if this is the approach that is appropriate.

6. DISCUSSION

This chapter presents designs for phase I/II trials. Simon’s designs, which
were developed for the phase II frequentist setting, were used to establish
stopping rules for finding a safe dose level in the phase I portion of our
trial, as well as for hypothesis testing in the phase I portion, if a safe dose
was found. When a safe dose was found, we also proposed an estimate of
treatment efficacy at the safe dose level. In addition, we incorporate
Bayesian stopping rules for safety.

What is the logical basis for combining frequentist and Bayesian
approaches in early trials? For those who prefer a frequentist approach, the
argument can be made that when there is prior knowledge about safety
endpoints, a Bayesian approach is appropriate. The associated toxicities
and the course of recovery for those undergoing PBSC transplantation
are well known from bone marrow transplantation. The frequentist can use
his or her preferred design for the primary endpoint, yet incorporate this
wealth of experience into the secondary endpoints. For those who prefer
Bayesian approaches altogether, one could undertake a phase I/II trial
with both phases Bayesian.

For the frequentist, the safety stopping rules do not affect «, but
lower the power of the trial. That is, the possibility of stopping for safety
reasons makes it easier to miss a treatment effect of interest. However, if a
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trial is stopped early for safety reasons, the treatment effect is of limited
interest. Both the number of stopping rules for safety and the possible
stopping times should also be limited to avoid an excessive decrease in
power and to reduce the chance of stopping unnecessarily.

The choice of primary endpoints in early trials is difficult and must
rely on clinical judgment. The statistician can help the clinician keep in
mind that new therapies should be assessed by early endpoints and it is only
when treatment is better established that longer term endpoints should be
primary. In designing early trials, recent designs, such as those that prior-
itize among multiple endpoints, should be considered. The frequentist
approach to efficacy with a Bayesian approach for safety provides a para-
digm for efficient design of these early studies.
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1. INTRODUCTION

Active control clinical trials compare a new treatment to a treatment
known to be active in the disease in question. Active control trials are
sometimes called non-inferiority trials or therapeutic equivalence trials
and we will use the terms interchangeably. There are two common objec-
tives to active control trials. The first is to demonstrate that the new treat-
ment (E, experimental) is effective relative to no treatment or relative to a
placebo. In the context of a serious or life-threatening disease, if there is an
effective treatment (C, active control), it will not be justifiable to perform
a randomized clinical trial comparing E to placebo or no treatment ( P).
Consequently, demonstration of the effectiveness of E is often attempted
by comparing E to C. The hope is that if one can conclude that E'is equiv-
alent to C and if C is known to be effective, then E must be effective.

The second objective of an active control trial is to determine
whether E is equivalent to C. For example, C may represent mastectomy
for breast cancer and E lumpectomy with radiation treatment. Or C may
be 12 months of adjuvant chemotherapy after surgery for colon cancer
and £ may be 6 months of chemotherapy. The goal of demonstrating
therapeutic equivalence frequently occurs when E is a less debilitating or
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less toxic version of C. The goal of demonstrating that E is effective
relative to P frequently occurs when £ is a new drug for which one seeks
regulatory approval.

Therapeutic equivalence trials should not be confused with bio-
equivalence trials. The goal of a bioequivalence trial is to compare the
serum concentrations of a specified molecule as functions of time for two
treatments. The treatments often represent two different routes or
schedules of administration of a drug. Bioequivalence trials are often
conducted as small two-period crossover studies. Because the endpoint
permits the use of the crossover design to eliminate interpatient varia-
bility and because the endpoint can usually be measured precisely, the
bioequivalence objective can usually be accomplished adequately with
relatively few patients.

In contrast to bioequivalence trials, therapeutic equivalence or
active control trials are problematic. There are two major problems.
One is that we can never establish that £ is equivalent to C. In statistical
hypothesis testing we frequently express the null hypothesis that E is
equivalent to C. It is a fallacy, however, to believe that failure to reject a
null hypothesis represents demonstration of its truth. We will describe in
the next section several statistical formulations of active control trials
that attempt to deal with the problem that one can never establish the
equivalence of two treatments.

The second major problem with the strategy of trying to establish
effectiveness of E through a therapeutic equivalence trial is that C must
be known to be effective. This means effective with regard to the endpoint
used in the active control trial and that endpoint must be a measure of
patient benefit. Many active control trials fail at this point. For example,
in several types of advanced cancer, standard treatments are used for
which there is little evidence of effectiveness. The treatments are known to
be “active” in the sense that they cause partial shrinkage of a percentage
of tumors, but that shrinkage is not direct evidence of effective palliation
or patient benefit, particularly in light of the toxicities of the treatments.
To know that C is effective, one should generally have randomized
clinical trials of C versus P that establishes the effectiveness of C with
regard to a medically meaningful endpoint that can be used in the active
control trial. Even that is not enough because one must be able to
conclude that C is effective for the patients to be studied in the active
control trial. Hence there must be evidence that the patients to be included
in the active control trial are very similar to those that were included
in the randomized trials of C versus P that established the effectiveness
of C.
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In the following sections we will describe the statistical approaches
that are commonly used for the design and analysis of active control
trials. We will elaborate on the problems of establishing therapeutic
equivalence or treatment effectiveness via active control trials and will
critique the commonly used statistical formulations. We will also present
a new Bayesian approach to the design and analysis of active control
trials and will illustrate its application.

2. COMMONLY USED STATISTICAL FORMULATIONS
2.1. Testing the Null Hypothesis of Equivalence

Most clinical trials are designed to test the null hypothesis that the two
treatments are equivalent with regard to the primary endpoint. For an
active control trial, the null hypothesis can be represented as Hy: Fr =
Fc, where Fr denotes the distribution function of the endpoint for
treatment £ and Fc is defined analogously. Let the probability of
rejecting Hy be no greater than a whenever Hj is true. The usual
approach is to define an alternative hypothesis H, that represents the
smallest difference between the treatments that is medically important. If
the distribution functions Fr and F are normal with possibly different
means but the same variances, then the distance between Fg and Fc can
be represented by the difference in means A=pc—pg. In order to have
power 1—p for rejecting the null hypothesis when the alternative hypoth-
esis A=A" is true, we require

A*

- = a7 (1)

where T = y/20%/n is the standard error of the maximum likelihood
estimate (MLE) of A, z;_ and z,_, are percentiles of the standard normal
distribution and n is the sample size per treatment arm. Equation (1) can
be used for planning the sample size of the trial. When the endpoint is
binary, a number of normal approximations are available for sample size
planning, one of the most accurate being that of Casagrande et al. (1978).
For time to event endpoints, the target number of events can be planned
using the results of Rubenstein et al. (1981) when the alternative
hypothesis is based on proportional hazards.

A major objection to the conventional statistical formulation of
testing the null hypothesis for active control trials is that failure to reject
the null hypothesis is often considered a basis for accepting the null
hypothesis. In superiority trials, acceptance of the null hypothesis is
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equivalent to rejection of the experimental treatment E. If the clinical trial
is inadequately small, it will have poor statistical power and will likely
result in failure to reject the null hypothesis. Consequently, an inad-
equately tested new treatment will not be adopted. The decision structure
is reversed, however, for active control trials. Acceptance of the null
hypothesis is acceptance of therapeutic equivalence. This may lead to
adoption of the experimental treatment E. Here an inadequately small
trial will likely lead to failure to reject the null hypothesis and acceptance
of therapeutic equivalence. There are other defects, in addition to
inadequate sample size, that can impair the statistical power of an active
control trial and lead to erroncous adoption of E. Having many patients
lost to follow-up, many protocol violations or selecting patients who are
unlikely to benefit from either treatment are but a few examples.

In using this formulation one must bear in mind that for active
control trials the type 2 error @ is at least as important as the type 1 error
o because the decision structure is reversed from the formulation for
superiority trials. Hence it is not unusual to use 3=.05 and a=.10 for
active control trials. It is also noteworthy that the significance test is one-
sided for active control trials.

The issue of sample size planning for active control trials is complex
and will be dealt with more fully in Section 3.2. Most trials with the
objective of demonstrating equivalence of a less debilitating or more
convenient therapy for a life-threatening disease, however, must be very
large. This is because the secondary endpoints of convenience or less
debilitation are desirable only if one is assured that the decrease in
efficacy for the primary endpoint is very small. Hence the trial must have
high power for rejecting the null hypothesis for a very small value of A™.
This results in a large sample size.

2.2. Testing a Nonnull Hypothesis

Inadequately sized active control trials are sometimes taken as convincing
demonstration of equivalence by a large portion of the medical audience.
Many do not appreciate that failure to reject the null hypothesis is not a
valid basis for concluding that the null hypothesis is true, particularly
when the statistical power is low. In order to limit the potential for
misinterpretation of active control trials, Blackwelder (1982) proposed
that they be designed and analyzed by testing the alternative hypothesis
H,: pe—pp=A". If the power for rejecting A=A" is low, then the
conclusion will be that the treatments are not equivalent and hence E
will not be accepted.
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For the normal model with common variance, in order to test A=A"
with one-sided significance level p and power 1—a for rejecting A=A"
when A =0, the resulting sample size is given by the same formula (1) as
described above for the conventional formulation. For binary or time-to-
event endpoints, the sample size formulas for the two formulations differ
somewhat because the standard error of the maximum likelihood esti-
mate of treatment difference is not the same under the null and alterna-
tive hypotheses. But the differences are not large. The main potential
advantage of the approach of basing the analysis on testing the alterna-
tive hypothesis is to protect against erroneous acceptance of the null
hypothesis when the statistical power is poor because of inadequate
sample size.

2.3. Confidence Intervals

Many of the misinterpretations of the results of active control trials can
be avoided by reporting confidence intervals for the treatment difference
rather than significance tests (Simon, 1993). Unfortunately, confidence
intervals are rarely reported. When they are, it is usually confidence
intervals for each treatment mean rather than for the difference.

We do clinical trials to learn about the relative merits of two
treatments. The relative merits are based on various types of outcomes.
Sensible clinical decision making is based on weighing trade-offs among
the differences between the treatments with regard to multiple endpoints.
Clinical decisions are often based on the magnitudes of effects that can be
expected; hence, estimation is crucial. The most common problem with
significance tests is that they are misinterpreted as measures of the
magnitude of effect. A “statistically significant” effect is considered an
important effect and a nonstatistically significant effect is considered no
effect. Although this is a problem with the interpretation and not with the
tool itself, it indicates that investigators and clinicians want measures of
effect in order to make their decisions. Significance tests are poor
surrogates for binary indicators of clinical significance. This is because
they are determined simultaneously by the magnitude of the effect and
the precision by which it is measured. A major effect in a small study may
not be statistically significant and a small effect in a large study may be
statistically significant. There has been such an overreliance on signifi-
cance tests that sometimes even point estimates of the magnitude of effect
get buried. Confidence intervals are less easily mistaken for decision
procedures and help focus attention on one component of the decision
process, estimating the size of effects.
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Many published clinical trials are noninformative rather than
negative. That is, the confidence interval is consistent with both clinically
significant and with null effects. One might argue that a statement of the
statistical power of the study would have served equally well. This is not
true, although the influential article by Freiman and Chalmers has led a
generation of clinical trialists to believe that it is (Frieman et al., 1978).
Statistical power does not utilize the results actually obtained. Hence, a
study with limited power may reliably demonstrate that an experimental
treatment is not better than control to a clinically significant degree if the
observed difference favors control. This is illustrated in the results for 71
“negative” clinical trials published by Frieman et al. (1978). There were
50 clinical trials with less than 90% power for detecting a 50% reduction
in the event rate. Of these 50, a 90% confidence interval excludes effects
as large as a 50% reduction in 16 (32%) cases. Hence confidence intervals
are more informative than power statements in the reporting of results.
The paper by Simon describes for clinical investigators how to calculate
such confidence intervals for treatment effects and why one should
(Simon, 1986). That paper provides simple approximate methods for
computing confidence intervals for treatment effects in common situa-
tions such as with binary or time to event endpoints. The confidence
interval makes explicit the strengths and limitations of the trial for
distinguishing between null and alternative hypotheses.

One can also plan the size of an active control trial based on a
confidence interval analysis (Makuch and Simon, 1978; Durrleman and
Simon, 1990). Suppose one plans to report a one-sided 1—a level con-
fidence interval for A=pc—pg. This confidence interval can be written
A+z,_,7, where A is the maximum likelihood estimator of A and 7 is its
standard error. We may wish to conclude that E is not substantially
inferior to C if the upper confidence limit is no greater than a specified
A", If A=0, the probability that the upper confidence limit is less than A" is
D(A" /T —z1_) where ® is the cumulative distribution function for the
standard normal distribution. Requiring that this probability equals 1—
results in Eq. (1). A lower 1—a level confidence limit for A is A —z,_.7. If
this lower limit exceeds 0, then one may conclude that the treatments are
not equivalent. If A=A, the probability that the lower limit exceeds zero is
again O(A"/T —z,_4). Hence, for the case of normal endpoints with equal
variance, expression (1) provides for a probability of 1—p that the 1 —« one-
sided upper confidence limit is less than A* when A=0 and a probability
1—p that the 1—a one-sided lower confidence limit is greater than zero
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when A=A". Since both conditions are relevant, it seems appropriate to
design the trial for use of a two-sided 1—2a confidence interval. In many
cases, it may be reasonable to use 2o =0.1 and 1-p=0.9. A more stringent
condition for planning is to require that the width of the confidence interval
be A". This ensures that in all cases either A>A" is excluded or A<0 is
excluded. It requires a substantially greater number of patients however.
For sample size planning with time to event data one can use expression (1)
with the approximation that o” = total events/4.

2.4. Specification of A"

In an important sense, none of the above approaches represents a
satisfactory statistical framework for the design and analysis of active
control trials. These approaches depend on specification of the minimal
difference in efficacy A" that one will be able to detect with high
probability. If A” is selected based on practical considerations such as
patients available, the trial may not demonstrate equivalence. In general,
the difference A should represent the largest difference that a patient is
willing to give up in efficacy for the secondary benefits of the exper-
imental treatment E. The difference A must be no greater than the efficacy
of C relative to P and will in general be a fraction of that quantity A..
Estimation of A. requires review of clinical trials that established the
effectiveness of C relative to P. A, should not be taken as the maximum
likelihood estimate of treatment effect from such trials because there is
substantial probability that the true treatment effect in those trials was
less than the MLE.

None of the approaches described previously deal with how A” is
determined. Fleming (1990) and Gould (1991, 1993) have noted that the
design and interpretation of active control trials must utilize information
about previous trials of the active control. Fleming proposed that the new
treatment be considered effective if an upper confidence limit for the
amount by which the new treatment may be inferior to the active control
does not exceed a reliable estimate of the improvement of the active
control over placebo or no treatment. Gould provided a method for
creating a synthetic placebo control group in the active controlled trial
based on previous trials comparing the active control to placebo. The
next section presents a general Bayesian approach to the utilization of
information from previous trials in the design and analysis of an active
controlled trial (Simon, 1999).
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3. BAYESIAN DESIGN AND ANALYSIS OF ACTIVE
CONTROL TRIALS

3.1.  Analysis
We use the following model for the active control trial:
Y=0+pX+vZ+¢

where Y denotes the response of a patient, X=0 for placebo or the
experimental treatment and 1 for the control treatment, Z =0 for placebo
or the control treatment and 1 for the experimental treatment, and € is
normally distributed experimental error with mean zero and variance o”.
Hence the expected response for C is a+ 3, the expected response for E is
o+, and the expected response for P is a.

Assuming that o is known and that the parameters o, p, y have
independent normal prior densities N(ia, 02), N(pp, oé), N(uy, 03), the
posterior distribution of the parameters («, B, y) can be shown to be
multivariate normal (Simon, 1999). The covariance matrix is

(I4rp)(141,) —(1+ry) —(1+rp)
S=%| Ot () 1 2)
—(147p) 1 re + (147q)(1+7p)
where r, = 0%/0g, e = o*/op, and 1y, = o°/oy and
K=ry(1+rp)(14ry)+rp(1+ry)+(147p)ry.
The mean vector m= (1, Mp, My) of the posterior distribution is

T (e (1) (o) (1 75) (=)
o« K

np= rp{ry+(1+r) (14 ry) it ra (14 7y) (Fo—ba) +1y(Fo—Tptiy) (3)
K
. ~ryf{rpt(I+ra) (47p) by +ra(1476) (Ve —ha) +76 (V= Yot ip)
=
K

where yc-and g are the observed mean responses in the active control trial
for the control group and experimental treatment group, respectively.
Expression (3) indicates that the posterior mean of a is a weighted
average of three estimates of a. The first estimate is the prior mean .
The second estimate is the observed y- minus the prior mean for B. This
makes intuitive sense since the expectation of yc is o + 3. The third
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estimate in the weighted average is the observed ¥z minus the prior mean
for y. The expectation of ¥z is a+y. The sum of the weights is K. The
other posterior means are similarly interpreted.

The marginal posterior distribution of y is normal with mean v, and
variance the (3, 3) element of 3, given in (2). The parameter y represents
the contrast of experimental treatment versus placebo. One can thus
easily compute the posterior probability that y>0 which would be a
Bayesian analog of a p value of a test of the null hypothesis that the
experimental regimen is no more effective than placebo (if negative values
of the parameter represent effectiveness).

The posterior distribution of y—k( is univariate normal with mean
ny—kmg and variance 33+ k*3,—2k3,;. Consequently, one can also
easily compute the posterior probability that y—kpB<0. For k=.5,if <0
this represents the probability that the experimental regimen is at least
half as effective as the active control. Since there may be positive
probability that 3>0, it is more appropriate to compute the joint
probability that 3 <0 and y—kPB<0 to represent the probability that the
experimental regimen is at least a kth as effective as the active control.

Often there will be no previous randomized trials on which to base a
prior distribution for the effectiveness of the experimental treatment and
it will be appropriate to use a noninformative prior for y. The parameter
a represents the expected response of untreated or placebo treated
patients. This may be highly variable among trials. In the special case
where a noninformative prior distributions are adopted for a and v,
setting o, and o, to infinity in (2), the covariance matrix of the posterior
distribution of the parameters takes the form

1+TB —1 —(1+7”B)
Y=o —1 1 1 . (4)
—(1+T§) 1 1+2T[5

In this case the posterior distribution of B is the same as the prior dis-
tribution, the posterior distribution of vy is N(up+ ¥z — y¢, 0f + 20°) and
the posterior distribution of « is N(F¢—pg, o+ 0°). It can be seen that the
clinical trial comparing C to E contains information about « if an
informative prior distribution is used for p.

One may permit correlation among the prior distributions. Let S
denote the covariance matrix for the multinormal prior distribution for
(a py). Then 37! = M + S7!, where
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1
M=— |11 0 (5)

and the posterior mean vector is the solution of 3, ~'n=(1/0%)(y- 3¢ V&)’ +
S_lllla where n = (p-on Hp Hy) andy' =Yct Ve

The above results can be applied to binary outcome data by
approximating the log odds of failure by a normal distribution. Let Y
denote the natural logarithm of the ratio of number of failures in a
treatment arm of the trial divided by the number of nonfailures, for
example, for the active control group fczlog(ﬁ) The standard approx-
imation for the variance of the logit is o?=—<.

The approach can also be extended in an approximate manner to
the proportional hazards model. Let the hazard be written as

Nt)=No(t) exp(BX +v7)

where No(#) denotes the baseline hazard function and the indicator
variables X and Z are the same as described at the start of Section 3.
The data will be taken as the maximum likelihood estimate of the log
hazard ratio for E relative to C for the active control study and will be
denoted by y. For large samples y is approximately normally distributed
with mean y—p and variance o®>=1/dc+ 1/dg, where the d’s denote the
number of events observed on C and E, respectively. Using normal priors
for B and vy as above, the same reasoning results in the posterior
distribution of the parameters (B, ) being approximately normal with
mean M= (1), 1) and covariance matrix 2, = ()\,»j)_l with

N 1 n 1
N o
- 1 n 1
- 1
12= 02
and mean vector determined by
Hp Y
o2 o2
— &
An= y My
PRy
(0) 0'_\/
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If a noninformative prior is used for -y, then Ny = —\;», and we obtain that
the posterior distribution of p is N(ue, oé), the same as the prior dis-
tribution. In this case the posterior distribution of vy is N(ug +y, oé-l- o).
The posterior covariance of B and 1y is —oé. Hence, the posterior proba-
bility that the experimental treatment is effective relative to placebo is

pty
3.2. Design

A minimal objective of the active controlled trial is to determine whether or
not the E is effective relative to P. Hence, we might require that if y=,
then it should be very probable that the trial will result in data y=(yg, y¢)
such that Pr(y<0|y) > 0.95, where y <0 represents effectiveness of the
experimental treatment. Thus, we want

Pr —"_ <1.645 |> 6
<¢z— ) ‘ )

where 1, 233 are the posterior mean and variance of v, the probability is
calculated assuming y= and that B is distributed according to its prior
distribution, and § is some appropriately large value such as .90. In the
special case where noninformative prior distributions are adopted for «
and vy, this results in

—16451/ 1+20-2/0[2’)_HB/0-B
=z (7)
,/202/0%

where z¢ is the 100€th percentile of the standard normal distribution. The
sample size of the trial may be determined by finding the value of o” that
satisfies (7). o represents the variance of the means 7 and y¢ and hence is
inversely proportional to the sample size per treatment arm in the active
controlled trial.

It is of interest that ug/op, is the “z value” for the evaluation of the
active control versus placebo. The required sample size for the active
control trial is very sensitive to that z value. For example, suppose that
ue/op=3. This represents substantial evidence that the active control is
indeed effective relative to placebo. In this case, for §=0.8 one requires that
the ratio r=20"/o3=0.8 in order for (7) to be satisfied. Since oj, is known
and since 20” represents the variance of the difference in mean responses
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between the treatment arms in the active controlled trial, the sample size
per arm can be determined. Alternatively, if there is less substantial
evidence for the effectiveness of the active control, for example pg/og =2,
then one requires that the ratio r =207/ oé =0.10 in order to satisfy (7). This
represents eight times the sample size required for the case when r=3.
When the evidence for the effectiveness of the active control is marginal,
then the active control design is neither feasible nor appropriate.

For the binary response approximation described previously, we
have approximately o”= 1/npq, where n is the sample size per treatment
group in the active control trial. If there is one previous randomized trial of
active control versus placebo on which to base the prior distribution of £,
then we have approximately that oé =2/nopq where ny denotes the average
sample size per treatment group in that trial. Consequently, 20%/03 = no/n.
If up/op = 3, then no/n=0.8; that is, n = 1.25n,, and the sample size required
for the active control trial is 25% larger than that required for the trial,
demonstrating the effectiveness of the active control. On the other hand, if
up/op =2, then ny/n=10.10; that is, n=10n,.

Planning the trial to demonstrate that the new regimen is effective
compared to placebo seems a minimal requirement. As indicated above,
even establishing that objective may not be feasible unless the data
demonstrating the effectiveness of the active control is definitive. One
can be more ambitious and plan the trial to ensure with high probability
that the results will support the conclusion that the new treatment is at
least 100k% as effective as the active control when in fact the new
treatment is equivalent to the active control. That is, we would require
that Pr(y <kR|y) > 0.95. In order to achieve this one obtains instead of (7)
the requirement

1645,/ (1-K)* + 202 /02—~ (1-K)up /o,
,/202/0[25 B

Equations (7) and (8) are quadratic equations in /r and have the solution

Z.- (8)

~B+VB2—4AC
Vi ——
2A
A=1645 -7 (9)

B=-27z(1 —k)z
C = (1-k)*(1.645> — 2%).
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3.3. Example

The Tamoxifen Prevention Trial evaluated the effectiveness of Tamoxifen
for preventing breast cancer in high-risk women (Fisher et al., 1998).
Tamoxifen was found to be effective, but also led to side effects, including
increasing the risk of endometrial cancer. Consequently, there is interest in
the identification of other antiestrogen drugs that are as effective as
Tamoxifen for preventing breast cancer but with fewer side effects. The
Tamoxifen trial randomized 13,388 women and found 175 invasive breast
cancers in those assigned to the placebo group compared to only 89 in the
Tamoxifen group. This is a total of 264 events. The investigators reported a
risk ratio of 0.51 with an associated 95% confidence interval of 0.39-0.66.

Suppose one were planning an active control trial to evaluate a newer
antiestrogen, such as Raloxifene, compared to Tamoxifen. One may use
expression (9) to determine the size of the trial needed. Taking the
logarithm of the risk ratio as approximately normally distributed, the
point estimate and confidence interval reported yield a value of z=p/op, of
about 5. Using this value in (9) with k=0 and z¢=1.28 gives a value
r=2.38. Since the precision of estimation of relative risk is approximately
determined by the total number of events observed, this result indicates
that the active control trial need only observe 1/(2.38) or 42% as many
events as the initial trial in order to establish that the new treatment is
effective compared to placebo. In order to establish that the new treatment
is 80% as effective as Tamoxifen, when it is equivalent to Tamoxifen, one
uses (9) with k=0.8 and obtains r=0.095. Consequently, the active control
trial would have to contain 1/0.095 or 10.5 times as many events as the
original trial. In order to establish that the new treatment is more effective
than placebo and 50% as effective as Tamoxifen (k =0.5) requires r=0.59
or 1.695 times as many events as the original trial, or 431 events. The cur-
rent trial comparing Raloxifene to Tamoxifen for the prevention of pri-
mary breast cancer is planned to observe 327 invasive breast cancers at the
time of the definitive analysis. The Bayesian analysis described here sug-
gests that this is sufficient to determine whether Raloxifene is effective
relative to placebo but not sufficient to determine whether Raloxifene is
at least 50% as effective as Tamoxifen.

4. CONCLUSION

In this chapter we have attempted to describe the serious limitations of
active control trials and to indicate that the standard methods for planning
and analysis of such trials are problematical and potentially misleading.
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We have also described a new approach to planning and analysis of active
control trials. The new approach is based on the premise that an active
control trial is not interpretable unless one provides the quantitative
evidence that the control treatment is effective. Active control trials are
not practical unless there is very strong evidence for the effectiveness of the
control treatment. Superiority trials are strongly preferable to active
control trials whenever they are ethically possible.
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1. INTRODUCTION

A very important part of the planning of any clinical trial is the estimation
of sample size and power. It is difficult because these depend not only on
the size of the treatment effect one wishes to detect, but also on the values of
certain nuisance parameters. For example, in a trial comparing two treat-
ments with respect to a continuous measure like blood pressure change
from baseline to end of study using a ¢ test, power depends on both the
difference in mean blood pressures between the treatment and control arms
(the treatment effect) and the standard deviation (the nuisance parameter).
In a trial with a dichotomous outcome such as 30 day mortality, one must
specify the difference in event probabilities in the two arms (the treatment
effect) and the overall event probability across the two treatments (the
nuisance parameter).

Although the treatment effect and nuisance parameter are both
critical components of power calculations, they are quite different in that
the nuisance parameter must be accurately estimated, whereas the treat-
ment effect is usually assumed. One usually specifies the minimum clinically

*This chapter was written by Michael Proschan in his private capacity. The views expressed
in the chapter do not necessarily represent the views of NIH, DHHS, or the United States.
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Figure 1 Per-arm sample sizes for two-stage trials.

relevant treatment difference (MCRD). If the actual treatment effect is
smaller, then it is not clinically relevant, so the fact that we have low power
to detect it is not troubling. It is much more troubling if the treatment effect
is as expected, but power is jeopardized because the overall event proba-
bility is smaller than expected. One could do a pilot study to estimate the
nuisance parameters, and then conduct a clinical trial in a separate, pre-
sumably much larger group of patients. A more efficient way is to use an
internal pilot study (IPS) in which the patients used to estimate the nuisance
parameters are also included in the final results of the larger trial.

In early trials of a given disease, an MCRD may not be known, so
it must be estimated instead of assumed. The IPS in such cases is used to
estimate both the nuisance parameters and the treatment effect. This is
fundamentally different from the more common situation in which only
nuisance parameters must be estimated. We will see that nuisance param-
eter estimates are essentially independent of the treatment effect estimate,
so the fact that there was a two-stage design can be ignored when the results
are analyzed. Such is not the case when both nuisance parameters and treat-
ment effect are estimated in the IPS. Serious inflation of the type I error
rate can occur if the analysis ignores the two-stage nature of the design.

2. REESTIMATION BASED ON A NUISANCE PARAMETER

For both the continuous and dichotomous outcome case, the format will
be the same. One starts with an a priori estimate n, of the per-arm sample
size. An IPS is performed with n; patients/arm, n; < ng, and then the final
per-arm sample size n is determined. The IPS constitutes the first stage
data, while the next n, = n — n; observations/arm make up the second
stage data. Figure 1 illustrates the setup.

2.1. Continuous Outcome Case

Consider the continuous outcome setting with common variance ¢ If we
knew the variance, we could compute the sample size required per-arm to
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detect the MCRD, 6. For 100(1 — f)% power for a two-tailed test at level a,
the required sample size per-arm is approximately

02 4 zZ 2
y(o) = 2z ) (1

where z, denotes the 100(1 — o«)th percentile of a standard normal
distribution. In practice, a prior estimate o> will have to be used, giving
an estimated per-arm sample size of ny = Y(a¢?).

We take a preliminary sample of 7, observations in each arm and
compute the pooled variance s7. Based on this estimate, we revise the per-
arm sample size from our initial estimate of no to n. We may take n = y(s?),
or n = (o?), where o7 is an estimate of the variance combining ¢ and s7.
Note that nis a random variable, as is the second stage per-arm sample size,
n, = n—nj.

The treatment effect estimator using all of the data from the first and
second stages is 5= (n151 + n252)/n where 5 is the difference in treatment
and control sample means for data of stage i, i = 1, 2 Now 512 is
statistically independent of 51, so conditioned on VA (5 0)/
\/262/n has a standard normal distribution. Because the conditional
distribution of Z given s7 is the same for all 57, Z and s7 are independent in
this adaptive sample size setting, with Z having a standard normal
distribution and s7/o* having the distribution of a chi-squared random
variable divided by its degrees of freedom, n; — 1. It follows that under the
null hypothesis, 7= Z/+/s? /02 = §//2s% /n has a t distribution with 2(n;
— 1) degrees of freedom. In other words, if we use the pooled variance
from the IPS only, an exact p value may be obtained by referring 7 to a ¢
distribution with 2(n; — 1) degrees of freedom. This result is due to Stein
(1945).

Stein’s procedure is not commonly used in clinical trials for at least
two reasons. One is its perceived inefficiency in estimating the variance
using only 21, of 21 observations. Another is that o> may increase over time
because of changes in the patient population, for example. Using only the
first 2n; patients could underestimate the true variability and increase the
chance of a type I error. It is therefore more natural to use 57, the pooled
variance estimate based on all 2n observations. Unfortunately, the distri-
bution of s? is not the same as if # had been fixed in advance. In fact, s
systematically underestimates 2. Wittes et al. (1999) have shown that E(s%)
=0 + (n; — 1) cov{s?, 1/(n — 1)}; the covariance term is negative because
stisanincreasing function of s;%>and 1/(n — 1) is a decreasing function of s7.
Still, the bias is so small that the type I error rate of this approximate ¢ test
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is very close to « if the size of the internal pilot study is 20 or more (Wittes
and Brittain, 1990; Birkett and Day, 1994; Wittes et al., 1999).

Those who worry about even small amounts of o inflation but want
to use a better estimate of variance than Stein’s can do so with a restricted
test, whereby the final per-arm sample size is restricted to be at least as large
as the originally planned n,. Proschan and Wittes (2000) point out that
instead of using the pooled variance from the IPS, one could augment each
arm of the IPS with the first ny — n; observations from the corresponding
arm in the second stage. The resulting test statistic has a null # distribution
with 2(ng — 1) degrees of freedom instead of 2(n; — 1) degrees of freedom
for Stein’s procedure. This clear improvement is still unsatisfying because
use of the first ny — n; observations per arm from the second stage is
arbitrary; any set of ny — n; second stage observations could be used. Why
not average over all possible augmentations of the IPS with 2(ny — n;)
observations from stage 2? Proschan and Wittes (2000) propose something
very close to this. Their variance estimate reduces to 6> = \si + (1 — N)&%
where &® = {(n— 1)s> — (n; — Ds{}/(n —m) and N = (n; — 1)/(no — 1). They
prove that referring §/+/262/n to a t distribution with 2(ny — 1) degrees of
freedom has a type I error rate no greater than a.

2.2. Example: DASH

We illustrate these methods with the Dietary Approaches to Stop Hyper-
tension Study (DASH). Three dietary patterns were compared with respect
to change in diastolic blood pressure (DBP) from baseline to the end of 8
weeks of intervention in participants with blood pressures ranging from
high normal to stage 1 hypertension (80 < DBP < 95). The control diet was
similar to what many Americans eat; one of the active diets was rich in
fruits and vegetables, while the other was rich in fruits and vegetables and
low-fat dairy products. Adjustments were made for the two comparisons
with control. Thus, to be significant, the approximate z statistic comparing
an active diet to the control had to exceed 2.24, the critical value for a 2-
tailed test at level .025. The standard deviation of DBP change was
estimated to be about 5 mmHg, while the minimum treatment effect
thought to have strong public health importance was 6 = 2 mmHg. For
85% power for a control comparison, approximately no=2(2.24 +
1.04)*(5)%/2% = 135 evaluable participants per arm were needed. Further
details of the design of DASH may be found in Sacks et al. (1995).

At some point in the trial the issue was raised that the standard
deviation may have been overestimated because it did not take into
account the fact that a “funnel” was used prior to enrollment to eliminate
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participants whose blood pressures were too large or too small. Simulation
results suggested that taking this funnel into account might decrease the
standard deviation from 5 to 4.5. This would allow almost a 20% reduction
in sample size to achieve the same power.

As it turned out, the standard deviation at an interim look was quite
close to 5, so no changes were made in the sample size. For the sake of
illustration, suppose hypothetically that after 68 observations in an active
diet and 68 in the control diet, the variance pooled across these two diets
were s7 = 4.5% = 20.25, as hoped. The sample size could have been reduced
ton = 2(2.24 + 1.04)%(4.5)*/2> = 109 evaluable participants per arm. At
the end of the study, the ordinary ¢ statistic could be used with 2(109 — 1) =
216 degrees of freedom for the comparisons with control. If one wanted to
be conservative and avoid even the slightest o inflation, one could use
Stein’s procedure. For example, if after 109 observations per arm the
difference between the control and combination diet means were 6 = 2.1,
the 1 statistic would be 2.1/1/2(4.5)> /109 = 3.45, even if the pooled variance
of all of the observations were s> = 4.8 = 23.04, for example. The
Proschan—Wittes method cannot be used in this example because the goal
was to see if the sample size could be reduced, and hence it was not a
restricted design.

2.3. The Dichotomous Outcome Case

Suppose that the primary outcome of a clinical trial is the presence or
absence of a short-term event such as 30-day mortality. Let pc and pr be
the probabilities of experiencing such an event for patients in the control
and treatment arms, respectively. Then 6 = pc — p7 is the treatment
difference, and p = (pc + p7)/2 is the average event probability over the
two arms. Sample size per arm to achieve power 100(1 — B) for a two-tailed
test at level « is given approximately by

. [2227/2P(1 = ) + z7/pc(1 = pc) + pr(1 — pr))° 2)
(pc— PT)2

Here the nuisance parameter is p, estimated by p;, the overall event
proportion among the 2n; observations in the IPS. Note that p; is
uncorrelated with 6, , the difference in event proportions between the
control and treatment arms in the IPS. If 2n; is moderately large, then p;
and J; are approximately bivariate normally distributed. If they were
exactly bivariate normal, their lack of correlation would imply statistical
independence. Thus, as in the continuous outcome case, the nuisance
parameter estimate is approximately independent of the treatment effect
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estimator. Again it seems reasonable to treat the per-arm sample size n as if
it had been fixed in advance and use an ordinary test of proportions on the
2n observations at the end of the study. Several authors have shown that
the effect on the type I error rate of treating the final sample size as fixed is
minimal. See, for example, Gould (1992) or Herson and Wittes (1993).
As with the continuous outcome case, there is a way to obtain an
exact a level procedure for those who do not want even a slight inflation of
the type I error rate. Instead of implementing the usual z test of pro-
portions, one can condition on the total numbers of events at the first and
second stages using, for example, the Mantel-Haenzel test. The p value is
also conditional on these numbers of events, so the fact that the second
stage sample size was driven by the first stage results becomes irrelevant.

2.4. DASH Example Embellished

Consider the DASH clinical trial described previously. Suppose that
instead of treating the change in DBP as a continuous outcome, the DASH
investigators had compared the proportions of patients in each arm whose
DBP decreased by 3 mmHg or more. Call these patients “responders.”
Further assume that the investigators were interested in detecting a
doubling of the proportion of responders in an active diet relative to
control. Suppose, hypothetically, that from the first 100 participants
evaluated in the control and 100 in an active arm, 60 responded. Then
P = 60/200 = .30. Treat this as a population parameter and set (pc + pr)/
2 =.30, pr=2pc. This yields pc = .20, py = .40. Substituting into (2) and
using 85% power and the adjusted two-tailed alpha level of .025 (zo2=
2.24) yields 112 participants per arm. Thus, only 12 more participants
would be needed in each arm.

Suppose that the results were as shown in Table 1. Overall, pc =
30/112 = .268 and pr = 41/112 = .366. The ordinary test of proportions
on the entire data yields a p value of .11. This analysis treats the sample size

Table 1 Hypothetical Results for the First 100 Participants/Arm (Ist 2x2
Table), the Next 12 Participants/Arm (2nd 2x2 Table), and the Total of
112/Arm (Last 2x2 Table) in the Embellishment of the DASH Example
Considering Responders (R) and Nonresponders (NR)

R NR R NR R NR
C 25 75 5 7 30 82
T 35 65 6 6 41 71
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of 128 per arm as if it had been fixed in advance. As stated above, this is
highly accurate, producing only very slight o inflation. We could avoid any
inflation by conditioning on the total numbers of events at stages 1 and 2.
For example, the two-tailed p value using the exact distribution of the
Mantel-Haenzel statistic is .15.

3. SAMPLE SIZE REESTIMATION BASED ON TREATMENT
EFFECT

As mentioned earlier, it is highly desirable to base sample size on the
minimal clinically relevant treatment difference, but this is not always
possible. For example, in heart disease trials using an angiographic
endpoint such as the average change in minimum lumen diameter over
many different segments of a coronary artery, it is not clear what size
treatment difference would result in clinical benefit. In these cases one may
wish to use the IPS to estimate both the nuisance parameter and
the treatment effect. This is different from the nuisance parameter situation
in that it is inherently a one-tailed testing situation; one would not be
interested in determining the number of additional observations to prove
the treatment harmful. Thus, one-tailed testing is assumed in this section.
In practice one might use one-tailed o = .025 instead of .05.

Unlike the earlier scenarios in which only the nuisance parameters
had to be estimated, the treatment effect at the end of the study is highly
correlated with the parameters estimated at the first stage. Thus, the
random per-arm sample size n contains very relevant information about
the size of the treatment effect; acting as though it were fixed in advance can
lead to serious inflation of the type I error rate. Proschan and Hunsberger
(1995) show that depending on how one chooses the second stage sample
size, the actual type I error rate can be as high as o + exp(— z,°/2)/4. Thus,
for a .025 (.05) level one-tailed test, the actual type I error rate can be as
great as .06 (.11).

One can avoid inflation of the type I error rate by using a larger
critical value at the end of the study. For example, suppose one takes n,(z)
additional observations per-arm based on the IPS z score z;, but then uses
critical value ¢ = c¢(zy, n,). The actual type I error rate is

J:O CPo(nz,C|Zl)(]5(21)d21 (3)

where ¢ is the standard normal density function and CPq (n», c|z1) denotes
the conditional probability, computed under the null hypothesis, that the z
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score using all 2(n; + n,) observations will exceed ¢, given z;. Now suppose
that prior to the study we had selected a rule A(z;) dictating how much
conditional type I error rate to use, given z;, such that

jA(zoqs(zl) dzy = 1. (4)

A(zy) is called a conditional error (CE) function. Further suppose that re-
gardless of the additional number of observations per arm, n,, we could
find a critical value ¢ = ¢(zy, ny) to make CPy(n,, ¢|z;) = A(z;). Then by (3)
and (4), the procedure would have level a.

Proschan and Hunsberger (1995) have shown that it is always pos-
sible to find such a ¢:

oo Vmat iz
VA + Ny
where z 4 is short-hand notation for @' {1 — A(z;)}. One may then select 1,

such that CPg(n,, ¢), computed under the alternative hypothesis of treat-
ment effect 9, reaches a desired level 1 — f:

(5)

2(zq+ z/;)2

ny =
52

(6)

The formula for n, is easy to interpret when one recognizes that the
conditional error function approach is mathematically equivalent to the
following procedure: Having observed z;, take n, additional observations
per arm and perform a z test on only the second stage data, rejecting the
null hypothesis if that z score exceeds the critical value corresponding to
significance level A(z;). The sample size formula (6) yielding conditional
power 1 — fis the sample size corresponding to unconditional power 1 — f8
in a z test applied only to the second stage data.

Similarly, for any given value n,, the conditional power assuming
that the true treatment effect is d is the same as the unconditional power in a
trial at level A(z;) with n, observations per arm:

Clefd?(zAf\/nz/Z 5/6). (7)
As any conditional error function A(z;) may be used, the proce-

dure is very general. In fact, as Proschan (2000) points out, CE func-
tions and two-stage tests are really synonymous; associated with any
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two-stage test statistic 7'is a CE function A(zy) = Pr(7 is significant | Z;
= zy). Thus, it might be easier to consider good two-stage tests and
see what CE functions they induce rather than directly trying to find
good CE functions. Once we determine the induced CE function, we can
use (7) to choose a second-stage sample size yielding the desired condi-
tional power.

How do we choose a reasonable two-stage test? If the second stage
sample size were fixed in advance, things would be very easy; we would be
testing whether the mean of (Z,, Z,) was (0, 0) against a specific alternative
proportional to (y/71, \/12). The problem is that we do not know , a priori,
so we do not know the alternative direction. We only know that, because 7,
> 0, the alternative lies somewhere in the positive quadrant 0 * = {(z,, z»):
z1 >0, z, > 0}. Tests powerful against the positive quadrant alternative are
therefore appealing.

One such test is due to O’Brien (1984). The null hypothesis is rejected
if (z1 +22)/V/2 > z,. This is the optimal test statistic for the fixed sample
size setting with n, = n;, but it can be used even if one changes n, after
seeing z;.

To find the induced CE function, note that the amount of conditional
type I error rate one uses after seeing Z, = zj is

A(z))=Pr(ZI + Za > V2z,|Z =2) =1 = D(V2z,—z1).  (8)

This is a member of what Proschan and Hunsberger (1995) called the linear
class of CE functions, even though it is z4 = v/2z, — z; that is linear in z,.
The induced CE function is used, in part, to reexpress the rejection region
via (5) in terms of (/7121 + \/n222) /+/n, the usual z score on all 2(n; + n)
observations. Investigators would naturally want to compare the two-
stage test to the more familar one-stage test with the same number of
observations; they would feel legitimately uneasy if a two-stage procedure
rejected the null hypothesis while the one-stage procedure did not.

The above procedure is a no-cost extension of the fixed sample size
test; if one decides to use the originally planned second stage sample size,
the test is equivalent to rejecting the null hypothesis when the usual fixed-
sample z statistic exceeds z,. The advantage is that at the first stage one
could choose to change the second stage sample size.

One would probably not continue to the second stage if z; < 0.
Furthermore, it makes no sense to reject at the end of the second stage if z,
< 0; if the evidence was not convincing at stage 1, how could it be more
convincing having observed a negative trend since stage 1? Thus, it is a
good idea to modify the above procedure. One stops at stage 1 without
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rejection of Hy if z; < 0, and with rejection if z; > k, where k = 2.79 for «
=.025and k = 2.36 fora = .05. If 0 < z; < k, one proceeds to stage 2 and
rejectsif z; + z, > k. The “linear” CE function is shown as the solid line in
Figure 2 for o = .025.

Another test that could be used is the likelihood ratio test for the
positive quadrant alternative. One rejects the null hypothesis if z; > k or z,
>kor/z22+ 23 > kand (z},2,) € Q . Eliminating z; < 0 and modifying k
to maintain an o-level procedure yields the rejection region z; > k or 0 < z;
<kandz, > \/k? — z}. What is the induced CE function? For z; < 0 there
is no chance of rejecting the null hypothesis, while for z; > k there is
probability 1 of rejecting the null hypothesis. For z; in the continuation
region [0, k], the null probability of rejecting Hy is Pr(Z, > \/k* —z3) = 1
—®(/k? — z3). Thus, the induced conditional error function is

0 ifz; <0
Acir(zl) = 1— (I)< k2 — Z%) if 0 < z; <k (9)
1 if z; > k.

2.5
!

1.0 1.5

0.5

0.0

]

T T T T T T

0.0 0.5 1.0 1.5 20 25

Figure 2 Linear and circular conditional error functions for a = .025.
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Table 2 Values of k for Different Values of the Overall Significance Level « and
the First Stage Futility Level «q for the Circular CE Function Approach

%o

o .10 15 .20 25 .30 .35 .40 45 .50

.025 2.13 2.17 2.19 2.21 222 2.23 2.25 2.26 2.27
.050 1.77 1.82 1.85 1.88 1.89 1.91 1.93 1.94 1.95

For a one-tailed alpha of .025(.05) £ = 2.27 (1.95). Proschan and Huns-
berger (1995) called A (z1) a “circular” CE function because over the
continuation region [0, k] z 4 is the equation of a circle centered at the origin
with radius k. The dotted curve in Figure 2 shows the circular CE function.
Again it is convenient to express the rejection region in terms of the usual z
score for 2(n; + ny) observations using (5).

The circular CE function procedure stops for futility if z; < 0, but it
can be modified to stop for futility for other values of z;. It is easier to
interpret if we rephrase this as follows. We stop for futility when the first-
stage p value, p;, exceeds some number o; g = .5 corresponds to the z; <
0 case already considered. For smaller values of g, the value of k required
for an a-level procedure decreases. Table 2 gives the value of k for different
values of o and a.

If one proceeds to the second stage, the critical value for z is
given by (5). The circular CE function has the property that the critical
value at the second stage is no greater than k, the critical value at stage
1. Furthermore, among all two-stage tests with the same continuation
region as the circular CE function, the circular CE function is the only
one that can guarantee this for all possible values of n, (see Proschan,
2003).

3.1. Example

Suppose that a clinical trial in patients with coronary heart disease
compares a cholesterol reducing drug to placebo with respect to angio-
graphic changes from baseline to end of study. Specifically, coronary
arteries are first divided into segments; for each segment the difference in
minimum lumen diameter from baseline to end of study is computed, and
the average difference over all segments of a patient is the outcome
measure. It is not known what constitutes a clinically relevant change,
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but another similar study showed an effect size of about one third of a
standard deviation. The sample size required for 90% power to detect a
similar effect size is about 190 patients per arm, or 380 total. After 95 are
evaluated in each arm, we compute the estimated effect size, namely the
difference in sample means divided by the square root of the pooled
estimate of variance. Which method we use must be specified in advance.

If we use the circular conditional error function approach, we stop
the trial and declare a significant treatment effect at the first stage if z; >
2.27. We stop for lack of treatment effect if z; < 0. If 0 < z; < 2.27, we
proceed to the second stage. Suppose that the first-stage z score were 1.5.
This corresponds to an estimated effect size of about .218 standard
deviations instead of the originally anticipated one third of a standard
deviation. The value of the conditional error function is A(1.5) =1—-&
(V2.27? — 1.52),50 z4 = V2.27> — 1.52 = 1.704. To have 80% conditional
power under the empirically estimated treatment effect, we use Eq. (6): n,
= 2(1.704 + .84)?/.218% = 273. Thus, we would need 273 more patients
per-arm, making the total sample size 2(95 + 273) = 736. Given that the
originally projected sample size was 380, such a large increase may be
prohibitive. Instead one might prefer to see the conditional power for
different total sample sizes using equation (7). If we stick with the originally
planned sample size of 190 per arm, so n, = 190 — 95 = 95, conditional
power under the empirical estimate will be 1 — d{1.704 — /95/2(.218)}
= .42. Increasing the sample size to 250 per arm (a second stage sample size
of 155 per arm) increases the conditional power to about .59. These
calculations are all under the empirical estimate of treatment effect. After
the first stage, we might want to compute power under an alternative that is
not as optimistic as what was originally hypothesized, but not as pessi-
mistic as what has been observed so far. For example, we might prefer to
use an effect size of one fourth of a standard deviation. At any rate, suppose
we decided to take 200 more per arm. If the z score for the second half of the
data were 1.9, then zZ + z3 = 1.5° + 1.9% = 5.86 exceeds 2.27%> = 5.15, so
the null hypothesis would be rejected. Results would probably be reported
in the following equivalent way. The full-data z score is (95 + 200)71/ 2
{v/95(1.5) 4+ v/200(1.9)} = 2.42. The critical value (5) is (95 + 200) />
{v/95(1.5) ++/200(1.704) } = 2.25; therefore the null hypothesis is rejected.

Bauer and Kohne (1994) considered a much more general setting in
which the first-stage data was used not only to modify sample size, but to
make more drastic alterations such as changing the test statistic. Their
method is based on Fisher’s product of independent p values. Recall that p
values are uniformly distributed under the null hypothesis for any test
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statistic with a continuous distribution function. If p; and p, are inde-
pendent p values, then —2 In(pp,) has a chi-squared distribution with 4
degrees of freedom under the null hypothesis. The null hypothesis is
rejected if T = pypr < ¢, = exp{— Xia/2}, where Xia is the upper o
point of a chi-squared distribution with 4 degrees of freedom; ¢, = .004 or
.009 for o = .025 or o = .05, respectively.

Fisher’s test can be applied to first- and second-stage p values even if
the second-stage sample size n, depends on p;. The reason is that p; is uni-
formly distributed, and for given p,, n, becomes fixed and p, is uniformly
distributed. Because p, has the same (uniform) conditional distribution for
any given value of p;, p; and p, are independent uniforms, and Fisher’s
product of p values test is valid. Bauer and Kéhne imply that their pro-
cedure can be used even if one changes the test statistic after seeing the first
stage data, but some care is needed (Liu, Proschan, and Pledger, 2002).

Note that if p; < ¢, there is no point in continuing the study since
pip> is assured of being less than ¢,. Bauer and K6hne also consider a
variant in which one stops at the first stage without rejecting the null
hypothesis if p; > o. By allowing the possibility of stopping early for
futility, one can decrease the level of evidence required to declare statistical
significance at stage 1. Table 3 shows o, the p value required to declare
significance at stage 1 as a function of & and «y. For example, for o = .025
and oy = .5, «; = .010. Thus the continuation region is .010 < p; < .5,
which corresponds to 0 < z; < 2.32.

Note the similarity between the Bauer-Kohne continuation region
and that of the circular CE function with ¢y = .5. Wassmer (1998) showed
that the power functions were also quite close. This is because of the
similarity of the induced CE functions. An advantage of the Bauer-K6hne
procedure is that it is exact. One need not make the assumption that the
sample size is large enough to estimate the variance accurately.

Table 3 Values of «;, the Required p-Value to Declare Significance at Stage 1
for the Bauer-Kohne Procedure That Stops for Futility at Stage 1 if p; > . (If o4
< p1 < 0, One Proceeds to Stage 2 and Rejects the Null Hypothesis if p1p> < ¢,.)

do

a Cy .10 15 .20 .25 .30 35 .40 45 .50

025  .004 .019 .017 .015 .014 .013 .012 .012 .0I1 .010
.050 .009 .043 .038 .035 .032 .030 .028 .026 .025 .023
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4. CONCLUSIONS

Clinical trials must be large enough to have reasonable power to detect
treatment differences. Unfortunately, the information needed to determine
the sample size is not always available or accurate; other studies upon
which estimates are based may not be sufficiently similar to the one being
planned. It therefore becomes appealing to use part of the current trial data
to estimate the parameters needed to determine sample size. Often this
involves estimation of only nuisance parameters, because one can usually
specify a minimum clinically relevant treatment difference. When only
nuisance parameters are estimated during the IPS, one can essentially
ignore the two-stage nature of the design when it is time to analyze the
results. This is true for both continuous and dichotomous outcomes.

In some cases the IPS is used to estimate treatment effects as well.
Much more caution is required. The two-stage nature of the design must be
taken into account when results are analyzed. Adaptive sample size
estimation based on treatment effect is usually one-tailed; one would not
want to increase the sample size to show harm. Under an alternative hy-
pothesis, the mean of (Z;, Z,) lies somewhere in the positive quadrant,
so tests of the positive quadrant alternative are attractive. Two such tests
are O’Brien’s and the likelihood ratio test (LRT). The properties of these
and other tests depend on their induced conditional error functions. The
O’Brien and LRT tests induce the linear and circular CE functions, re-
spectively. An advantage of the linear CE function is that if one maintains
the originally planned sample size, the test reduces to the usual fixed sample
size test. An advantage of the circular CE function is that the critical value
at the end of the study can be no greater than that of the first stage.
Conditional power and sample size to achieve a given conditional power
may be obtained using the formulas for fixed sample size trials conducted
at level A(z,) instead of «.
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5

Design and Analysis of Cluster
Randomization Trials

David M. Zucker
Hebrew University, Jerusalem, Israel

1. INTRODUCTION

In the great majority of clinical trials, randomization is performed at the
level of the individual subject. In certain trials, however, the appropriate
unit of randomization is some aggregate of individuals. This form of ran-
domization is known as cluster randomization or group randomization.
Cluster randomization is employed by necessity in trials in which the
intervention is by nature designed to be applied at the cluster level. Exam-
ples of this type of trial include trials of community-based interventions,
such as the Community Health Trial for Smoking Cessation (COMMIT)
(Gail et al., 1992; COMMIT Research Group, 1995), and trials of school-
based interventions, such as the Child and Adolescent Trial for Cardio-
vascular Health (CATCH) (Zucker et al., 1995; Luepker et al., 1996).
Cluster randomization is also sometimes employed for convenience of trial
administration in trials in which the intervention is applied at the level of
the individual. An example of this situation is the trial design in which
clinics are assigned to the various experimental arms, with all patients in a
given clinic receiving the treatment to which the clinic was assigned (Simon,
1981).

The cluster randomization design poses special issues in the areas of
design, logistics, sample size calculation, and statistical analysis. This point
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was raised in the epidemiological literature by Cornfield (1978), and has
received increasing attention since then. The purpose of this chapter is to
review these special issues. Comprehensive discussion of cluster random-
ization trials is provided in the recent monographs of Murray (1998) and
Donner and Klar (2000). In this chapter, emphasis is placed on the fol-
lowing aspects: (1) the rationale for taking the cluster as the unit of
analysis: (2) statistical handling of individuals who drop out of the trial:
(3) analytical methods that are both statistically efficient and statistically
rigorous, in the sense of scrupulously protecting the type 1 error level: (4)
sample size calculation for cluster randomized trials, taking into account
intracluster correlation.

2. GENERAL DESIGN CONSIDERATIONS
2.1. Unit of Randomization and Analysis

Randomization of experimental units is designed to provide three key
benefits: (1) avoidance of investigator bias in the allocation process, (2)
experimental arms that are appropriately balanced with respect to both
known and unknown factors that may affect response, and (3) a basis for
analyzing the study results without statistical modeling assumptions. The
analytical benefit arises because the randomization itself provides the
statistical structure whereby the study results may be judged in principle
through the use of a randomization test, though in common practice
through the use of a normal-theory test that approximates the random-
ization test (Fisher, 1935; Kempthorne, 1952).

To preserve the analytical benefit, the statistical analysis must fol-
low the form of randomization. In a cluster randomization trial, it is
particularly important to “analyze as you randomize.” Under cluster
randomization, the mean response in each experimental arm is subject to
two sources of variation: variation from cluster to cluster and variation
across individuals within a cluster. Donner et al. (1981) have described the
increased variance of the sample mean in each experimental arm that
results from between-cluster variation in terms of a variance inflation
factor (IF) involving the intraclass correlation coefficient (ICC): if the
clusters are all of the same size n, then IF = 1 + (n — 1) ICC. An analysis
in which the unit of analysis is the individual rather than the cluster fails
to account properly for the between-cluster variation and therefore is
liable to produce misleading results. In effect, the treatment effects be-
come confounded with the natural cluster-to-cluster variability, and se-
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rious inflation in the Type I error level may result (Zucker, 1990; Glass
and Stanley, 1970). To avoid this error, the unit of analysis must be the
cluster.

To provide statistically rigorous results, a cluster randomization trial
must include an adequate number of clusters. Many cluster randomization
studies are conducted with a very small number of clusters per arm, such as
two or four. Such studies cannot yield statistically definitive conclusions
about treatment benefit because it is impossible for a randomization-based
analysis of such a trial to yield a statistically significant result. Application
of a normal-theory procedure such as ANOVA to such data rests on bald
assumptions with no clear justication: for a trial of this small size, the usual
central limit theorem argument supporting a normal-theory analysis as an
approximation to a randomization-based analysis does not apply. A trial
of such small size often will be a very useful means of assessing the
feasibility of implementing the intervention and obtaining preliminary
indications of the likelihood that the intervention will succeed, but such a
trial cannot provide a definitive basis for evaluating the benefit of the
intervention. By contrast, studies such as the CATCH trial (Zucker et al.,
1995, Luepker et al., 1996), involving 96 schools, the COMMIT trial (Gail
etal., 1992; COMMIT Research Group, 1995), involving 11 matched pairs
of communities, and the Jerusalem Study of Hygiene Education in Kinder-
gartens (Rosen, 2003), involving 40 kindergartens, include an adequate
number of units to permit a meaningful statistical analysis. In COMMIT,
in view of the relatively small number of units, the intervention effect was
assessed using a randomization-based permutation test rather than a
normal-theory test.

Some authors, for example Hopkins (1982), suggest that one may
perform a statistical test for between-cluster variation, and that if the test
result is not statistically significant one may take the unit of analysis to be
the individual. This procedure is problematic for at least two reasons.
Firstly, the test for between-cluster variation tends to have very low power
when the number of clusters is small. As a result, even under the classical
nested ANOVA assumptions, the procedure has inflated Type I error
(Bozivich et al., 1956; Hines, 1996). Secondly, the procedure relies on the
classical nested ANOVA assumptions that between-cluster and within-
cluster effects are all normally distributed and the within-cluster depen-
dence can be completely described by an additive cluster effect. In general,
especially for trials with a small number of clusters, there is no definite basis
for these assumptions. Thus, it is preferable to keep the cluster as the unit of
analysis in all cases.
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2.2. Sampling Methodology and Handling of Participant
Migration

A further statistical issue in the analysis of long-term school-based or
community-based trials is of how to identify individuals from the school or
community for measurement and statistical analysis. This issue involves
into two aspects: (1) determining how to sample individuals for measure-
ment and (2) defining the primary study population for statistical analysis
purposes.

There are two main approaches to sampling individuals for measure-
ment. In the cohort approach, a sample of the individuals initially entered
into the study (possibly all such individuals) is selected to be measured
throughout the duration of the study. In the cross-sectional approach,
separate samples of individuals are taken at each measurement time point.
Hybrid schemes combining these two sampling approaches also may be
considered.

The main advantage of the cohort approach is that within-individual
correlation can be exploited to enhance precision. A major advantage of
the cross-sectional approach is that the measurement load is more evenly
distributed across individuals. This feature of the cross-sectional design
can be an important one from a logistic standpoint when the design calls
for multiple repeated measurements, and is particularly beneficial in
situations where there is serious concern that the act of measurement itself
can influence participants’ subsequent behavior. When every individual in
a pre-defined study population is to be measured, the cohort and cross-
sectional approaches obviously coincide.

The main issue in defining the primary study population for the
purpose of analysis is how to handle outmigrating and inmigrating
individuals. This issue is closely related to the issue of how to handle
patients in a classical clinical trial with individual-level randomization who
switch from the assigned intervention to another therapy during the course
of the trial, i.e., dropouts and dropins. In the clinical trials field, there is a
generally well-accepted “intention to treat” principle that states that
patients should be handled in the analysis according to their original
assignment, regardless of the therapy subsequently received (Friedman et
al., 1996; Pocock, 1983). In school-based or community-based intervention
research, the following represent three possible options for defining the
primary study population:

1. Include individuals who were in the school or community and
measured at the beginning of the trial regardless of what
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happened afterwards, with suitable tracking of outmigrating
individuals.

2. Include individuals who were in the school or community at
both the beginning of the trial and at the measurement point in
question.

3. Include individuals who happen to be present in the school or
community at the specific measurement time in question.

The first approach is analogous to the intention to treat approach in
clinical trials. The other two approaches represent two different forms of
“on-treatment” analysis. The advantages and disadvantages of the intent
to treat approach as compared with the on-treatment approaches are
similar to those in the classical individual-level randomization clinical trial.
The main point calling for special mention is that bias can arise not only as
the result of an entire cluster being eliminated from analysis, but also as the
result of certain individuals within the various clusters being eliminated
from or added to the analysis. Such a bias threat exists because the
behavior leading to inclusion or exclusion from analysis, e.g., migration,
may be influenced by the intervention. The bias threat posed by migration
is analogous to the well-recognized bias threat posed by missing data in
sample surveys (see Cochran, 1977).

An extended discussion of the migration issue is given in the
CATCH statistical design paper (Zucker et al., 1995). The most appro-
priate strategy is to perform analyses using a variety of approaches to
handling migrators, with the outlook that the truth probably lies some-
where in the middle of the range spanned by the various approaches. In
concluding whether or not the study provides definite statistical evidence
of efficacy, primary emphasis should be given to the intent to treat
approach.

2.3. Some Further Considerations

In a trial with individual-level randomization, there is generally no need for
special close cooperation with organizations outside the trial group itself.
It suffices to secure the cooperation of each individual participant. By
contrast, in the typical cluster randomization trial the trial group must gain
the cooperation of various administrative offices. For example, in a school-
based intervention trial, it is necessary to gain the approval and cooper-
ation of school district administrators, school principals, and teachers.
Also, in implementing and assessing the intervention, in the typical clinical
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trial the participant visits the study clinic, but in many cluster random-
ization trials, study staff must go out into the field.

Frequently, the cluster randomization design is used to assess
behavioral intervention programs, because such programs often are
developed for implementation at a school or community level. Susser
(1995) has observed that an number of major behavior-oriented cluster
randomization trials have failed to exhibit an intervention effect; this
observation raises concern about this type of trial. Susser discusses possible
explanations for the negative results seen in these trials. One possibility
suggested is that the treatment effect may be diluted by a general pop-
ulation trend toward adopting the behavior change in question or by
exposure of the control group to a extant program of similar nature.
Another possibility suggested is that the type of behavioral change sought
may be unlikely to occur in a substantial proportion of individuals over the
relatively short time frame of a clinical trial. In considering a trial of a
school-based or community-based behavioral change program, it is wise to
take due account of the possibility of dilution effects and to consider
carefully how large an intervention effect realistically can be expected over
the time frame of the trial.

3. STATISTICAL ANALYSIS STRATEGIES

In this section and the next we discuss statistical methods and sample size
considerations for the analysis of a single outcome variable measured at the
end of the study on a specified cohort of individuals in each cluster (aside
from missing data), with the possibility of using baseline measurements on
these individuals as covariates. The structure of the resulting data set is
formally the same as that arising from repeated measures studies, in that
each involves sampling of a number of units and observation on a number
of subunits within each unit. For a cluster randomization study, the unit is
the cluster and the subunit is the individual; in a repeated measures study
the unit is the individual and the subunit is the measurement time point.
Because of this common structure, the analytical methods used for the two
types of study are similar.

3.1.  Unadjusted Analyses

Let Y denote the response for individual ijk, with i indexing the
experimental arms, j indexing the clusters within an arm, and & indexing
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the individuals within a cluster. We consider first the case in which the
number of clusters within each group is moderate to large (say about 30
clusters per arm). For a continuous response, it is appropriate to analyze
the data using the conventional mixed ANOVA model

Yijg = p+ ai + by + () (1)

where p represents the overall response level, a; is a fixed parameter
representing the effect of treatment i, bj; is a random cluster effect term
assumed distributed N(0, ¢7), and &k 18 an individual error term assumed
distributed N(0, o2), with all random variables assumed independent.

The variance of an individual response Y is 6> = o7 + o-. The
intraclass correlation coefficient (ICC) is given by p = a7/0”.

Let n;; denote the number of individuals in cluster 7. When the n;; are
all equal, then the model (1) may be analyzed by the classical mixed
ANOVA procedure described in basic experimental design texts such as
that of Winer (1971). This procedure is equivalent to applying the classical
two-sample ¢ test or one-way fixed ANOVA model to the cluster means
)_/,»j. . When the n;; are not equal, the theoretically most efficient approach
is to apply maximum likelihood or restricted maximum likelihood analysis,
as described by Laird and Ware (1982) and Jennrich and Schluchter (1986).
These methods, which require iterative fitting for the parameter estima-
tion, are available in major statistical computation packages such as SAS
(PROC MIXED) and BMDP (5V). Alternatively, one may use a moment-
based method, for which closed-form expressions are available. We
describe a typical moment-based method, for simplicity for the case of
two experimental arms. Denote the overall treatment means by Y;.. . Define
a cluster mean square MSC and a error mean square MSE by the following
formulas (¢f. Henderson, 1953):

ijik
where J denotes the total number of clusters and N the total number of
observations in the analysis. These expressions reduce to the classical mean
square expressions when the n; are equal. The intraclass correlation p is
estimated by
MSC — MSE
MSC + (n* — 1)MSE

ﬁ:
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with

n*=n E (ny —

ij

where7i = N/J. We set p = 0if MSC < MSE. The variance o of a given
response is estimated by 6> = MSE / (1 — p). The expected response y; = u
+ a;in arm i is estimated by

. w;i Y.
=y
J !

where w; = ny/[1 + (n; — 1)p] and W; = Z; w;;. The two arms are then
compared using the 7 statistic

=

lal _ﬁZ (2)
(Wit + wit)

which is regarded as ¢ distributed with J — 2 degrees of freedom.

The idea behind the estimate ; is as follows. The variance of Y. is
[l + (n; — 1) pl/n;. In the estimate {, the cluster mean Y ;. is weighted
according to the reciprocal of its variance, which represents the amount of
information contained in cluster .

For a binary (0-1) response representing the occurrence of some
event, the ANOVA model (1) is not applicable, but methods similar in
form may be used. Here y; = E[Y;] is the event probability for an
individual in arm i/ and the intraclass correlation coefficient p =
Cov(Yyx, Yiyw)/Var(Yz), k # k', becomes the Cohen (1960) kappa
coefficient, which may be expressed as p=[Pr(Y;z=1, Y =1)—p; ol
[1A1 —u;)]. When the n; are equal, one may again apply the usual two-
sample ¢ test or the one-way fixed ANOVA F-test to the cluster means
Y. When the n; differ, one may employ a model for binary data with
random effects as described below in the discussion of adjusted analy-
ses. Alternatively, one may employ the moment-based method described
above for the continuous response case. For the case of binary data, the
expression for MSE simplifies to the following (Fleiss, 1981, sec. 13.2):

MSE = —Zn,, ~Yy.).

The foregoing methods are easily extended to the case of stratified analysis;
Donner and Donald (1987) discuss such extension of the moment-based
method for the case of a binary response.
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When the number of units per arm is small, a permutation-based
analysis is preferable. Recently, efficient statistical software for permuta-
tion tests has become available (Hirji et al., 1987; Reboussin and DeMets,
1996); Cytel’s Stat-Xact is a prominent software package for such tests.
When the n;; are equal, a permutation test may be applied to the cluster
means Y;.. When the n; differ, a more powerful test is obtained by
factoring in the weights w;;. For the permutation approach to go through,
the calculation of the weights w; must be modified by replacing the
estimate p by an estimate that does not distinguish between the exper-
imental arms: specifically, in the expression for M.SC, one must replace the
cluster mean Y .. by the overall mean Y'... . Braun and Feng (2001) discuss
weighted permutation tests. As these authors show, the optimal procedure
is to apply a permutation test to the scores U; = wi(Y;. — 1), with i = >
wii¥ij 2 Wiy

3.2. Adjusted Analyses

We now consider methods that allow covariate adjustment. In cluster
randomization trials one may have both cluster-level covariates (e.g.,
location of school, urban or rural) and individual-level covariates (e.g.,
ethnicity of the student). A proper analysis scheme must account for both
types of covariates and for cluster-to-cluster variability. Below we present
the two most popular analytical approaches, namely the mixed model
approach and the GEE approach. In addition, we present a two-stage
analysis strategy that allows for inference that is robust to mis-specification
of the model. We then provide a brief discussion. The presentation here is
adapted from Zucker et al. (1995). We let X5 denote the vector of
covariates, including both cluster-level and individual-level covariates,
for individual ijk.

Mixed Model Approach
For a continuous response, the standard mixed linear model is given by the
following simple generalization of the model (1):

Yk = i+ ai + by + B Xy + iy 3)

where the b;;, and g, satisfy the same assumptions as in the model (1).
Inference for this model is discussed by Laird and Ware (1982) and
Jennrich and Schluchter (1986). The computations may be accomplished
in SAS PROC MIXED or BMDP5V.
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For a binary response, the corresponding model is
Prob( Y = 1) = G(u+ a; + by + B Xix) (4)

where G is a continuous, strictly increasing distribution function and the
bjyarei.i.d. with some specified distribution. The most common version of
this model takes G to be the logistic distribution G(u) = /(e + 1) and the
bj to be normal. One then obtains logistic regression with a normal
random effect (Longford, 1994). This model may be fit using the the recent
SAS procedure PROC NLMIXED.

In principle, it is possible to allow cluster-to-cluster variation in the
regression coefficients corresponding to the individual-level covariates.
This extension is discussed in the references cited. The extension, however,
is usually of less interest in cluster randomization studies than in repeated
measures studies, where, for example, one commonly postulates a unit-
specific intercept and slope. In cluster randomization studies with a
number of repeated measurements over time, however, this extension is
of importance (Murray et al., 1998).

GEE Approach

An alternative approach is the generalized estimating equations (GEE)
approach advanced by Liang and Zeger (1986) (see also Prentice, 1988).
In this approach a model is postulated for the marginal expectation
E[Y i | Xyi), and estimating equations are developed for the model param-
eters that take into account the presumed form of the dependence of the
observations within a cluster. Variance estimates for the parameter
estimates are obtained that are robust to mis-specification of the depend-
ence structure. Software developed by M. Karim, a student of Zeger and
Liang, has been available for some time; recently, the method has been
incorporated into SAS PROC GENMOD.

The models for E[Y;|X;;] are fairly standard. For continuous data
the typical model is

EYyeXy] = 1+ B X (5)
for binary data the typical model is
E[Yi Xi] = G(u+ B X) (6)

for a suitable distribution function G such as the logistic.
Zeger et al. (1988) discuss the relationship between the mixed model
approach and the GEE approach. The mixed model approach is more
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relevant when interest focuses on the effect of intervention at the cluster
level, whereas the GEE approach is more relevant when interest focuses on
the intervention effect on a general population level averaging across
clusters. In cluster randomization studies, both levels of analysis could
be of interest. The two levels of analysis coincide for the linear statistical
models typically used for a continuous response, but are distinct for the
nonlinear models typically used for a binary response.

Two-Stage Analysis Strategy

Following Gail et al. (1988), either of the foregoing analytical approaches
may be modified to yield an analysis that is robust to violations of the
underlying model assumptions. The procedure operates in two stages. In
the first stage, a model of the form discussed above is fit, but omitting the
treatment effect term ¢;. In the second stage, residuals Z;; are defined by

Zijk = Y — E[Y X

where the second term represents the expectation of Y;; evaluated at the
model parameter estimates. These residuals are then subjected to an
analysis of the form described in the subsection on unadjusted analyses.

For the continuous-data case, under either the mixed model (3) or the
GEE model (5), we have simply E[Y!-,-le,_;,k] = [+ ﬁTX,_-,-k. For the binary-
data case, under the GEE approach the estimated expectation is obtained
simply by substituting the estimated p and f into (6). Under the mixed
model approach, the situation is more complex. The expectation E[Y 4|
Xjji] is given by

Ewwmwh{Gw+b+ﬂxwyww%

where f(b) denotes the density function of b;;,. Generally it is not possible
to evaluate the integral in closed form, and resort must be made to
numerical methods related to those used in the fitting algorithm itself.
Numerical integration may be employed relatively straightforwardly,
because the integral in the present context is one dimensional. Alterna-
tively, an approximation may be used. A very simple approximation is
given by

BV = G+ B X)
a more refined approximation is given by

E® = EV + 63[G" (u+ B X))
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Discussion

For defining the analysis scheme for a cluster randomization trial, we have
discussed the mixed model and GEE approaches, with the possibility of
testing for treatment effect directly within the framework of the selected
analytical approach or by means of the two-stage analysis procedure. If the
response variable is a continuous one analyzed using a linear model, and
the number of randomized units is large, the various analytical options are
broadly equivalent. With a binary response, and in other cases involving a
nonlinear model, the two-stage procedure is preferable for testing treat-
ment effect because it provides a valid test for treatment effect without
relying on the correctness of the model assumptions. When the number of
randomized units is small, the analytic strategy of choice in all cases is to
implement the two-stage procedure (applied either to the mixed model or
the GEE model) in conjunction with an exact permutation test. This
strategy provides a test with a guaranteed type 1 error rate under the null
hypothesis that the intervention has no influence whatsoever on the
response.

4. SAMPLE SIZE CALCULATION

Sample size calculation for cluster randomization trials is discussed in
Donner et al. (1981). The main point of note is the need to take into
account the variance inflation factor (IF) arising from the within-cluster
dependence. In sample size formulas for continuous or binary data based
on the usual asymptotic normal approximation, the sample size must be
multiplied by the IF. Consider, for example, a two-arm trial with equal
allocation of clusters to arms and with (approximately) the same number 7
of observations per cluster, with two-sided testing with Type I error level o
and power 1—f. The formula for the total number of clusters J for a
continuous endpoint is

2
(Z“/z + Z/j) a2
52
where o7 is the variance of an individual response, d is the difference to be
detected, z, is the (I — N) normal quantile, and p is the intraclass
correlation coefficient. The corresponding formula for a binary endpoint is

J=4dn "1+ (n—1)p] (7)

2p1(1 = p1) +pa(l = p2) (8)

J=2n""[1+ (n—1)pl(z,)2 + 2p) 2
(p1 —p2)
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where p; is the event probability for a given individual in arm 7/ and p is the
kappa coefficient as defined in Section 3.1. In either case, the total number
of individuals is Jn. In power calculations based on the noncentral 7
distribution, the noncentrality parameter must be divided by the IF.

Typically the ICC is relatively small. But if the ICC is moderate to
large, substantial effort may be saved with modest loss of efficiency by
subsampling individuals within the clusters. Let m denote the total cluster
size. Then, for given p, the relative efficiency (RE) of measuring only »
individuals in each cluster as compared with measuring all individuals in
each cluster is given as

. L = p)

(1-p)
pt—
n
That is, the number of clusters J needed if # individuals in each cluster are
measured is 1/RE times the number of clusters needed if all m individuals in
each cluster are measured. In cases with large enough p the cost of adding
further clusters may be offset by the reduced measurement cost engendered
by sampling.

To calculate the sample size, one needs to specify not only the usual
parameters such as ¢ and d or p; and p, but also the ICC. In some
situations, a prior data set is available that includes data on the outcome of
interest under a cluster structure identical or similar to the cluster structure
that will exist in the planned study. In this case, a prior estimate of the ICC
is readily obtained. Otherwise, one must make some educated guess about
the ICC. Itis often useful to examine ICCs obtained in other settings and to
make a guess of the ICC in the planned study based on the range of ICCs in
the other settings and a judgment of which of the other settings is likely to
have a level of within-cluster dependence similar to that in the setting at
hand. Donner and Klar (1994) have presented ICC’s for a range of public
health settings.

5. EXAMPLE: THE CATCH TRIAL

As as example of a cluster randomized trial, we describe the Child and
Adolescent Trial for Cardiovascular Health (CATCH). Details concerning
the design of this trial are reported in Zucker et al. (1995), and the main
trial results are reported in Luepker et al. (1996). The CATCH study
investigated a school-based educational and environmental intervention
aimed at promoting heart-healthy habits in elementary school children.
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Because the intervention was implemented the school level, a cluster
randomization design was mandatory.

The trial involved randomization of 96 schools, of which 40 were
assigned to the control group C, 28 were assigned to receive the school-
based intervention S, and 28 were assigned to receive the school-based
intervention plus a supplementary family-based intervention (S+ F). The
main trial comparison was that between the combination of S and S+ F
groups and the control group.

The intervention was aimed at changing a number of behaviors,
principally fat and salt consumption and physical exercise. The primary
trial endpoint was taken to be serum total cholesterol, because it was felt
that dietary and exercise habit measures would be susceptible to reporting
bias, whereas cholesterol would be free of such bias but responsive enough
to reflect true diet and exercise changes. Various diet, exercise, and other
endpoints were included as secondary endpoints.

The primary study cohort was defined to be those students who
underwent a baseline cholesterol measurement. Provisions were made to
track outmigrating students and to attempt to measure cholesterol in these
students at the end of the study.

The sample size was determined by the following slightly extended
version of the formula (7):

22
T=[C8i0 =1+ (S Ny +(C - 15 EREHT g
where C denotes the number of classrooms in a school, S denotes the
number of students per classroom with available data, p; denotes the
within-classroom correlation, p, denotes the within-school correlation for
students in different classrooms in the same school, and vy denotes the
proportion of clusters assigned to the intervention arm.

The CATCH calculations assumed 3—4 classrooms per school (3.5 on
average) and 17 students with available data per class. On the basis of past
studies the standard deviation ¢ was estimated to be 28 mg/dl. The cor-
relations p; and p, were estimated on the basis of a variance components
analysis of a small data set on cholesterol levels among schoolchildren in a
prior observational study conducted by one of the study centers in
CATCH. The estimates were p; = 0.023 and p, = 0.003. The projected
treatment difference on cholesterol (Sand S + Fversus C) was determined
to be 5.1 mg/dl. A conservative adjustment factor was incorporated to
account for possible missing data bias; see Zucker et al. (1995) for details.
The effect of the adjustment was to reduce the difference § to be detected
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from 5.1 mg/dl to an effective difference, after the adjustment, of 2.9 mg/dl.
The intervention (S+ F and ) to control C allocation ratio was 7:5 (to
enhance the power of the S+ F versus S comparison), so that y = 0.583.
Substituting these parameters into the formula (9) yields a sample size
requirement of 102 schools total for 90% power at the two-sided 0.05 level.
Based on administrative considerations, the final sample size was taken to
be 96 schools total.

The sample size calculation incorporated both school and classroom
effects because at the design stage it was felt important to do so. As regards
the analysis, with school-level assignment the randomization theory of
statistical testing requires school to be the primary unit of analysis.
However, the theory does not require incorporation of classroom as a
factor for the analysis to be valid in terms of type I error. In fact, the final
CATCH analysis did not include classroom as a factor.

The serum cholesterol results were analyzed using a mixed linear
model of the form (3), with experimental arm, CATCH center, baseline
cholesterol level, and a number of relevant covariates as fixed effect terms
and school as a random effect. The post-study mean cholesterol levels were
168.3 mg/dl for treatment (S and S+ F) and 169.5 mg/dl for control; the
treatment-control difference was not statistically significant. On the other
hand, nominally statistically significant though modest differences were
found on dietary and physical activity measures. As possible explanations
for the negative finding on cholesterol, the investigators point up the
smaller than projected dietary changes and the effects of puberty.

In regard to cooperation with study procedures, the percentage of
students in the study schools who had a baseline cholesterol measurement
and were entered into the primary CATCH cohort was 60% as opposed to
the projected 80%. Among the students in the primary cohort, 72%
continued in CATCH schools up to the end of the study. Of these, 90%
underwent the final cholesterol measurement. Of the students who
migrated out of CATCH schools, 50% underwent the final cholesterol
measurement. Thus, overall, 79% of the students in the primary CATCH
cohort had a final cholesterol measurement, representing a data complete-
ness level not too far from the projected 85%.

6. SUMMARY

A cluster randomization design is necessary when assessing a cluster-level
intervention and sometimes convenient in other clinical trial settings.
When cluster randomization is employed, the primary unit of analysis
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must be the cluster to preserve validity of the type I error. Though it is
uncommon for entire clusters to drop out from the trial, dropout at the
individual level is quite common, and a intention-to-treat approach to
analysis is called for to avoid dropout bias. The analysis plan and sample
size determination must be appropriately tailored to account for the role of
the cluster as the primary analysis unit. Suitable approaches are available
for ensuring a valid analysis while allowing adjustment for both cluster-
level and individual-level covariates.

REFERENCES

Braun, T., Feng, Z. (2001). Optimal permutation tests for the analysis of group
randomized trials. Journal of the American Statistical Association 96:1424—
1432.

Bozivich, H., Bancroft, T. A., Hartley, H. O. (1956). Power of analysis of variance
test procedures for certain incompletely specified models. Annals of
Mathematical Statistics 27:1017-1043.

Cochran, W. G. (1977). Sampling Techniques. 3rd ed. New York: John Wiley.

Cohen, J. (1960). A coefficient of agreement for nominal data. Educational and
Psychological Measurement 20:37-46.

COMMIT Research Group. Community Intervention Trial for Smoking Ces-
sation (COMMIT): I. Cohort results from a four-year community inter-
vention. American Journal of Public Health 85:183-192.

Cornfield, J. (1978). Randomization by cluster: A formal analysis. American
Journal of Epidemiology 108:100-102.

Donner, A., Birkett, N., Buck, C. (1981). Randomization by cluster: Sample size
requirements and analysis. Americal Journal of Epidemiology 114:906-914.

Donner, A., Donald, A. (1987). Analysis of data arising from a stratified design
with cluster as the unit of randomization. Statistics in Medicine 6:43-52.

Donner, A., Klar, N. (1994). Methods for comparing event rates in intervention
studies when the unit of allocation is a cluster. American Journal of Epi-
demiology 140:279-289.

Donner, A., Klar, N. S. (2000). Design and Analysis of Cluster Randomization
Trials in Health Research. London: Arnold.

Fisher, R. A. (1935). The Design of Experiments. Edinburgh: Oliver and Boyd.
8th ed. New York: Hafner, 1966.

Fleiss, J. L. (1981). Statistical Analysis of Rates and Proportions. 2nd ed. New
York: John Wiley.

Friedman, L. M., Furberg, C. D., DeMets, D. L. (1996). Fundamentals of
Clinical Trials. 3rd ed. St. Louis MO: Mosby—Year Book.

Gail, M.H., Byar, D.P., Pechacck, T.F., Corle, D.K. (1992). Aspects of the sta-

Copyright n 2004 by Marcel Dekker, Inc. All Rights Reserved.



tistical design for the Community Health Trial for Smoking Cessation
(COMMIT). Controlled Clinical Trials 13:6-21.

Gail, M. H., Tan, W. Y., Piantadosi, S. (1988). Tests for no treatment effect in
randomized clinical trials. Biometrika 75:57-64.

Glass, G. V., Stanley, J. C. (1970). Statistical Methods in Education and Psy-
chology. Englewood Cliffs, NJ: Prentice-Hall.

Henderson, C. R. (1953). Estimation of variance and covariance components.
Biometrics 9:226-252.

Hines, W. G. S. (1996). Pragmatics of pooling in ANOVA tables. American
Statistician 50:127-139.

Hirji, K. F., Mehta, C. R., Patel, N. R. (1987). Computing distributions for exact
logistic regression. Journal of the American Statistical Association 82:
1110-1117.

Hopkins, K. D. (1982). The unit of analysis: Group means versus individual
observations. American Educational Research Journal 19:5-19.

Jennrich, R. I., Schluchter, M. D. (1986). Unbalanced repeated-measures models
with structured covariance matrices. Biometrics 42:805-820.

Kempthorne, O. (1952). The Design and Analysis of Experiments. New York:
John Wiley.

Laird, N. M., Ware, J. H. (1982). Random-effects models for longitudinal data.
Biometrics 38:963-974.

Liang, K. Y., Zeger, S. L. (1986). Longitudinal data analysis using generalized
linear models. Biometrika 73:13-22.

Longford, N. (1994). Logistic regression with random coefficients. Computational
Statistics and Data Analysis 17:1-15.

Luepker, R. V., Perry, C. L., McKinlay, S. M., Nader, P. R., Parcel, G. S., Stone,
E. J., Webber, L. S., Elder, J. P., Feldman, H. A., Johnson, C. C., Kelder,
S. H., Wu, M. (1996). Outcomes of a field trial to improve children’s dietary
patterns and physical activity: The Child and Adolescent Trial for
Cardiovascular Health (CATCH). Journal of the American Medical Asso-
ciation 275:768-776.

Murray, D. M. (1998). Design and Analysis of Group-Randomized Trials.
Oxford: Oxford University Press.

Murray, D. M., Hannan, P. J., Wolfinger, R. D., Baker, W. L., Dwyer, J. H.
(1998). Analysis of data for group-randomized trial with repeat measures
on the same group. Statistics in Medicine 17:1581-1600.

Pocock, S. J. (1983). Clinical Trials: A Practical Approach. New York: John
Wiley and Sons.

Prentice, R. (1988). Correlated binary regression with covariates specific to each
binary observation. Biometrics 44:1033—-1048.

Reboussin, D. M., DeMets, D. L. (1996). Exact permutation inference for two
sample repeated measures data. Communications in Statistics, Theory and
Methods 25:2223-2238.

Copyright n 2004 by Marcel Dekker, Inc. All Rights Reserved.



Rosen, L. J. (2003). The effect of a health promotion program on hygiene be-
havior and illness-related absenteeism. Ph.D. dissertation. School of Pub-
lic Health, Hebrew University of Jerusalem. In preparation.

Simon, R. (1981). Composite randomization designs for clinical trials. Biometrics
37:723-731.

Susser, M. (1995). Editorial: The tribulations of trials—intervention in commu-
nities. American Journal of Public Health 85:156-158.

Winer, B. J. (1971). Statistical Principles in Experimental Design. 2nd ed. New
York: McGraw-Hill.

Zeger, S. L., Liang, K. Y., Albert, P. A. (1988). Models for longitudinal data: a
generalized estimating equations approach. Biometrics 44:1049-1060.
Zucker, D. M. (1990). An analysis of variance pitfall: The fixed effects analysis in

a nested design. Educational and Psychological Measurement 50:731-738.

Zucker, D. M., Lakatos, E., Webber, L. S., Murray, D. M., McKinlay, S. M.,
Feldman, H. A., Kelder, S. H., Nader, P. R. (1995). Statistical design of the
Child and Adolescent Trial for Cardiovascular Health (CATCH).
Controlled Clinical Trials 16:96-118.

Copyright n 2004 by Marcel Dekker, Inc. All Rights Reserved.



6

Design and Analysis of Clinical
Trials with Multiple Endpoints*

Nancy L. Geller
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Bethesda, Maryland, U.S.A.

1. INTRODUCTION AND NOTATION

In many clinical trials, there are several endpoints of comparable
importance, rather than one primary endpoint. In cholesterol-lowering
trials, for example, we may be interested in LDL and HDL or LDL and
the ratio of total cholesterol to HDL and tryglycerides. In patients with
coronary heart disease, we may be interested in both resting and
exercise ejection fractions. In blood pressure lowering trials, we might
be interested in diastolic and systolic blood pressure or mean arterial
pressure and pulse pressure. In stroke treatment there are a number of
scales used to measure recovery and no one scale is believed to assess all
dimensions. We later will consider an example using four of these
scales, the Barthel Index, NIH Stroke scale, Glasgow Outcome score,
and the modified Rankin score. In lung diseases, we may be interested
in several lung function tests such as FEV;, FVC, PI. In behavioral
studies, we may be interested in several scales for quality of life. Recent
advances in DNA technology have led investigators to undertake

* This chapter was written by Nancy L. Geller in her private capacity. The views expressed
in the chapter do not necessarily represent the views of NIH, DHHS, or the United States.
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exploratory studies, seeking genes which are over- or underexpressed in
(say) a diseased population compared to a control. The number of genes
which are examined is often in the thousands.

The examples illustrate that restricting ourselves to one primary
endpoint when designing or analyzing a clinical study may be inappro-
priate. Further, the multiple endpoints one might consider are corre-
lated with one another. Here we consider methodology for situations
where there are multiple primary endpoints in a clinical study. We con-
centrate on clinical trials, although the methods are applicable to other
studies as well.

LetX;i=1,2,j=1,2,...,n; be independent vectors of length K
representing the jth observation of the ith sample. We assume that Xj; has
a multivariate normal distribution with mean p; and known variance-
covariance matrix 2.

We are interested in testing a null hypothesis that two K-dimensional
mean vectors of k endpoints are equal against an alternative hypothesis
that the difference in mean vectors is a vector of positive constants:

Hog12,... k1 B2 = Iy
Haqi2,.. Ky By — By = 84

where p;, i = 1, 2, is a K X | column vector of the true means and & is a
column vector of specified positive treatment differences (of length K) and
N is a positive scalar. We may think of the second sample as representing a
new treatment, the first sample as representing a control treatment, and
the alternative as specifying that the new treatment is better than control
on all endpoints. We develop one-sided tests, although extensions to two-
sided alternatives (that one treatment is superior to the other, without
specifying which) are straightforward.

We subscript the null and alternative hypotheses by {1, 2, ..., K} to
indicate hypotheses involving all K endpoints. Later we will consider
testing null hypotheses on various subsets of endpoints. We will also
mention extensions to more than two samples.

2. SOME HYPOTHESIS TESTS FOR MULTIPLE
ENDPOINTS

In this section, we describe a number of the statistics which have been
proposed for testing null hypotheses involving multiple primary endpoints.
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2.1. Bonferroni Methods

Perhaps the simplest methods perform univariate tests on each of the
K endpoints and adjust the p value in one of a number of ways. The
original method used the Bonferroni inequality, performing univariate
(one-sided) tests on each endpoint at level o/K. This maintains an over-
all type I error a, but is conservative, with the degree of conservatism
increasing with K and as the correlation increases (Pocock, Geller, and
Tsiatis, 1987).

A number of modifications have been proposed (Holm, 1979;
Hochberg, 1988; Simes, 1986) to decrease the conservatism of the Bonfer-
roni procedure. Holm’s sequentially rejective procedure performs the
univariate tests on each endpoint and orders the univariate p values from
smallest to largest, denoted by P(1) < P(2) <--- < P(K). If P(1) > «o/K,
Holm’s procedure stops and we do not reject any of the null hypotheses. If
P(1) < o/K, Holm’s procedure rejects the corresponding null hypothesis;
then if P(2) > «/(K-1), Holm’s procedure stops and rejects only the first
null hypothesis, but not the others; if P(2) < «/(K-1), Holm’s procedure
rejects also the corresponding null hypothesis, etc. Holm’s procedure is
clearly less conservative (and hence more powerful) than the original
Bonferroni procedure, yet still protects the type I error.

Simes (1986) proposed rejecting Hoyy, 2, ... xy if P(i) <io/K for at
least one i. Since the rejection region contains the Bonferroni rejection
region, Simes’s procedure is always more powerful than Bonferroni’s.
However, Simes only proved his procedure maintained o when the test
statistics were independent. Sarkar and Chang (1997) proved that Simes’s
procedure maintained o when the distribution of the vector of test
statistics was positively dependent under the null hypothesis. The as-
sumption of positive dependence needed for the Simes’s procedure can-
not be verified until the data are seen.

Procedures of the Bonferroni type are appealing because they are
simple and distribution-free. The Bonferroni and Holm procedures
require at least one endpoint to be highly significant to reject Hog, o,
.., k- In the case of five endpoints, each with p value .02, the Bonferroni
and Holm procedures would not reject Hoyy, o, ky, yet if all of the
endpoints go in the same direction, the null hypothesis is not likely to be
true. The Bonferroni and Holm procedures do not use the information
about the relationship between endpoints and so lose power. Resampling
methods improve on this.
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2.2. Resampling Methods (Westfall and Young, 1993;
Troendle, 1995, 1996)

Consider the univariate comparisons on the K individual endpoints and
order the test statistics 7;. Let #(1) < #(2) <- - - < t(K) be the ordered values
of the T; and Hoygy, Hoe), - .. . Hox) be the corresponding ordered null
hypotheses. Determine constants ¢4, ¢» ... , gx and sequentially accept
hypotheses Ho1y, Ho(2), - - - until the first time #(i) > ¢;, at which point reject
Hopy, - - ., Hocx)- The constants g, are determined so that the probability of
rejecting any true hypothesis under any parameter configuration is at most
a. In effect this procedure can be viewed as an exact version of Holm’s
procedure. An algorithm (which uses permutational resampling) deter-
mines the constants and it is shown (under certain conditions) that the
familywise error is strongly controlled asymptotically.

An overall adjusted p value for a subset of hypotheses on single
endpoints is available from this procedure. The adjusted p value is the
smallest overall significance level a for which the given subset of hy-
potheses would be rejected by the multiple test procedure using the ob-
served test statistics.

2.3. Linear Combinations of Endpoints

Several statistics which are linear combinations of the endpoints have
been suggested. Assume first that the underlying data have a normal
distribution with known covariance matrix 3, and that there are n; = N
patients assigned to each treatment. We consider three linear combina-
tion tests for testing Hogy, 2, ..., k3 versus Hq o, ... k3. Each test statistic
has a standard normal distribution and Hoy; >, ... k3 would be rejected
for large values of the test statistic.

Let Y be the column vector of differences in means for the K
endpoints (second sample minus first sample), ~=(o;,) the covariance
matrix of Y, and o,,,,, = 02, the variance of the mth mean difference. The
ordinary least squares (OLS) statistic (O’Brien, 1984) is a function of the
average of Y,,/0,,, which is then properly normalized:

(N/2)' 20Ty

ZoLs =
(JTEJ)?

-1 -1 -INT
where J=(o1', 05, ..., 0g ).
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The generalized least squares (GLS) statistic (O’Brien, 1984) is a
weighted average of the Y,,/0,,:

(N/2)' 2Tz 1y
(5TZ—15)1/2

where d = alternative vector (fixed). Here Y is weighted by 6* 3!, A third
linear combination, the centered linear combination (CLC) statistic, was
suggested by Tang, et al. (1993):

(N/2)"2JTD\2Y
(JITDI/ZZDI/ZJl)l/Z

where J;=(1,1,..., )" and D = diag[(Z™")1, ..., (Z")kx], the matrix
with the same diagonal elements as X' and off-diagonal elements 0.
Zcrc was suggested because among all linear combinations, this choice
of coefficients maximizes the minimum power over the positive orthant.

All of the linear combination statistics are appealing because they
are simple. Tang et al. (1989a) showed that O’Brien’s GLS statistic has a
power advantage over the univariate statistics that comprise it in the
following sense. Suppose d, a, and 1- B are fixed. Suppose we calculate
the required sample sizes based on each of the K endpoints. If we also
calculate the required sample size based on the GLS test, the required
sample size for the GLS test is at most the minimum of the sample sizes
required if any one endpoint were used to set sample size for the trial. The
other linear combinations are not known to have the same power
advantage. Of course the disadvantage is that if a trial were designed
using O’Brien’s GLS test, there would be limited power to detect differ-
ences in individual endpoints.

A disadvantage of the GLS test is that it does not always have pos-
itive coefficients. This implies that the GLS test is inadmissible and that
peculiar results might emerge from the combination of a large negative
test statistic with a negative coefficient (Pocock, Geller, and Tsiatis 1986;
Follmann, 1995; Perlman and Wu, 1999). Both the OLS and the CLC will
always have positive coefficients and therefore are to be preferred.

ZGLs =

Zcic =

2.4. Wald-Type Test for Multiple Binary Outcomes

Lefkopoulou and Ryan (1992) considered an experiment involving two
treatment groups where K binary variables were recorded for each
subject. Let X, represent the mth response, m = 1,2,..., K in the ith
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group for the jth subject, j = 1, 2, ..., n,. For two groups, i = 1 (conven-
tional treatment group) and 2 (experimental group). Assume that the
observation vectors for each subject are independent, with mean vector
E(Xjjn) = Wim and var(Xy;,,) = Wi (1 - W;,,). The outcomes within a subject
may be correlated.

For multiple binary outcomes, assume a linear logistic model for
the probabilities of a favorable outcome, that is, p;, satisfies

lOgit Wim = %m + ﬁ(l - 1)

where a,, allows for a different control level for each of the endpoints and
@ is the intervention effect coefficient for each of the endpoints. Thus 3
represents a single log odds for the endpoints.

Generalized estimating equations were used to obtain a Wald-type
test to test the null hypotheses that the set of endpoints were equal in the
two treatment groups against the alternative hypothesis

Hy: >0.

The test statistic is asymptotically x> with 1 d.f. The methodology also
allows the estimation of f which is interpreted as the odds ratio of
improvement on all of the endpoints with experimental treatment relative
to conventional treatment. 95% (or other) confidence limits for the odds
ratio can be obtained.

When the correlations between the pairs of endpoints are equal
(a,,=a for m=1,2,..., K) the Lefkopoulou/Ryan statistic coincides
with O’Brien’s OLS (and GLS in this case).

The Lefkopoulou/Ryan statistic was developed in the context of
studies on laboratory offspring and was more general than developed
here, e.g., it applies to more than two treatments and a different number
of endpoints for each subject. Tilley et al. (1996) discussed use of the
Lefkopoulou/Ryan statistic in the context of the stroke clinical trial
described below.

2.5. Likelihood Ratio Tests

Likelihood Ratio and Approximate Likelihood Ratio Test

The distribution of the likelihood ratio test of Hoy 2, ... k3 versus
Hago,. k3t Bi— =0

with strict inequality holding for at least one endpoint was obtained by
Kudo (1963) when the covariance matrix was known. Perlman (1969)
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obtained corresponding results with unknown covariance matrix.
Because evaluating these distributions for purposes of application were
difficult, Tang et al. (1989b) proposed the approximate likelihood ratio
(ALR) test. When X is a known diagonal matrix, the ALR statistic co-
incides with the LR statistic and can be evaluated as

N 2

ST
where Y;" is the maximum of ¥; and 0 and the summation is over the K
endpoints. For a general covariance matrix, the mean vector Y must be
transformed before the statistic is calculated. Let 4 be a square matrix
such that 4’4 =2"'. Note that 4 is not unique and Z=(N/2)!> AY is a
vector of independent normal variables with unit variance. The ALR test,
g(2) is

2
g(2) = 2(Z])

where Z; is the ith component of Z, Z; is the maximum of Z; and 0, and
the summation extends over the K endpoints. 4 is chosen so that g(Z)
suitably approximates the likelihood ratio statistic of Hygy o, ...y versus
H, (1.2, ... k- The method to choose 4 is given in the appendix of Tang
et al., 1993. Tang et al. (1989b) showed that the null hypothesis distri-
bution of g(Z) is a weighted sum of x* random variables. They compared
the power performance of the ALR test, O’Brien’s GLS test and Hotel-
ling’s 7%, The performance in terms of power hinges on the closeness of
the true direction of the alternative to the model direction. They note that
the ALR test ignores differences going in the wrong direction and so urge
caution when using one-sided multivariate testing.

The X? Test

Follmann (1996) proposed rejecting Hoy 2, ... kyinfavorof Hy 2 . x
using Hotelling’s 77 at the 2« level as long as the sum of the difference
in mean vectors is positive. This simple test has type I error equal to «,
even when the variance-covariance matrix is unknown. The test has rea-
sonable power when the mean vector is positive and not in a prespecified
direction.

2.6. Nonparametric Tests

A number of authors have suggested other global tests, some of which are
very briefly described here.
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Rank Tests

An alternative approach which does not require the normality assump-
tion is the rank sum statistic proposed by O’Brien (1984). O’Brien
suggested ranking the Xjj, over all i and j for each m, summing the
ranks for each subject, then ranking the subject sums and applying a
Mann-Whitney-Wilcoxon test. While this procedure is very simple, it
must be noted that it does not consider the correlation between either the
endpoints or their ranks. Another rank test has recently been investigated
by Huang and Hall (2002), where the covariance of the ranks is included.

One-Sided Bootstrap Tests

Bloch, Lai, and Tubert-Bitter (2001) consider alternatives of the form
Hy: wm > Hom for some m

and
Wi > Mom — &m for all m

i.e., treatment 1 is superior to treatment 2 on at least one of the endpoints
and all of the other endpoints for treatment 1 are noninferior to those of
treatment 2.

They consider the intersection of the rejection region for the like-
lihood ratio test of H, (Hotelling’s 7?) with the rejection region for the
non-inferiority region (a set of univariate tests). They show that this
results in a level « test and generate its bootstrap distribution. Because
they are using the bootstrap, the normality assumption required by many
of the other tests is not needed. Although numerically intense, this for-
mulation is shown to have high power and type I error close to alpha
under various distributions, such as a mixture of normals and a normal-
exponential mixture.

3. A STEP-DOWN CLOSED PROCEDURE FOR
DETERMINING WHICH ENDPOINTS DIFFER
FOLLOWING A GLOBAL TEST

When dealing with multiple endpoints, aside from establishing an overall
treatment effect, investigators are always interested in which individual
endpoints differ. The theory of multiple comparison procedures adapts
nicely to this setting.
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Let Z; 5, .k denote any global test statistic based on all K
endpoints. Let Zp denote the same test statistic based on the subset F of
the K endpoints. If the type I error for the global test Z;; > . x is a and
simultaneously there is control at level « for each test Zy for all subsets F,
we say that the type 1 error is strongly controlled (protected) at level a. If
there is control at level o only for Zy; » . x we say that the type I error
is protected weakly (at level o).

3.1. Lehmacher et al.’s Procedure

Lehmacher, Wassmer, and Reitmeir (1991) proposed a step-down closed
procedure to determine which of the k endpoints differ in the two
treatment groups. Suppose Z; o .. k; is conducted at level o at the
end of a trial and Hoyg, 2, ... k Is rejected. A step-down closed pro-
cedure very similar to that used for multiple comparisons can be
applied to find if individual endpoints differ. Consider Zy 3 .
Zi,3,4,.. K-> Zi1,2, ..., k13- Whenever one of these rejects at level
a, form the global test statistics on each subset of K — 2 endpoints and
test at level . Whenever the null hypothesis on K — 2 endpoints is re-
jected, step down again. Whenever we do not reject, declare that set of
endpoints not significantly different and do not continue stepping down.
Once a set of endpoints does not differ by one path, endpoints in that
set are not considered if they arise via another path.

This step-down closed procedure yields strong control of a and
provides a method to find individual endpoints which differ. The proce-
dure may be applied using any of the test statistics described above. Of
course, it is possible that a global test statistic rejects Hoyy, >, ..., k3 but no
individual endpoints differ. This may be an issue of power, but also may
be an issue of the correlation between the pairs of endpoints.

3.2. A Procedure with Weak Control of the Overall Type
| Error

When Hyyy 5, ...k is rejected, we may be interested in testing equality of
individual endpoints irrespective of the outcome of the step-down pro-
cedure. Such a procedure yields only weak control of the overall type I
error; that is, the probability of rejecting the true global null hypothesis
that the mean vectors are equal is «, but the type I error for a true subset
of the global null hypothesis is not maintained at «.
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4. GROUP SEQUENTIAL METHODS IN TRIALS WITH
MULTIPLE ENDPOINTS

Several of the aforementioned test statistics have been considered in a
group sequential setting. Suppose we undertake analysis of Hoq 2 .. g
at time t based on a global statistic Z*).

4.1. Asymptotically Normally Distributed Test Statistics
with Known Covariance Matrix

With known X, Tang et al. (1989a) and Tang et al. (1993) observed that
the “ordinary” two-sample group sequential theory could be applied to
the linear combination statistics. In 1997 Jennison and Turnbull provided
an elegant general theory for application of group sequential procedures
for (asymptotically) normally distributed test statistics. The linear com-
bination statistics fall under the Jennison and Turnbull theory (c.f.
Jennison and Turnbull, 2000, chaps. 11, 15) as does the (square root of
the) Wald-type test of Lefkopoulou and Ryan (1993) as developed here.
When the covariance matrix is unknown, it may be estimated from the
data, but the implication is that resulting tests are no longer exact.

4.2. Nonnormally Distributed Test Statistics

For test statistics which are not asymptotically normally distributed, a
group sequential theory may need to be developed. Jennison and Turn-
bull (1999) suggest that the sequences of p-values based on normally
distributed test statistics provide an adequate approximation in many
cases. The ALR statistic of Tang et al. (1989b) and Tang et al. (1993)
is an example of a multiple endpoint test statistic with known nonnor-
mal distribution, where, indeed, the sequences of nominal p values for
group sequential testing are very close to those of normally distributed
test statistics.

4.3. Step-Down Procedures for Group Sequential Trials
with Multiple Primary Endpoints

Tang and Geller (1999) extended the Lehmacher et al. (1991) procedure
of Section 3 to group sequential trials. Suppose Z(’)I, 2 x denotes a
multiple endpoint test statistic at time t and we have a group sequential
boundary ¢ 5 . g for Z, , g at time .
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Proposition 1. The following procedure preserves strong control of the
type I error:

Step 1. Conduct interim analyses to test the null hypothesis Hog >, .k
based on a group sequential boundary {c") 2. wt=1,2. g}.

Step 2. When Hyyy, 2, ..., ky is rejected, say at time ¢*, stop the trial and
apply the step-down closed testing procedure to test all the other null
hypotheses Hyr, using Z%) and boundaries ¢%t”, where F is a subset of
the indices 1, 2, ..., k.

The procedure in Proposition 1 does not allow for continuation of the
trial once a stopping boundary is crossed. However, this is possible using
an alternative closed step down procedure given in Proposition 2.

Proposition 2. The following procedure preserves strong control of the
type I error:

Step 1. Conduct interim analyses to test the null hypothesw H0{1 2. K
based on a group sequential boundary {c(t) _____ ot =12 ..., g}

Step 2. When Hyy,, 2, .., xy is rejected, say at time t*, apply the step-down
closed testing procedure to test all the other null hypotheses Hyr using
7% and boundaries ¢, where F is a subset of the indices 1, 2, ..., K.

Step 3. If any hypothesis is not rejected, continue collecting data in the
trial to the next interim analysis, at which time the closed testing pro-
cedure is repeated, with the previously rejected hypotheses automatically
rejected without retesting.

Step 4. Reiterate step 3 until all hypotheses are rejected or the last stage
is reached.

In Table 1, we give an illustration of Proposition 2 for four
endpoints. All testing is conducted at a fixed significance level a. In this
example, the global null hypothesis was rejected at the first analysis time
t1, but no three-endpoint hypotheses were rejected at time #,. Therefore
more data were collected on all endpoints and at time #,, a second
analysis was conducted on the four three-endpoint hypotheses. It is
convenient to superscript the hypotheses to indicate the time at which
the hypotheses are tested. Of the three endpoint hypotheses at time 1,,
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Table 1 TIllustration of a Group Sequential Step-Down Procedure Using
Proposition 2

Null hypothesis Test statistic t t t3
Ho, (1234 Z1234 X — —
Ho, (123 Zi2 0 0 0

Ho, (23,4 Zyza 0 0 0

Ho, (134 Zi34 0 X —
Ho, (124 Zia o o o

Ho, (12 Zis — — —
Hy, (13 Zy — X —
Ho, (14 Zi4 — 0 0

Hy, 23 Zx — — —
Ho, 2.4 Lo — — —
Hoy, 34 Z34 — 0 0

HO, 13 Z] - o X

Hy, (2 Z, — — —
H(), (3} VA — o o

Ho, 4y Zy — — —
x = test and reject; o = test and do not reject; — = test not done.

only HY? 0{1 3, 4y was rejected, so at time ¢, the step-down procedure was
conducted on the three pairs of endpoints {1, 3}, {1, 4} and {3, 4}. Since
H % f 33 was rejected, we conducted the hypothesis tests of Hg{f and
H{H,. These were not rejected. We continued collecting data on all
endpoints so that at time 73, we could retest the null hypotheses on
endpoints {1, 2, 3} {2, 3, 4}, and {1, 2, 4}. At time 3, we also retested
HO{l 4y and H0,3 4 Hﬁ)fl) 4y and H()?g, 4y were not rejected and so we did
not step down. Because H&l 3} was re]ected and HE)VI} and HY 2} were
not rejected, at time #; we also tested HY f\ and H{§? o(3y. Of these, the first
was rejected. The conclusion was that there was a difference in endpoint
1, but not in the other three endpoints.

The complexity of the example of Table 1 illustrates that in practice,
the use of Propositions 1 and 2 require certain care. Further, the stopping
rule, that is, whether Proposition 1 or 2 will be used, should be decided
when the study is planned. This is especially important in using Propo-
sition 2, where one must consider if ethics allow continuing collecting
data when a global null hypothesis is rejected. Of course, if single
endpoint hypotheses are rejected at an interim analysis, there is no need
to continue to collect that endpoint if the trial continues. In contrast to
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Proposition 1, Proposition 2 allows continuation of data collection until
a difference in at least one individual endpoint is found (or full sample
size is reached).

5. AN EXAMPLE: THE NINDS STROKE TRIAL

The NINDS tissue Plasminogen Activator (¢-PA) trial (sponsored by the
National Institute of Neurologic Disorders and Stroke, or NINDS)
randomized patients within 6 hours of onset of (nonhemorrhagic) stroke
to intravenous #-PA or placebo. Recombinant #-PA is a thrombolytic
agent or “clot buster, ” which was believed to be effective in ischemic
stroke, although intracerebral hemorrhage had been reported in early
trials. Details are found in The New England Journal of Medicine (1995)
333, 1581-1587.

Accrual took place between January 1991 and October 1994. The
trial was designed with 320 patients in order to have 95% power to detect
a 20% improvement in the Bartel Index (Bartel) at 90 days (16% versus
36%) when hypothesis testing was conducted at the o« =.05 level. Three
hundred and thirty-three patients were randomized, and, aside from the
Bartel, three other stroke scales at 90 days were of interest, the modified
Rankin scale (mod RS), the National Institutes of Health Stroke Scale
(NTHSS) and the Glasgow scale (Glasgow). We refer to endpoints 1, 2, 3,
4 to refer to the Bartel, mod RS, NIHSS and the Glasgow scales,
respectively.

While the trial was ongoing, the data and safety monitoring board
met and decided that for the new treatment to be acceptable, the trial
should show a “clear and substantial evidence of an overall improve-
ment.” Therefore the endpoints were dichotomized to define “improve-
ment” and the test statistic used for the trial was the Wald test of
Lefkopoulou and Ryan based on the four dichotomized endpoints. Two-
sided testing was conducted. The results were published in December
1995, indicating the superiority of ~PA over placebo with a p value of
.008 based on the Lefkopoulou/Ryan statistic. The univariate test results
reported by the investigators on the individual endpoints are shown in
Table 2. The odds ratio for favorable outcome in 7-PA group relative to
placebo was 1.7 with 95% C.I. 1.2 to 2.6.

We performed a reanalysis of the NINDS #-PA trial using the
original study data (and two-sided testing to be consistent), assuming that
it had been designed as a group sequential trial with analyses planned
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Table 2 Results of the t-PA Trial as Reported?

Percent with favorable outcome

t-PA Placebo Univariate p value
Bartel 50 38 .026
Modified RS 39 26 .019
Glasgow 44 32 .025
NIHSS 31 20 .033

#Stratification on center and time since onset of stroke.

after the first 100 and 200 patients and at the end of the trial (333
patients) using an O’Brien and Fleming boundary and the Lefkopoulou/
Ryan statistic. This implies that the analysis times would be .3, .6, 1.0.
The analyses reported here are not adjusted for time of entry and center,
whereas those in the New England Journal of Medicine paper were.

The Reboussin et al. (1998) program was used to generate two-
sided symmetric O’Brien and Fleming boundaries. For three interim
analyses, overall « = .05 and analysis times .3, .6, and 1.0, Table 3 gives
the critical values.

Positive values of the test StdtlSth favor tPA over placebo. For the
first interim analysis, at time ¢, = .3, Z; 2)3 4 = 0.77 (nominal p value .44).
Since Z<l 2)3 4 did not exceed the first critical value, 3.93, H{'" would not be
rejected and the trial would continue. At the second mternn analysis at time
t, =.6,7Z; 2)3 4 = .44 (nominal p = .15). Since ZE 23,4 did not exceed 2.67,
H((] 2 would not be rejected and the trial would continue. At the third and
final analysis (13 = 1), Z] 2)3 4 = 262 &nommal p = .0087). Since ZE 2)3 4
exceeds the third critical value, 1.98, H, 3 would be rejected.

Proposition 1 was then used to determine which of the four
endpoints differed. The results are shown in Table 4. At the third and
final analysis, all hypotheses were rejected by the closed step-down

Table 3 Two-Sided Critical Values, Increment in o, and Cumulative o for
Interim Analyses at Times .3, .6, and 1

Time Critical values a(i)—a(i—1) Cumulative «
3 + 3.9286 .00009 .0009

.6 + 2.6700 .00753 .00762

1 + 1.9810 .04238 .5000
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Table 4 Results of the Step-Down Procedure (Reanalysis of the -PA Trial)

Comparison Z-value (nominal p value) Decision

1. Compare global test statistic based on four 2.62 (.087) Reject
endpoints to 1.981.

2. Step down to all comparisons of three
endpoints. Compare each Z to 1.981.

NIHSS, Bartel, modified RS 2.63 (.009) Reject
NIHSS, Bartel, Glasgow 2.63 (.009) Reject
NIHSS, Modified RS, Glasgow 2.59 (.010) Reject
Bartel, Modified RS, Glasgow 2.50 (.012) Reject

3. Step down to all comparisons of two
endpoints. Compare each Z to 1.981.

NIHSS, Bartel 2.58 (.010) Reject
NIHSS, Modified RS 2.61 (.009) Reject
NIHSS, Glasgow 2.52 (.012) Reject
Bartel, Modified RS 2.50 (.012) Reject
Bartel, Glasgow 2.45 (.014) Reject
Modified RS, Glasgow 2.46 (.014) Reject

4. Step down to all comparisons of individual
endpoints. Compare Z to 1.981.

Bartel 2.28 (.023) Reject
Modified RS 2.46 (.014) Reject
Glasgow 2.35 (.019) Reject
NIHSS 2.29 (.022) Reject

procedure. Thus the conclusion was that t-PA was superior to placebo
with respect to each of the four stroke scales (with strong control of «).
The t-PA investigators reported the global test and the single endpoint
nominal p values without performing the intermediate tests. This resulted
in weak control of .

6. EXTENSIONS TO MORE THAN TWO SAMPLES

Follmann et al. (1994) and more recently Hellmich (2001) considered
monitoring single endpoint trials which had two or more treatment arms.
The spending function approach was generalized and one is allowed to
drop treatments which are inferior. Hellmich proved the strong family-
wise error control of the sequentially rejective approach proposed by
Follmann et al. for the Pocock and O’Brien and Fleming spending
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function. We observe here that these results would hold whether the trial
had a single or multiple endpoints.

Suppose we have A treatment arms which will be compared on
multiple endpoints. We test

Hogio, k) = Py = = iy
against an alternative hypothesis, e.g.,

Haq2,... Ky s — By = 6(>0) for at least one s and all 7 #s.

One can envision different schemes for monitoring such a trial combining
the methodology of Hellmich and that here. For this alternative hypoth-
esis and multivariate normally distributed data, one could use a group
sequential version of the F test proposed by O’Brien (1984). For other
alternative hypotheses, one might use the chi-squared or F tests proposed
by Jennison and Turnbull (1991) or Lauter (1996).

For any alternative, one could monitor arms as suggested by
Hellmich (2001) until the trial is stopped and follow this by a step-down
procedure to determine which endpoints differ. Alternately, one could
monitor arms-then-endpoints during the course of the trial. The advan-
tages and disadvantages of various schema have not been investigated.
When one is allowed to drop either arms or endpoints during the course
of a trial, care needs to be taken that the results are interpretable by
clinicians as well as statisticians.

There are other limitations to implementing such methodology at
present. There are a limited number of test statistics for combining
endpoints of different types (continuous, discrete, censored) and proper-
ties of different test statistics in complex settings are not well studied. The
adequacy of using the group sequential boundaries of the “normal
theory” as approximations when parameters are estimated may be
unknown. Further research into the multiple arm and multiple endpoints
problem is needed.

7. DISCUSSION

Methodology has been given in this chapter for determining which
endpoints differ in a clinical trial with multiple endpoints when group
sequential monitoring will occur. We combine step-down procedures with
group sequential methods to determine which individual endpoints differ.
The theory has many missing pieces, leaving room for further research.
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Several points need to be considered in undertaking a clinical trial
with multiple endpoints. One-sided hypothesis testing has inherent
limitations (whether on one or more endpoints). Endpoints with small
univariate test statistics can dilute the significance of the global test
statistics. Indeed, the number of endpoints and their correlation structure
will determine whether the trial will stop or continue. Examples can be
given to show we can cross a boundary with K endpoints, but not with
any subset of them, as well as the reverse. Thus, one needs to consider
carefully the selection of the multiple endpoints in a particular situation.
In particular in designing a trial using multiple endpoints, the plans for
analysis, including the test statistic, should be chosen in advance.
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Subgroups and Interactions™

Dean Follmann
National Institute of Allergy and Infectious Diseases,
National Institutes of Health, Bethesda, Maryland, U.S.A.

1. INTRODUCTION

Clinical trials are generally not designed to identify if the benefit of treat-
ment differs as a function of patient characteristics. The anticipation is
that each randomized group will respond relatively homogeneously and a
single pronouncement regarding benefit will suffice for the entire cohort.
While one might well expect that different patients will respond some-
what differently, we will not be led astray with a single pronouncement
unless some subset of patients is actually harmed by treatment. Thus
it seems that for the primary goal of a standard clinical trial, subgroup
analyses should be undertaken to confirm that a single pronouncement
is justified.

In practice, however, clinical trials involve a substantial investment
in resources and there is proper interest in examining the data in some
detail. Such exploratory analyses can be useful in suggesting new questions
which might be answered in future trials. Estimating how the effect of
treatment varies with baseline characteristics may be of interest for a
variety of reasons, even if treatment harms no one. For example, some pa-

* This chapter was written by Dean Follmann in his private capacity. The views expressed in
the chapter do not necessarily represent the views of NIH, DHHS, or the United States.
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tients may appear to receive marginal benefit. Such an observation might
lead one to consider a trial for this subgroup where an alternative treat-
ment is evaluated. Also, while clinical trials are designed to answer a
clinical question, they can provide insights to nonclinical questions. For
example, a treatment may benefit all patients, but there may be a strong
differential in this benefit as a function of a baseline covariate. Identifying
such a differential may provide insight into the biology of the disease or the
mechanism of action of the treatment.

In this chapter we provide a survey of statistical techniques for
subgroup analyses and interaction. Our view is that one perspective is
appropriate for the paper reporting the main results of the clinical main
while another perspective is reasonable for secondary papers. Several
excellent papers on the use and abuse of subgroup analyses have been
written (see e.g., Yusuf et al. 1991, Oxman and Guyatt 1992, Bulpitt 1988,
Simon 1982). They chiefly provide a strong justification for the “main
results” view and emphasize the danger in making strong conclusions
based on exploratory subgroup analyses. Another useful dichotomy of
subgroup analyses has been proposed by Peto (1995) who distinguishes
between qualitative interactions, where the treatment is actually harmful
to some subgroup of patients and beneficial to other, and quantitative
interactions, where the magnitude of treatment benefit varies, but the sign
does not. Peto argues that the former are clinically important and rare,
while the latter are clinically unimportant and common.

This chapter is organized as follows. We begin by developing stan-
dard approaches to subgroups and interaction in a simple setting. We
then develop in some detail nonstandard approaches to tests of inter-
action. We end by discussing some practical issues that were encountered
in the AVID clinical trial.

2. STANDARD APPROACHES

Throughout we assume a randomized two-armed clinical trial. To keep
matters simple, we will assume that the primary endpoint is continuous,
such as diastolic blood pressure (DBP). Our basic arguments apply to
other endpoints with obvious modifications. Let Y; be the endpoint
measured on the ith subject where i = 1,..., n. We will use Z = 1(0)
to identify the treatment (control) group, and use X to denote a vector of
covariates, e.g. prognostic variables or subgroup identifiers. We assume
an equal number of patients in each treatment group.
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A standard approach for assessing if treatment has an overall effect
is to write

Yi=Bo+BiZi+ e (1)

where ¢; is an error term with mean 0 and variance o”. For simplicity, we
will assume that o” is known. The effect of treatment is ElY|z, = 1] —
E[Y]|Z; = 0] = pi, and a test of treatment effect is achieved by testing
whether ff; = 0.

Subgroup analyses are conducted by applying this model to subsets
of the randomized cohort. For example, one might apply (1) to men and
women separately. Writing this in a concise form we have

Yi=Po+ BZi+ BoXi+ B3 XiZi + & (2)

where X; = 1 identifies men. Here the treatment effect among men is
given by f; + p3 while the treatment effect among women is f;. In
general, the X, in (2) can be continuous, or vector valued, even though the
term “subgroup” may not be meaningful in these cases. In this more
general setting, (2) describes how the effect of treatment varies with X

Figure la—c gives graphical examples of three possibilities for (2). In
all figures, the symbols denote the mean response at X = 0 or 1, while the
lines denote the mean response for a continuous X € [0, 1]. Large values of
the response indicate a more favorable outcome. In Figure 1a, the benefit
of treatment at X = 0 is the same as the benefit at X = 1. In Figure 1b,
there is an interaction, but it is a “quantitative” interaction where there is
somewhat greater benefit of treatment at X = 1 compared to X = 0, but
treatment is beneficial at both levels of X. Finally, Figure lc presents a
“qualitative” interaction, where treatment is beneficial at X = 0 but
harmful for X = 1.

At times, one might wish to report the treatment effects separately for
different subgroups. This may be because one has an a priori reason to
suspect a strong differential, or it may be because the effect in some
subgroups is of interest in its own right, e.g., men and women. In this
case, it may be appropriate to examine the effects in the subgroups, though
more to support the overall conclusion. Occasionally, a study may be
adequately powered for a subgroup. For example, the PATHS clinical trial
(Cushman et al., 1994) examined the effect of reduced alcohol consumption
on the change in DBP, among drinkers with mild to moderate hyper-
tension. In the design of the study a separate power calculation was done
for the moderate hypertensive subgroup. In such a case, the results in the
adequately powered subgroup are intended to be presented separately. In
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Figure 1 Three possibilities for the effect of treatment as a function of X. Solid
circles and lines denote the treatment group; open circles and dashed lines denote
the control group. Larger values of the response are more desirable.

general, subgroups need to be interpreted within the context of the trial,
other studies, and the biological phenomena being investigated (Yusuf et
al., 1991).

Treating a single trial as if it were two separate trials, one for each
subgroup, when in fact it was designed as a single study can be very
misleading. This point is forcefully made by reexpressing an observation
made by Peto (1995). Imagine a clinical trial which has a continuous
endpoint and uses the standardized mean difference to test treatment
efficacy. Suppose that the mean difference is 2 and the standard error of
this difference is known to be 1 so that the overall test of significance, is 2.
The p value is just less than .05, so treatment appears efficacious. We’re also
very interested in two equally sized subgroups, e.g., men and women, and
decide to report these separately. We perform the calculations and discover
that in men, the test statistic (mean difference divided by standard error) is
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3/+/2 and thus men have a p value of about .03. The overall result and the
result in men imply that the test of treatment effect in women is 1/ V2 with
associated p value of about .48. It may seem that the answer is clear that
men benefit while women do not. However, the chance of seeing a
discrepancy in the treatment effects between men and women at least as
large as the observed value (i.e., |3 — 1|/+/2) is about 1 in 3, provided the
true effect of treatment is the same in men and women. Even with an overall
significant result, simply looking at subgroup p values is likely to suggest
heterogeneity in response which may well be due to chance. As argued by
Peto (1995), Yusufet al. (1991), and others, we would generally expect the
overall result to provide a better estimate of the effect within subgroups.

Another problem results from trying to identify subgroups for which
the treatment effect is significant, when the overall treatment is nonsig-
nificant but with a trend towards significance. It is natural enough to think
that surely treatment must have worked somewhere and to feel obliged to
identify where. Such tendencies should be avoided. For such trials, the
overall type I error has already been used up so that it is unclear what the
type I error for subgroups even means here. Nonetheless, such subgroup
analyses are sometimes done. Suppose we have two equal sized subgroups,
use the standardized mean difference to test efficacy, have equal treatment
effects in each subgroup, and, for simplicity, a one-sided hypothesis.
Figure 2 graphs the conditional probability of having a p value in one of
the two subgroups less than .05 given the overall p value. (Since the overall
p value is nonsignificant, it is impossible to have both subgroup p values
less than .05, thus this is the probability of one subgroup p value less than
.05 and the other subgroup p value greater than .05.) Thus Figure 2 graphs
the probability of incorrect discordant conclusions about the treatment
effect in the two subgroups. With an overall p value of just greater than .05,
the chance of having one subgroup p value less than .05 and the other
greater than .05 is nearly .5. Even with an overall p value of .25, the chance
of finding one significant and one nonsignificant subgroup is about .10. If
several mutually exclusive subgroupings are analyzed the chance of
“identifying” a significant subgroup can be quite large. As pointed out
by Bulpitt (1988), subgroup analyses showing harm or benefit when a trial
does not reveal an overall effect may be particularly misleading.

A statistical method to guard against overinterpreting the results of
a trial within subgroups is provided by a test of interaction. In the context
of model (2) this amounts to testing whether 3 = 0. (In words, we see
whether the treatment effect among women equals the treatment effect
among men.) Subgroup analyses provide the estimate of treatment effect
within a subgroup, albeit with a lot of noise due to the small sample sizes.
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Figure 2 The chance of finding a subgroup with a p value less than .05 conditioned
on the p value of the overall trial. Calculation based on two equally sized subgroups
with continuous Gaussian response.

A test of interaction is used to determine whether the effect of treatment
differs between subgroups. The p value for a test of interaction in the
illustration due to Peto is about 1/3, buttressing the idea than men and
women do not differ. Given that a trial is designed for the entire group, it
seems more prudent to investigate a differential treatment effect by a test
of interaction, than by looking at subgroups in isolation. When reporting
the main results of a study, tests of interaction can be used to support the
relative homogeneity of treatment effect.

2.1. Power of Tests of Interaction

It is often mentioned that the power for a test of interaction is substan-

tially less than for the test of the overall main effect. The test statistic for

the null hypothesis f; = 0 in (1) is
Y1-Y

%4 /n ()
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where 71 is the sample mean in group j. Assuming equal numbers of men
and women, with exactly half of each in the treatment group, the test
statistic for f3 = 01in (2)
Y11 — Yio — (Yor — Yoo)
\Vo216/n
where Y, is the sample mean for the people in treatment group j with
covariate X = /.

The variance of the numerator of the test statistic for interaction (4)
is 4 times greater than that for the test of overall effect (3). If a trial has
power equal to .90 to detect an overall effect of treatment equal to ¢, the
trial will have power equal to about .37 to detect an interaction of size .
If men and women are not equally numbered, the denominator in (4) is
larger and the power is less. Power is .9 to detect interactions of size 24.
Of course, there is no inherent reason why o should be a plausible or
meaningful difference for the interaction: 6 is chosen to be clinically
meaningful for the test of overall effect.

In principle one might have marked heterogeneity among patients,
and such a differential in treatment effect might be anticipated. However if
such marked heterogeneity were recognized during the planning of the
trial, one might well choose not to include those patients with the relatively
small anticipated treatment effect. The generally poor power of tests of
interaction should encourage skepticism when interpreting interactions
that are statistically significant. In the design of a standard clinical trial,
one’s prior opinion is that the result of the study should be applicable to the
entire randomized cohort and one should need reasonably strong evidence
to be dissuaded from this opinion. For the main results paper, examining
interactions and subgroups should be done, but more for assurance that
nothing unexpected has occurred.

4)

2.2. Multiplicity

In practice, many characteristics of patients are measured at baseline. If
several of these covariates are examined using tests of interaction, as is
commonly done, the chance of seeing at least one significant at p = .05 is
increased, even if the true treatment effect is constant over all baseline
covariates. The exact probability of at least one p value less than .05
depends on the number of tests conducted and the correlation between the
test statistics. Suppose K tests are conducted which are all independent of
each other. The probability of at least one p value less than .05 is 1 - 955, If
the tests are so dependent that they are all identical, the probability of at
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least one p value less than .05 is .05. In practice, the test statistics will have
a correlation between 0 and | and the true probability of at least one
significant p value will lie between 1 - .95% and .05.

To more accurately gauge the extent of the multiplicity problem, we
conducted a small simulation. We imagined a large clinical trial where K
tests of interaction were conducted. Since this imaginary trial was large
and the treatment effect constant over all subgroups and covariates, the K
tests of interaction were approximately univariate normal with mean 0
and variance 1. While in practice the correlation between the various tests
would be different, for simplicity we assumed that all tests of interaction
had a common correlation p. For various values of K and p, we generated
100,000 imaginary clinical trials, and recorded the percentage of times
that at least one of the test exceeded 1.96 in absolute value. Figure 3 (left
panel) presents the results. For 32 independent tests, there is about an
80% false positive rate. This decreases with decreasing number of tests
and also decreases as the correlation increases.

A simple correction for this problem of multiplicity is the Bonferroni
correction. Recall that

P(RiU---URg) < P(R))+ -+ P(Rk)

where R; denotes rejection of the null hypothesis using covariate k. To en-
sure that the probability of at least one type I error, i.e., P(R; U - - U Rg),
is at most a we require P(Ry) < o/K for each k. Thus if K tests are con-
ducted, one requires a p value smaller than .05/K to declare significance.
Figure 3 (right panel) illustrates the degree of conservatism for this pro-
cedure when all tests have equal correlation. We see that the correction is
not very conservative provided the common correlation is less than about
4. The degree of conservatism increases with the number of covariates
and the correlation. Pocock, Geller, and Tsiatis (1987) make a similar
conclusion, but based on an exact calculation rather than simulation.

A simple improvement on the Bonferroni method is the sequentially
rejective Bonferroni procedure of Holm (1979). Here one orders the K p
values from smallest to largest, say p(y < pp) < - - < p. The smallest p
value, p(i)is compared to .05/K. If p(1y < .05/K, we reject the null hypothe-
sis for the associated hypothesis and then compare the second smallest
p value py to .05/(K — 1). If pi2) < .05/(K — 1), we then compare the third
smallest p value to .05/(K — 2) and continue on in this fashion until we
cannot reject. This sequentially rejective procedure provides the same
protection of the probability of at least 1 type I error, but is more powerful
than the Bonferroni method, because smaller critical values are used.
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Figure 3 Simulated rejection rates for K = 2, 4, 8, 16, 32 tests of interaction as a
function of the common correlation between tests. Curves based on interpolation

between values at correlation = 0, .1, .2, ..., .9, 1.0. For the left (right) panel, we
reject if any test has a p value smaller than .05 (.05/K). Simulations done under the
null hypothesis.

Subgroups and multiplicity were of major concern in the Bypass
Angioplasty Revascularization Investigation (BARI) (BARI Investiga-
tors, 1996). This study randomized patients with multivessel coronary
artery disease in need of revascularization to either coronary-artery by-
pass graft (CABG) or percutaneous transluminal coronary angioplasty
(PTCA). The primary endpoint was total mortality. In the design of the
study, five factors were prespecified: severity of angina three possibilities),
number of diseased vessels (two or three), left ventricular (LV) function
(normal/abnormal), the complexity of the lesions (class C lesion absent/
present), and the combination of number of diseased vessels and LV
function (four possibilities). These five factors these resulted in 3, 2, 2, 2,
and 4 subgroups, respectively.
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Asis common, BARI was monitored by an independent Data Safety
Monitoring Board (DSMB) while the study was ongoing. The DSMB
monitored mortality differences between the two groups, overall and for
the five factors. While tests of interaction could have been used here, it was
decided to monitor within subgroups. In 1992, the DSMB requested that
the treatment effect in diabetics and nondiabetics also be monitored as
additional subgroups. Due to the concern about multiplicity, a p value of
.005 was decided upon as a threshold for the test of treatment effect in the
diabetic subgroup.

Before the study was completed, a striking result was observed in
the diabetic subgroup: the 5 year survival for CABG as 80.6 percent
compared to 65.5 percent for PTCA (nominal p = .0024). This was less
than the threshold of .005 and these results were disseminated before the
completion of followup for the main trial by a Clinical Alert. Because
diabetics were chosen as a subgroup a priori and because of the concern
about multiplicity, the primary results paper suggested that the result in
the diabetic subgroup should be confirmed in other populations. Overall,
the 5 year survival rates were 8§9.3 (CABG) and 86.3 (PTCA), p = .19.

After BARI was over, a permutation method was was used to pro-
vide an exact p value for the result observed in diabetics, controlling for
the multiple subgroups. Based on the 5 initial variables plus the diabetic
variable, there were a total of 15 overlapping subgroups. Within each
subgroup, a standardized log-rank test statistic was used so that there
were 15 test statistics, 77, ..., T1s5. A Bonferroni correction applied to these
15 tests would require a p value less than .05/15 or .0033 to declare
significance. Since the nominal p value in diabetics was .0024, a Bonferroni
adjusted p valueis 15 x .0024 = .036. However, the Bonferroni correction
is conservative and a simple permutation method was used to provide an
exact adjustment for the multiplicity. Under this method, the treatment
and control labels were permuted a large number of times and for a generic

permutation, say the bth, the vector of test statistics TP, ..., TL, was
calculated as well as M” = max(|T{"|,...,|T{]). By simulation, Brooks

et al. (1997) estimated a permutation p value for the diabetic subgroup of
.026, i.e. the maximum associated with the original vector of test statistics,
M = max(|Ty|,...,|Tk|), was at the 97.4th percentile of the MPs. In this
analysis, the Bonferroni correction is not very conservative. Strictly speak-
ing, this permutation procedure tests the strong null that treatment has no
effect whatsoever, i.e. no overall effect, and no effect in any subgroup. See,
e.g., Edgington (1995).

Though we have focused on the impact of multiplicity on testing,
multiplicity also has an impact on estimation. If several variables are
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examined for interactions or subgroups and the single variable with the
most extreme value is selected, the estimate of the effect of treatment
associated with this variable is likely to be biased. Suppose that K
subgroups are examined, and the subgroup with the most extreme estimate
of treatment effect singled out. This will provide a biased (away from 0)
estimate of treatment effect in that subgroup. The amount of bias depends
on the configuration of the true treatment effects in the K subgroups, e.g.
O1,..., 0k If 6, = 0 for all k, the bias is most extreme. Harrell, Lee, and
Mark (1996) discuss strategies which produce statistical models with
accurate estimates of treatment effect while allowing for differential effects
across subgroups or covariates.

3. OTHER APPROACHES TO INTERACTION

In terms of statistical methodology, the standard approaches to sub-
groups and interaction are quite straightforward as both can be effected
by fitting model (2). In this section, we discuss some other methods that
may be useful in certain settings.

3.1. Tests of Qualitative Interaction

As argued by Peto and others, quantitative interactions are likely to exist,
but are unlikely to be clinically important. Here, treatment causes no
harm at any value of X, but may be relatively better for certain values of
X compared to other values of X (see Fig. 1b). Unless there were values of
X for which treatment was basically the same as control, and treatment
were associated with some nontrivial side effects, the clinical implication
of a quantitative interaction would be that treatment should be given to
anyone satisfying the inclusion criteria of the trial.

On the other hand, qualitative interaction where treatment causes
harm for certain values of X is quite clinically important (see Fig. Ic). It
seems important therefore to check for qualitative interaction when
reporting the main results of the trial. There are two ways of doing this.
First, one could check for harm in various subgroups. However, if
apparent harm is observed in a specific subgroup (e.g., p < .05) it may
be due to chance, for reasons of multiplicity as well as the arguments given
by Peto (1995). Therefore it seems more logical to perform a formal test of
interaction here.

A standard test of interaction [H : 3 = 0 in (2)] does not make a
distinction between quantitative and qualitative interaction. Thus if f3 is
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rejected we only know there is evidence of an interaction, not necessarily
a qualitative interaction. If detecting qualitative interaction is of prime
concern, it makes sense to apply a non-standard test, specifically derived
to detect qualitative interactions. Gail and Simon (1985) proposed such a
test which we outline below.

Suppose that there are £ = 1, ..., K mutually exclusive subgroups.
Within each subgroup, let D, be the estimate of treatment effect. The D,’s
are assumed to be normally distributed with mean 6, and known variance
oZ. Gail and Simon’s procedure is appropriate even if the Dj’s are
approximately normal and accurate estimates of o;” are used. Let § =
(®1, . . ., 0g). The null hypothesis of no qualitative interaction means that
the elements of ¢ are either all positive (treatment always helpful) or all
negative (treatment always harmful). Let O denote the positive orthant
{886,>0,k=1,...,K}and O = —O" the negative orthant. A like-
lihood ratio test for

Hy:3€0 U0~
versus the complement of Hj is constructed by taking the ratio of

maximized likelihoods under H 4 and H, and rejecting for large values of
this ratio. This reduces to rejecting Hy if

2 2

Z(%’f)](pk >0)>c and Z(%)I(Dk <0)>c

where I(A) is the indicator function for the event 4 and c¢ is chosen so that
the type I error rate is . Gail and Simon provide critical values for this test
for various values of K and .

A generalization of this test is discussed by Russek-Cohen and
Simon (1993), whereby the estimates of treatment effect in the K subsets
are allowed to be correlated. Correlated estimates arise in a variety of
practical settings. For example, suppose X € [0, 1] is a continuous co-
variate and that model (2) is fit. The hypothesis of no qualitative inter-
action means that the sign of the treatment effect (f; + f3X) does not
change over X € [0, 1], or more simply, that the signs of §;, J, are the
same, where (81, d,) = (B1, f1 + f3). Thus the setup of Gail and Simon
applies, but the estimates of d;, J, are correlated.

The approach of Gail and Simon should work best if the treatment is
superior to the control for some subgroups and vice versa for other sub-
groups, but we don’t have an idea about the number of harmful subgroups.
If control is harmful for only one of a few subgroups while treatment is
superior for the remaining subgroups, a more powerful procedure can be
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developed. Piantadosi and Gail (1993) develop a range test for this setting
where the null hypothesis of no qualitative interaction is rejected if both

max&>c’ and min&< —c’.
Ok Ok
They evaluate the power of this procedure and conclude that for K = 2 or
3, there is little difference between the range test and the LRT. For K > 3,
however, the different tests have more of a differential in performance. If,
e.g.,0oc(—1,1,1,1,1, 1), then the range test is preferred, while if § oc (—1,
—1, =1, 1, 1, 1) the approach of Gail and Simon is preferred.

3.2. Multivariate Approaches to Interaction

In many settings, it is reasonable to postulate that the effect of treatment
may depend on the severity of the underlying disease (see, e.g., Peto 1995;
Smith, Egger, and Phillips 1997; Gueyffier et al. 1997; or Friedman,
Furberg, and DeMets 1996). Examining for interaction along disease
severity may yield insights regarding the mechanism of action of the
treatment. For example, sicker patients may benefit more than healthier
patients, or sicker patients might benefit less than healthier patients.

A straightforward way to proceed is to identify baseline covariates
which are related to severity and to separately test each one for an inter-
action with treatment. Frequently, however, severity of disease is not really
captured by a single variable, but is better determined by a combination of
factors. Suppose that a severity score S; = 3’ X; were available on each
patient, where X; is a vector of baseline covariates and 3 is a vector of
parameters. One could imagine that 3 was estimated with an ancillary data
set using the model

Yl' = B/X[ + &

If f were known, it would be a simple matter to replace X; with S;in (2) and
and perform a test of interaction in the usual way.

In practice there is probably no ancillary data set and, to pursue
this tack, one needs to both estimate 3 and test for interaction simulta-
neously. Follmann and Proschan (1999) proposed such a procedure. One
postulates

Yi= By + B1Zi + B5X; + 035 X:Z; + & (5)

where By, B1, B2, 0 are parameters to be estimated. Under this model, the
parameter vector for X; in the treatment group (63,) is assumed propor-
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tional to the parameter vector for X, in the control group (3,). To test for
an interaction along the univariate quantity 35X, Follmann and Proschan
derive the likelihood ratio test for Hy: 0 = 1 versus H,: 0 # 1.

A simple way to calculate the test statistic is to fit the model

Yi = By + B5Xi + & (6)

in groupj = 0, 1. Let sz be the estimated parameter vector in group j =
0, 1, and let 3, be the average of the control and treatment estimates of the
covariance of Bz/ Decompose Sas 3 = 32 [2Y?), and define U =
312 ,62, Minus twice the log of the ratio of likelihoods is

U, - U I? . .
R L A [T
where
. aU; + Uy
Ho = 612 +1
(R—1/R) + /(R = 1/R)’ + 4cos2(0)
“= 2 cos(0)
M = afi
Juil
ol
cos(0) = Up.U
U [ 10 |
and [[w] =y/w}+---+wi, where w = (wj,...,w). Under the null

hypothesis 7 has an asymptotic chi-square distribution with one degree
of freedom and we reject H, for large values provided 8, 0, If 3, is too
close to 0, or the sample size too small, the chi-square approximation
may not be accurate.

The procedure of Follmann and Proschan (1999) will work best if
treatment interacts with S;, or, put another way, if 3,9 o< 3. If the
interactive effect is concentrated in a few elements of X, e.g. the element-
wise division of B850/8>1 = (a, 1, 1, 1, 1), then examining each element of X;
in turn should be more powerful. Simulations studies confirmed this point.

A different multivariate approach to interaction is suggested by
Shuster and van Eys (1983) whereby the vector of covariates X; is
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examined for a region of indifference between treatments and regions of
superiority for treatment or control. The case of a single prognostic
variable is instructive. Here we fit

Yi= By + B Zi + PoXi+ B3 ZiXi + . (7)
At a specific X; = x, the treatment effect is
A(x) = By + Bsx.

The solution for A(x) = 0, say X, is given by —ﬁl//}} They propose using
Fieller’s theorem to construct confidence intervals for xq, say (Xoz, Xov).
Within the confidence interval, neither treatment is preferred, while outside
of the interval, either treatment or control is preferred. Of course, either of
the regions outside (Xy;, Xoy) may be vacuous since X has a restricted
range.

Shuster and van Eys discuss generalizing this method to the multi-
variate setting. Confidence regions for the solutions to A(x) = 0 are
described. However, there is a multiplicity problem to this approach, as
pointed out by Gail and Simon (1985), and the procedure can be very
anticonservative.

4. AVID TRIAL

In this section, we apply some of the principles and methods outlined in this
chapter to the Antiarrhythmics versus Implantable Defibrillators (AVID)
Trial (AVID Investigators, 1997). The AVID study was a randomized
clinical trial that enrolled patients with either ventricular fibrillation (VF)
or serious sustained ventricular tachycardia (VT). Patients were random-
ized to treatment by either an implantable cardioverter-defibrillator (ICD)
or by an antiarrhythmic drug (AAD). The primary endpoint was all cause
mortality. The study planned on enrolling 1200 patients, but was stopped
early due to a substantial reduction in mortality associated with the ICD.
At study’s end, 1016 patients had been randomized.

An important aspect of the AVID study was whether the ICD would
be homogencous in terms of benefit. Thus subgroup analyses were
planned at the outset for the following important categories: age, left
ventricular ejection fraction (LVEF), arrhythmia due to coronary artery
disease (CAD = 1 yes, CAD = 0 no), and type or arrhythmia (VF = 1
due to VF, VF = 0 due to VT). In the main results paper, hazard ratios
were graphed for subgroups created on the basis of these four variables.
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Three subgroups were created for age (< 60, >70, and 60-69), while LVEF
was dichotomized (LVEF > .35, LVEF < .35), as were CAD and VF.

Figure 4 displays the hazard ratios along with 95% confidence
intervals for these subgroups. The hazard ratios are calculated from a
Cox regression model with

N(#) = No(1) exp(BZ;)

where Z; identifies treatment group. The above Cox model is applied
repeatedly within each subgroup. There are some subgroups for which the
confidence interval overlaps 1. If one incorrectly viewed AVID as being
separate trials in each of these subgroups, one would conclude that it is not
beneficial for LVEF > .35, for causes of arrhythmia other than CAD, and
for patients with VT. Such an interpretation does not make sense as the

AGE <60 *-
60-69 2
> 70 2 4
LVEF .35 ﬁ *

<35 ——

Subgroup

Arr. CAD —
Other

Rhythm VF —0—
vT —&

Overall —r—

T T T
0.0 0.5 1.0 1.5

Hazard ratio

Figure 4 Hazard estimates with confidence bars for four subgroupings of the
trial participants of the AVID study. Overall hazard given by dashed vertical line.
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study was not designed as separate trials. Indeed, it is not particularly
surprising that ICD shows no benefit in each age subgroup. If enough small
subgroups are created, tests of treatment effect in each have low power.

A proper interpretation of Figure 4 evaluates the confidence inter-
vals relative to the overall estimated hazard. None of the subgroup
confidence intervals excludes .62 suggesting that the effect of treatment is
relatively homogeneous. To buttress this impression, we conducted stand-
ard tests of interaction for each of the four subgroupings: age, LVEF,
CAD, VF. Age and LVEF were treated as continuous covariates, while
CAD and VF were binary covariates. For each test of interaction, we fit the
Cox regression model:

N(1) = No(1) exp(B1Zi + BrXi + B3 XiZ;)

where X; was one of the four covariates. Based on this model we tested
whether ff; was equal to 0. The p value for each of the four tests of
interaction was at least .10. On the basis of the standard analysis, the effect
appears homogeneous as a function of prespecified baseline covariates.

We next apply the other tests of interaction discussed in this chapter.
For each of the four methods of subgrouping in Figure 4, the test of Gail
and Simon can be applied. However, since the estimate of the log hazard
ratio is always negative the condition

Dy Dy
Z(G—£>I(Dk>0)>c and Z(a_i>I(Dk<0)>c

is satisfied for no ¢ and the test will not reject for any «. The test of
Piantadosi and Gail (1993) similarly cannot reject. Intuitively this makes
sense. To conclude that a qualitative interaction exists we need to assure
ourselves that the point estimates for some subgroups lie well within the
region where treatment is harmful while the point estimates for other sub-
groups lie well within the region where treatment is beneficial. If all point
estimates lie in the same region, there is little evidence of a qualitative
interaction.

While examining these factors each in turn does not suggest an
interaction, it could be that risk varies with the severity of disease. We thus
also calculated the test of Follmann and Proschan (1999). The value of the
test statistic is .209 which has a p-value of .65. All in all, the main result of
AVID seems to be that there is really no evidence of harm of the ICD for
anyone and the results of the study can be applied to the overall cohort.

After the main results of AVID were reported, dozens of other
manuscripts were prepared. Some of these analyses focused on the effect
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of subgroups or specifically investigated the effect of treatment as a
function of a baseline covariate. A good example of the latter is given by
the paper by Domanski et al. (2000) which evaluated the effect of treatment
as a function of left ventricular dysfunction. They demonstrated that while
the effect of treatment did not interact with baseline ejection fraction, the
effect did appear to be somewhat diminished for patients with well
preserved LV function. They suggest that further studies of ICD versus
antiarrhythmic drugs may be of interest.

5. DISCUSSION

In this chapter we have tried to provide a perspective on conducting tests
of interaction and subgroup analyses in clinical trials. In reporting the
main results of a clinical trial, it makes sense to be cautious in such
analyses. Subgroup analyses should be performed to confirm the lack of
clinically important heterogeneity. In secondary papers, exploratory
analyses of the effect of treatment for different subgroups may yield
useful scientific insights.
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1. INTRODUCTION

In clinical trials with right-censored failure time responses, inference goals
often focus on comparing the survival distributions of different treatment
groups, and the ordinary logrank test (Mantel, 1966) is most commonly
used for testing the treatment difference. The appeal of the test comes from
its simplicity and being nonparametric in the sense that it does not require
specifying the parametric form of the underlying survival distributions.
The logrank test is a score test and has full Pitman efficiency under the
proportional hazards alternative (Kalbfleisch and Prentice, 1980, p. 106).
However, it may lose efficiency under different alternative models. The
goal of this chapter is to consider modifications to this standard situation,
and to address them with a unifying approach based on a framework of
the distribution permutation tests (DPT) (Fay and Shih, 1998; Shih and
Fay, 1999). Specifically, we consider cases where the hazards are non-
proportional, where the data are interval-censored, and where there is
stratification, including the matched-pair case. Although we focus on the
two-sample case here, it is straightforward to modify the method to handle
K-sample tests and linear permutation tests (see Fay and Shih, 1998). The
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DPT tests may be applied whenever the censoring mechanism can be
assumed to be independent of the failure mechanism and of the treatment
assignment. The advantage of the DPT approach is threefold. First, it
presents a unifying approach for all the above situations. Second, when the
DPT tests presented here are used on stratified data, they provide good
power whether the strata effect is large or small. Thus, there is no need to
decide a priori between a traditional stratified test, which gives better
efficiency when there is a large strata effect, or an unstratified test, which
gives better efficiency when there is little or no strata effect. Finally, exact
DPT tests may be calculated for small sample sizes, but asymptotic
methods are availible for large sample sizes. There are two disadvantages
of the permutation approach; in some situations the assumptions on the
censoring may not hold, and the approach cannot make adjustments for
covariates as may be needed in some nonrandomized trials.

The DPT framework creates tests by permuting scores based on a
functional of estimated distributions for right-, left-, or interval-censored
data. The setup is flexible so that by choosing different functionals or
estimated distributions new tests can be produced. We will focus on two
functionals—the difference in means functional and the weighted Mann-
Whitney functional. For stratified data, the estimated distribution function
for each observation is based on a shrinkage estimator similar to the
nonparametric empirical estimator of Ghosh, Lahiri, and Tiwari (1989), of
which we will give the rationale and details later.

The remainder of the chapter is organized as follows. In Section 2, we
review the DPT framework for censored, stratified data. In Section 3 we
consider the two-sample case without stratification, in Section 4 we con-
sider general stratified data, and in Section 5 we consider the special case of
match-pair data. In Sections 3 to 5 we show how to apply the DPTs to each
of these situations, and illustrate the methodology with real data. Finally,
in Section 6 we reference some work for handling these types of data when
the censoring assumptions of the permutation test do not hold.

2. DPT FRAMEWORK

Let X;; and x;; be the random variable and associated response for the jth
response of the ith stratum, wherei = 1,...,nandj = 1, ..., m; Inlater
sections, we consider applications to special cases; in Section 3 we letn = 1
and in Section 5 we let m; = 2 for all i. If the individual is censored, we do

not observe x;; but only know that it lies in some interval, say (L, R;]. With
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aslight abuse of notation, we let R;; = o for right-censored dataand L;; =
lim,_,o R;; — € for data that are known, so we can write left-, right-, and
interval-censored data in the form x; € (L;;, R;]. Thus, we write responses
for the ith stratum as { y;} = {(L;,R;]}. Let z;; be the associated treatment
assignment and assume that if z; = a then X;; comes from the distribution
V,., a = 1, 2. We assume that the censoring may vary with each stratum
but not the treatment. We test the null hypothesis, Hy: ¥;; = ¥, = V,, for
alli = 1,...,n, against the alternative H,: ¥;; # W), for some i.

The DPT has a simple form. We create permutation tests based on a
score for each subject. We define the score ¢;; by

where ¥; is an estimated distribution for W¥; under the null hypothesis,

Fl'f\{f'i(s) = Pr[A/"f = S|yij,2ij = aaq,ia :{I\'i}

0 if s < L,j
= M if Li/ <s=< R,‘,‘
Wi(Ry) —Wi(Ly)
I ifs> Ry

which is the distribution for the jth response of the ith stratum under the
null hypothesis given y;;and ¥; = W, and where ¢(. , .) is a functional used
to compare two distributions. In (1), ¢ is used to compare the individual
distribution of a response with the distribution for its stratum. We consider
two functionals:

Weighted Mann-Whitney (WMW) functional:

Su(F.6) = [w)G(5)dFts) = | w(s)Fis) i)
Difference in means (DiM) functional:

bon(F.6) = | xd(x) - [ vd6().

When the weight function w(.) = 1, the WMW functional becomes
the ordinary Mann-Whitney (MW) functional which can also be expressed

by

by (F,G) = 2{PF(X > Y) +%Pr(}(: Y)} 1
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where X and Y are the random variables associated with the distributions F
and G, respectively.

With a functional chosen, the permutation test is based on the
statistic

ZZ 2 = 71) (5 — @) 2)

where z; = 3z;/m; and ¢; = 2,c;/m;. Under the null hypothesis, ¢;s are
exchangeable within each stratum and E(L,) = 0, where the expectation is
taken over the permutation distribution induced by the set of all [T} _ | m;!
possible permutations within each stratum of covariates to scores. The
associated variance of L is

=Y (S| [De -

J

The test statistic is 7 = Lé /V. When n and m is are small, we create an
exact permutation test. Under regularity conditions and the null hypoth-
esis, as 1 — oo OF Min;<;<,(m;) — oo, Tis asymptotically distributed as xz
with 1 degree of freedom (Sen, 1985).

To understand how the DPT works, consider a simple case where
n = land x;’s are observed (i.e., we have two independent samples without
censoring). If we use the empirical distribution for W, the distribution of
xy;under Hy, then F 1@, has point mass at x,;. With the DiM functional,
¢1; = x1; — X1, where X; = 3x;;/m;. The test statistic compares the mean
difference in the two samples, and the permutations are done by permut-
ing the treatment assignments. The test statistic v/7 is similar to the con-
ventional t-test but with the sample variance calculated about the overall
mean.

Rank tests can also be generated using the DPT. For example, a
generalization of the Wilcoxon rank sum test that fits the DPT uses the
Mann-Whitney functional for ¢. The Mann-Whitney scores ¢;; under no
censoring are linearly related to the midranks, which are the standard
ranks that are averaged at tied values. Thus the test statistic compares the
rank sum difference in the two samples, and the permutations are done by
permuting the treatment assignments to the midranks.

The DPT framework is flexible. It creates different tests with differ-
ent choices of ¢ andW;’s. In the sequel, we apply the DPTs with ¢ and ¥,
chosen to provide good power.
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3. TWO INDEPENDENT SAMPLES

As mentioned earlier, for the case of two independent samples, the ordi-
nary logrank test is commonly used and has full Pitman efficiency when
the assumption of proportional hazards holds. However, the logrank test
may lose efficiency when the assumption is violated. For example, when the
difference of the two hazards decreases with time, the Wilcoxon statistic
(Peto and Peto, 1972) is more efficient than the logrank test. When the two
hazards cross, the logrank test may have more efficiency loss than alterna-
tive tests. Pepe and Fleming (1989) generalized the Z test to right-censored
data by introducing the class of tests known as weighted Kaplan-Meier
(WKM) statistics. Petroni and Wolfe (1994) generalized the WKM tests to
interval-censored data. They call these tests IWD tests since the tests com-
pare the integrated weighted difference between the survival estimators
from the two samples. Numerical studies (Pepe and Fleming, 1989; Petroni
and Wolfe, 1994) indicate that the IWD tests compare favorably with
the logrank test even under the proportional hazards alternative, and
may perform better than the logrank test under some crossing hazards
alternatives.

The permutation form of the Wilcoxon, logrank, and Z test or ¢ test
(the permutation forms of the Z test and 7 test are equivalent) for censored
data may be obtained from the DPTs with certain choices of the func-
tionals and using a censored data estimator for W;. Unlike the IWD sta-
tistics which apply only to data with large samples, these permutation tests
allow for exact tests for small sample sizes. In the following, we first con-
sider estimation of W, then consider the three functional choices.

3.1. Estimation of V¥,

When there is only one stratum, we use the nonparametric maximum
likelihood estimate (NPMLE), ‘I’l, for W,. If there is no censoring, then ‘lfl
is equal to the empirical distribution function and F| 2 has point mass at
xy;. For right-censored data, 1 — ¥, is the usual Kaplan Meier survival
estimator. More generally, the NPMLE can be found iteratively by the self-
consistent algorithm (Turnbull, 1976) a special case of the EM-algorithm
(Dempster, Laird, and Rubin, 1977) or by the iterative convex minorant
algorithm (Groeneboom and Wellner, 1992). We describe a simple self-
consistent (or EM) algorithm to find W,. First, partition the response space
into disjoint intervals, (so, 51, (51, $2], - - -, (Sm—1, Sm), such that L; e {so, . . .,
Sm—1yand R e {sy, ..., s,}. Given the bth estimate of \I’I,‘ngb), the E step of
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the EM algorithm assigns F 8 (si) forallj = ,omp,andk=1,...,
m. The M step is

’\b+l
\I' (%) E F1|\Pb Sk) fork=1,...,m.

In practice, we use the self-consistent algorithm with some computa-
tional modifications (see Aragon and Eberly, 1992; and Gentleman and
Geyer, 1994).

3.2. Tests
Wilcoxon Test

With no censoring, the Wilcoxon test may be derived from a score test on
a shift in a logistic distribution based on the marginal likelihood of the
ranks. The Wilcoxon test may be generalized to right-censored data, using
either the marginal likelihood of the ranks (Prentice, 1978) or using the
grouped continuous model (Peto and Peto, 1972). Both formulations give
similar results and it is the latter formulation that produces the scores
associated with the Mann-Whitney functional here. Fay and Shih (1998)
show that the Mann-Whitney scores have the simple form

¢y = dmw (Flj|\if1’ ‘i’l) =W (Ry) + Wi (Ly) - 1.

The Wilcoxon test is efficient in detecting the early difference of the hazards
(Fleming and Harrington, 1991).

Logrank Test

The logrank test may be derived as a score test from the proportional haz-
ards model. As in the Wilcoxon case, when censoring occurs, two differ-
ent forms of the test can be created depending on the assumed likelihood.
For a detailed discussion on the two forms of the test as applied to both
right-censored and interval-censored data see Fay (1999). In practice,
both forms give similar results. Fay and Shih (1998) show that using the
grouped continuous model and with a suitable choice of the weight func-
tion for the weighted Mann-Whitney functional, we can obtain a permu-
tation form of the logrank test. The score has the expression

- Si(Rij)log[Si(Ry;)] — Si(Li))log[S: (Ly;
Cu:¢LR(Flj\‘i'1’q,1): ) g[ﬁl((RE;_SIELUi e ()

where we let Si(s) = 1 — \ifl(s) and we define 0 log 0 = 0.
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Difference in Means Test

A permutation form of an unweighted IWD test may be obtained when
the DPT with the DiM functional is applied to censored data. Inserting
Fy; 12 and ¥, to the DiM functional, we obtain the score

m

= S, Hijk - J Sk ) — J Sk—
D e R (L

k=1

where

o — 1 lle] < 8§ < RU
=10 otherwise.

If 5, = > and ‘I’(s,,,) — ‘if(sm,l) > 0, then we let 5, = s,,,_; [but we do not
change the value of ‘i’l (sm)]. This modification is common for right-
censored data (Efron 1967; James 1987). The IWD test usually gives lower
weights to the smaller values of the survival function estimates because of
their high variablity due to censoring. Because the DPTs are permutation
tests and the instability does not affect the validity, we need not introduce
weights to stabilize the test statistic. Fay and Shih (1998) show through
simulations that the DPT with the DiM functional is more stable than the
both an unweighted and a weighted IWD test.

3.3. Examples

We show two data examples below to emphasize the differences between
the choices for the functional. In practice, only one test would be
performed, and this test would be chosen prior to any data analysis and,
ideally, prior to any data collection.

Example 1: Gastrointestinal Tumor Study

These data were previously analyzed by Stablein and Koutrouvelis (1985).
The study reported on the results of a trial comparing chemotherapy versus
combined chemotherapy and radiation therapy in the treatment of locally
unresectable gastric cancer. There are 45 patients in each treatment group.
Figure 1 displays the Kaplan-Meier survival curves. The two survival
curves cross, suggesting that the DPT using the DiM functional may not be
able to detect the difference, because the means, which are the areas under
the survival curves, are similar. The crossing of the survival curves implies
that the corresponding hazards also cross at some point before the survival
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Figure 1 Kaplan-Meier estimate of the survival distribution for the gastrointes-
tinal tumor study.

curves cross. Thus, the logrank test may not capture the difference in sur-
vival in the two treatment groups either. Figure 1 shows that a large differ-
ence in survival occurs during the early follow-up suggesting the Wilcoxon
test is more suitable in detecting such a difference. The DPT using the DiM,
MW, and logrank functionals result in asymptotic p values of .97, .05, and
.66 respectively. Thus, only the DPT using the MW functional gives a
significant result.

Example 2: Breast Cosmesis Study

For this data set, described in Finkelstein and Wolfe (1985), breast cancer
patients were randomized to either radiation therapy with chemotherapy
or radiation therapy alone. The outcome was time until the onset of breast
retraction. A total of 94 patients were followed and were seen, on average,
every 4—6 months. The frequency of visits decreased with increasing time
from the completion of treatment. Forty percent of the patients had not
experienced retraction by the time of their final visit and therefore were
right-censored. The data are interval-censored because the time until occur-
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Figure 2 Self-consistent estimate of the survival distribution for the breast cos-
mesis study.

ence of breast retraction was not known exactly but only known to have
occured between two visits. In addition, the time between visits was irreg-
ular and many patients missed visits. Figure 2 is a plot of the self-consistent
survival estimates for each treatment. Although the two survival curves
cross, the crossing occurs very early and thus wouldn’t have much effect
on the performance of any of these tests. The DPTs apply to the interval-
censored data directly without requiring any modification. The DPT using
the MW functional, WMW (logrank) functional, and the DiM functional
yield asymptotic p values of .030, .007, and .019 respectively. Thus, the
three tests all produce significant results.

4. STRATIFIED DATA

In clinical studies when survival changes with important prognostic
factors, stratification on different level of those factors is often done either
at the design stage to ensure treatment balance in each stratum, or at the
analysis stage. The ordinary logrank test, ignoring strata effect, is conser-
vative and is biased when there is treatment imbalance in each prognostic
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subgroup. The stratified logrank test, on the other hand, is unbiased and
retains high efficiency as long as the number of strata is small. However,
when the number of strata gets large, the stratified test can become very
inefficient unless there is a large strata effect. Shih and Fay (1999) have
developed a versatile test based on the DPT framework which combines
the advantages of both the ordinary and stratified logrank tests. That is,
when the number of observations in each stratum is large or when the
within-strata variance is small relative to the between-strata variance,
the test weights each stratum approximately equally and performs like the
stratified logrank test. Conversely, when the within-strata variance is large
relative to the between-strata variance, the test weights each stratum pro-
portional to the stratum size and performs like the ordinary logrank test.
For cases between these two extremes, the versatile test is a compromise
between the ordinary logrank and stratified logrank tests. The attractive
feature of the proposed method is that we do not need to choose in advance
whether to do a stratified analysis or not and hope that the correct decision
was made; the method automatically does this primarily based on the
estimated within- and between-strata variances.

The DPT setup is the same as above, but now we choose an appro-
priate estimator for ¥;, i = 1, ..., n, when n > 1. Once chosen, this
estimator is inserted in (1) to calculate the scores c; and then the test
statistic (2).

4.1. Estimation of V;

We consider the following shrinkage estimator for W, i = 1,...,n,n>1,
& 7 >

\II[ frd /74'\1/[. 1 — W ]7 3

i >{ S e

where W, is the NPMLE for the ith stratum W} = =m;! > Fyrge W is the
NPMLE for all the data ignoring the strata, w; = ,/(m, i 1)t =62/
D if D> 0,andé?and D deﬁned below, are the estimates of the within-
cluster (i-e., strata) variance, 6%, and between-cluster variance, D, When

<0, followmg Fay and Sh1h (1998), ¥; is defined as ¥, = Zz’f;nf =,
The above shrinkage estimator is slightly different from the one in Shih
and Fay (1999) where T, is used in place of \PJ . The two shrinkage es-
timators are identical for uncensored data, but are slightly different for
censored data. For example, when w; — 0, (3) approaches ¥, but
the estimator in Shih and Fay (1999) approaches ijj\lfj/ ij.
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In the absence of censoring, the above estimator is the shrinkage
estimator proposed by Ghosh, Lahiri, and Tiwari (1989), where W, is the
empirical distribution function for the ith stratum,

&2 = Zl 1 Zm’ (xij - X’)z

> (mi—1)
Somi(% - X% ’ —(n—1)6?
’5{ z<mi—z>m}%/zmi

where X; is the mean of the ith strata and X is the overall mean. In the
presence of censoring, since Xx;; is not observed, 62 and D are modified
such that

Y 2 E, @(Xii_ji)z
> (mi—1)

6_2

and
{zm,-(f,- —?)2} —(n—1)&
domi— 3 mi/ 3 m;

where x;; = EF P( e Sk[Fi () = Fip(Se )], % = m; ' 37 x;, and
= m)! i >_;X;and W is the NPMLE for all the data ignoring the
strata. We use W 1nstead of W, because when the number in each stratum
is small, ¥; shows little within stratum differences if the censoring inter-
vals overlap.

The above estimates of ¢ and D are not rank invariant. They
would be used with tests using the difference in means functional. For
rank tests, we trdnsform the response to a function of the ranks by
replacing F,,y, with Fjf, where Fjf(s*) = F;(s), s* = ¢pm (05, |¥), and
Os(x) =1 if > s and zero otherwise. When there is no censoring, the
effect of the transformation is equivalent to replacing each x; with its
midrank from the entire data ignoring strata.

Once the values for‘Tfi are calculated, the calculation of the scores,
¢;», proceeds analogously to the calculations in Section 3. Thus, the
logrank scores are

2

_C())

Si(Ry)log [S (R )} (Lj)log {Si (Lz/)}

cj = ¢LR( i@ )Z ( i) — Si(Lij)
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where Si(s) = 1 — ‘Tf,-(s), and the Mann-Whitney scores are

Clj = d)MW (F‘@l,{]?,) = {I\'i (Rl]) +{I}, (L1]> —1.

7

4.2. Features

An advantage of using W; is that it induces the desired features of a
versatile test. Consider a permutation form of the logrank test corre-
sponding to the DPT with the WMW functional. If 62 is small relative to D
or m; is large, then w; — 1, and v, approaches the NPMLE W,. Thus L, is
equal to the permutation form of a stratified logrank test. Conversely, if 62
is large relative to D, w;is close to zero and ¥, approaches W, the NPMLE
for all the data ignoring strata. Consequently, the induced test is just a
stratified permutation of an ordinary logrank test. That is, each score is
calculated from all the data ignoring strata and then permutation is done
within each stratum. We call this latter test the MC test because a similar
test was proposed by Mantel and Ciminera (1979). (The only difference is
that they use the other form of the logrank scores, see Section 3.2.)

We conducted a simulation study which compares the versatile test
with three tests: permutation forms of the ordinary logrank test, stratified
logrank test, and the MC permutation test. All simulations have 1000
replicates and test the equality of two treament effects. Each survival time
has the following form: if z; = a, a = 1, 2, let Pr (X; > x;) = (exp
(—04Px;), where 0, = 1, 0, = 2.4. Let f; = G(1/w,w), where G(a, b) is a
gamma distribution with mean ab and variance ab®. We choose o = 0,
.22, .86, 2 corresponding to values of 0, .01, .3, .5 respectively for
Kendall’s tau, where we define the distribution with @ = 0 as a point
mass at 1. The stratum size m; is random were n; — 1 follows a Poisson
distribution with parameter y — 1, such that E(m;) = y. In each stratum,
half of the individuals receive one treatment. We introduce right-censor-
ing which is uniformly distributed over (0, 1), producing 51, 53, 60, and
66% censoring for the four values of w, respectively. We use the critical
value based on the asymptotic permutation distribution.

Table 1 presents the simulated power. Overall, when there is no or
only a small strata effect, the stratified logrank test has high efficiency loss
unless the strata size is large. On the other hand, the ordinary logrank test
retains high efficiency when the strata effect is small, but loses efficiency
when the strata effect is large. The MC test and the versatile test are
comparable for moderate strata effect, and the latter has higher power for
a large strata effect. Both tests have the advantages of ordinary and
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Table 1 Empirical Power at .05 Level with Uniform (0, 1) Right-Censoring and
1000 Replicates

E(m,), n Strata effect w Ordinary LR Stratified LR MC T
5, 20 0 84.4 71.3 82.0 81.9
0.22 77.7 68.6 75.7 76.1
0.86 61.9 63.4 67.0 69.3
2.0 38.5 50.9 51.4 55.7
20, 5 0 83.4 78.6 81.7 81.7
0.22 77.1 77.5 79.1 79.1
0.86 60.2 70.6 67.4 71.8
2.0 40.6 61.2 53.4 62.2
50, 2 0 85.4 84.1 85.4 85.2
0.22 75.8 77.1 77.7 71.5
0.86 63.7 73.5 70.1 73.8
2.0 46.6 59.1 55.6 58.9

stratified logrank tests. That is, when the strata effect is small, they
perform like the ordinary logrank test. And when the strata effect gets
large, they perform like the stratified logrank test.

4.3. Example 3: Prostate Cancer Clinical Trial

This example concerns a VACURG (Veterans Administration Cooper-
ative Urological Research Group) prostate treatment study. This study
was the first of a series of multicenter randomized clinical trials to study
treatments for newly diagnosed prostate cancer (see Byar and Corle, 1988
and references therein). Here, we reanalyze a subset of study I of those
trials, where 299 patients were randomized to either radical prostatec-
tomy and placebo, or radical prostatectomy and 5.0 mg diethylstilbestrol
(DES) daily. The primary endpoint was death from any cause. Patients
entered study I from 1960 until 1967, and here we have followup for
patients until February 1995. We compare patients in the initial treat-
ment groups, under an intent-to-treat analysis, noting that clinicians were
free to change treatments at their discretion.

In these data, all patients had either stage I or stage II prostate
cancer, defined prior to randomization. In these two stages the cancer is
confined to the prostate, and the stages are differentiated by whether the
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tumor is detectable (stage II) or not (stage I) by rectal examination
(standard staging for prostate cancer has changed since that time; see
AJCC Cancer Staging Manual, 1997). Although stage I describes less
severe cancer, the survival of the patients in stage I may be worse due to
the differing methods of selecting patients in the two stages (Byar and
Corle, 1988). For our analysis we use six strata, three age groups in each
of the two stages, where we categorize age at randomization into three
categories, < 65, 65-70, >70. This stratification and analysis is a reason-
able one that could have been planned prior to the start of the study. The
sample sizes in the 6 strata range from 29 to 54, and the values of 6° and
D are equal to .3295 and .0061, respectively. The resulting weights for the
six strata range from .35 to .60. Since the protocol allowed modification
of treatment after randomization, we expect the differences between
treatments to become diluted as more time elapses from the random-
ization time. For this reason, we use the permutation form of the Peto-
Prentice-Wilcoxon (PPW) test that emphasizes early differences. The
resulting asymptotic p values for the ordinary PPW test, stratified PPW
test, MC test, and the versatile test are .12, .12, .11, and .11, respectively.

5. MATCHED-PAIR DATA

In comparing the treatment effects, the two samples may be correlated
either by design or by natural pairing. For example, in the Diabetic
Retinopathy Study (Huster et al., 1989), patients with diabetic retinop-
athy in both eyes and visual acuity of 20/100 or better in both eyes were
eligible for the study. One eye of each patient was randomly selected for
treatment and the other eye was observed without treatment. Since each
pair is considered a stratum, the versatile test described in the previous
section applies. The purpose of this section is to relate the versatile test to
many known tests for matched-pair survival data. In addition, we
investigate a new test using the DPT with the DiM functional for
matched-pair survival data.

5.1. Rank Tests

When the versatile test using the MW functional is applied to the
matched-pair data with each stratum corresponding to a pair and w; =
1 (i.e., no pooling over strata in estimating W;), the test is a sign test in the
absence of censoring. When w; = 0, it is similar to a permutation form of
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the paired Wilcoxon test by O’Brien and Fleming (1987). With the WMW
functional corresponding to the logrank score and with w; = 1, the
versatile test is a stratified logrank test which also reduces to the sign test
under no censoring, and with w; = 0, it is similar to a permutation form
of the paired logrank test by Mantel and Ciminera (1979). The simulation
study (results not displayed) shows that with the WMW functional
corresponding to the logrank test, the versatile test and the MC test
have similar performance. Their power is similar to that of the ordinary
logrank when the strata effect is small and higher than the stratified
logrank test when the strata effect is large. Based on this simulation result
and because of the simplicity, we recommend the use of the paired DPT
test with w; = 0 for matched-pair data (e.g., for proportional hazards, use
the MC test).

5.2. Paired t Test

When there is no censoring, it can be shown that the versatile test with the
DiM functional corresponds to the permutation paired ¢ test regardless
the values of w;. This versatile test is the only test we know that compares
the mean difference for paired censored data. Although the weighting
makes no difference for uncensored data, it does for censored data
because the paired difference in scores ¢;j — cp = [x dFilﬁi — [y szQ@,-
which generally depend on W; and thus in turn on w;.

We conducted a small simulation study which compares four DPT
tests with the DiM functional: (1) a test that ignores pairing, paired tests
with 2) w; = 1, 3) w; = 0, or (4) w; estimated from the data (i.e., the
“versatile test”). The simulation scheme is the same as the one specified in
the previous section and there are 50 pairs in each replicate. The
simulation results are displayed in Table 2. Similar to the simulation

Table 2 Empirical Power at .05 Level for DiM DPT Tests Applied to Paired
Data with Uniform (0, 1) Right-Censoring and 1000 Replicates

Strata Unpaired Paired test, Paired test, Paired test, w;
effect w test w; = 1 w; =0 estimated
0 83.0 63.1 81.2 81.2
0.22 77.6 63.3 79.2 79.3

0.86 60.2 56.8 69.6 69.6

2.0 354 47.8 57.0 57.4

Copyright n 2004 by Marcel Dekker, Inc. All Rights Reserved.



results for the rank tests, the versatile test performs similarly to the
unpaired test when the strata effect is small and outperforms both the
unpaired and paired test with w; = 1 when the strata effect is large. Note
that the versatile test and the paired test with w; = 0 have similar
performance. Thus, as for the rank test, the paired test with fixed weight
of zero is recommended for practical use.

5.3. Example 4: Skin Graft Data

We apply the weight-zero paired test with the DiM functional and the
logrank functional to data from a study on HLA matching and skin graft
survival (Holt and Prentice, 1974; see also Kalbfleisch and Prentice, 1980,
p. 190). The days of survival of closely matched and poorly matched skin
grafts on the same person were recorded. There were in total of 11
patients. Four of the 22 observations are interval-censored, 2 right-
censored, and the rest known exactly. Previous analyses have replaced
the interval-censored observations with a point on the interior of the
interval, but the DPT handles interval-censored observations in a
straightforward way. The null hypothesis is that the closely matched
and poorly-matched skin grafts have the same distribution. Using the
DiM functional and logrank score gives exact p values of .010 and .012,
respectively. Thus both tests produce statistically significant result, and
show that closely matched skin grafts have better survival.

6. ALTERNATIVE METHODS

The class of permutation tests (DPT tests) described above provides a
unifying approach to many types of survival data. For nonrandomized
trials with covariates, regression methods may be more appropriate than
the DPT tests to ensure that the apparent treatment effects are not related
to the covariates (for right-censored data see, e.g., Kalbfleisch and
Prentice, 1980; for proportional hazards models for interval-censored
data see Satten, 1996 and Goggins et al., 1998). However, for randomized
trials this adjustment is often not necessary nor desired.

When the assumption on the censoring does not hold, the DPT tests
may not retain alpha level. When censoring is related to treatment and
the data are right-censored, it has been suggested that the rank-based
methods based on the score test may perform better than the permutation
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tests since the assumptions of the permutation tests do not hold (Kalb-
fleisch and Prentice, 1980). However, Janssen (1991) has shown that, in
the nonstratified case at least, the permutation rank tests with unequal
censoring between treatment groups are asymptotically equivalent to the
likelihood approach. For the stratified case, Schoenfeld and Tsiatis
(1987) developed a stratified logrank test for cases where the censoring
depends on treatment. However, large sample sizes may be required to
ensure that their test is close to alpha level (see Shih and Fay, 1999). The
previously mentioned WKM test (Pepe and Fleming, 1989), a general-
ization of the Z test to right-censored data, should perform reasonably
when censoring is related to treatment and sample sizes are large.

For paired right-censored data, Michalek and Mihalko (1980) offer
an example where censoring is related to both treatment and the
stratification variable, and they show how this can cause the Mantel-
Ciminera test to give misleading results. When this violation of assump-
tions occurs, O’Brien and Fleming (1987) offered a modification to the
MC-type tests (i.e., tests with w; = 0 for paired right-censored data),
which effectively eliminates from the analysis strata where there is
censoring.

For interval-censored data, again the likelihood-based methods
appear safer when there is unequal censoring between treatment groups
(for the proportional hazards model see Satten, 1996, and Goggins et al.,
1998; for more general rank methods see Self and Grossman, 1986 and
Fay, 1999; for generalizations of the Z test see Petroni and Wolfe, 1994).

When censoring is not independent of failure time, then neither the
permutation tests nor standard likelihood-based survival tests may be
applied. In clinical trials, this may happen if patients are more likely to
drop out of the study (and hence be censored) as they get sicker and are
closer to death.

A type of survival data not discussed in this chapter is clustered
failure time data where all individuals within a cluster receive the same
treatment. Cai and Shen (2000) describe how permutation tests may be
formed for this type of data. They study several test statistics, weighted
logrank statistics (e.g., the logrank and Wilcoxon tests), as well as
supremum versions of those statistics. These statistics are the standard
ones that ignore clustering, and Cai and Shen (2000) estimate the
permutation distribution associated with the test statistics by taking
Monte Carlo samples from the (,Z) possible permutations of clusters
to treatments, where here z is the total number of clusters and n; is the

Copyright n 2004 by Marcel Dekker, Inc. All Rights Reserved.



number of clusters getting the first treatment. We can write their
Wilcoxon-type test statistic in our notation. The test statistic is

L(T = ZZ(ZU - E) (cl.'i _E) = ZZZ,'J'CU = Zzilmizi
P i 7

where the i index here denote clusters not strata, ¢ = (Zim,-)_1 (XY
cj) =0,z =(2;m) (3,2, 2j), for the Wilcoxon-type test we use the
the Mann-Whitney functional, and W; is estimated with W. [To show the
equivalence of the two notations see Fay (1999) and Fleming and
Harrington (1991, pp. 256-257], and note that when W; is estimated with
¥ then ¢ = 0 for any of the functionals discussed in this chapter.] A
logrank-type test can be formed similarly but it is a slightly different form
than Cai and Shen’s test (see Section 3.2). We can extend Cai and Shen’s
work by using the DiM functional to get a difference in means test.
Further, a permutational central limit theorem may be applied to
permutations done this way; the variance in this situation is

ey e )

and L¥?/V* is asymptotically distributed as ¥ with 1 degree of freedom
(see Sen, 1985 for details).
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1. INTRODUCTION

Over the last 10 years many articles have been written about the use of
Bayesian statistical methods for designing, monitoring, analyzing, and in-
terpreting the results of randomized clinical trials. Spiegelhalter and col-
leagues provided a summary and synthesis of such work (Spiegelhalter,
Freedman, and Parmar, 1994), but extensions and applications for partic-
ular circumstances continue to appear (Parmar, Ungerleider, and Simon,
1996; Thall, Simon, and Estey, 1996; Abrams, Ashby, and Errington, 1996;
Simon and Freedman, 1997; Stangl and Greenhouse, 1998; Parmar et al.,
2001).

Despite these developments, very few reports of clinical trials ana-
lyzed exclusively by Bayesian methods appear in the medical literature.
The main reason for this is probably due to the anticipation of authors that
they will encounter extra resistance from referees to such a “novel” form of
analysis. Every investigator writes a report in the hope that it will be ac-
cepted by his/her journal of choice, and after the arduous and often long
process of a clinical trial, the investigator wishes to minimize the difficulties
of the publication process. Thus conventional methods of analysis are the
natural choice.
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However, behind this very real barrier there lie some other difficult
issues relating to the form of presentation of a Bayesian analysis of a
clinical trial. As will be explained in more detail, Bayesian methods use
prior clinical opinion in a formal manner. How should we explain this in
a succinct way in a clinical paper? How should we describe the clinical
opinion that has been used in the trial? How should we present results
illustrating different interpretations of the results according to a clini-
cian’s own starting position? How do we preserve the “objective” nature
of the trial results in the light of the introduction of all this subjectivism?

These matters have been discussed in a theoretical manner by several
authors (Spiegelhalter et al., 1994; Hughes, 1993; Greenhouse and Wasser-
man, 1995; Carlin and Sargent, 1996). In this paper we propose a solution
by way of example. We present a Bayesian version of a clinical report of a
randomized trial of two chemotherapy schedules for operable osteosar-
coma, a malignant disease of the bone, which occurs in children, teenagers,
and adults. We choose this trial particularly because a survey of clinical
opinion regarding the expectations of the treatments was conducted before
its start, and this provides the basis for the prior clinical opinion that is used
in the Bayesian analysis. The conventional version of the trial report was
published in 1997 (Souhami et al., 1997). The main novelty in the pres-
entation is the introduction of an “Interpretation” section between the Re-
sults and the Discussion. In this section we present a sensitivity analysis in
which we consider the impact of different prior opinions on the inter-
pretation of the data. The hope in this type of analysis is to show that the
conclusions are robust to a wide range of “starting positions”. Of course, if
they are not, this is also important to know. Besides this section the reader
may not notice much difference from the conventional type of paper (aside
from the lack of the often overused p value, and a somewhat extended
Statistical Methods section which will be needed at first to explain the new
methodology). If that is the case, then we may have succeeded in our aim of
finding a way of slotting in a new and informative type of analysis which
will help to clarify the clinical information and interpretation of the paper.

2. RANDOMIZED TRIAL OF TWO REGIMENS OF
CHEMOTHERAPY IN OPERABLE OSTEOSARCOMA:
A BAYESIAN PERSPECTIVE ON A TRIAL OF THE
EUROPEAN OSTEOSARCOMA INTERGROUP

We have compared in a randomized trial the effects of a multidrug 44-week
chemotherapy regimen, based on the T10 protocol, with a two-drug (cis-
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platin and doxorubicin) 18-week regimen for the treatment of operable
limb osteosarcoma. The primary endpoint was length of survival after ran-
domization. Of 407 patients, 391 were eligible and have been followed for at
least 4 years (median 5.6 years). Toxicity was qualitatively similar, but 94%
of the 199 patients on two-drug treatment completed their course compared
with 51% of the 192 patients on multidrug treatment. Overall survival at 5
years was 54% in the multidrug arm and 56% in the two-drug arm. The
hazard-ratio estimate was 0.94 (95% CI1 0.69-1.27, where HR < 1 indicates
a benefit to two-drug therapy). In a pretrial survey clinicians indicated that
to prefer multidrug treatment they would require an absolute increase of
about 10% in overall 5-year survival. The results of the trial indicate that
such an increase is highly unlikely. Bayesian analysis demonstrates that this
conclusion is robust to a wide variety of “starting positions” of skepticism
or enthusiasm with regard to the likely benefit of the multidrug treatment.

2.1. Background

Although the survival of patients with operable osteosarcoma is improved
by chemotherapy (FEilber et al., 1987; Link et al., 1986), the optimum
duration of treatment and the relative contributions of the constituent
drugs have not been assessed in randomized trials. Randomized compar-
isons of treatment present formidable difficulties in this rare disease, which
each year affects only 1 in 200,000 of the population. The European Os-
teosarcoma Intergroup (EOI) was formed in 1982 in order to perform ran-
domized studies of sufficient size to allow investigation of important
aspects of treatment. EOI consists of the Bone Sarcoma Working Party
of the UK Medical Research Council (MRC), the UK Children’s Cancer
Study Group (UKCCSG), the Société Internationale d’Oncologie Pae-
driatrique (SIOP), and the European Organisation for Research and
Treatment of Cancer (EORTC) Soft Tissue and Bone Sarcoma Group.
In the first EOI trial (Bramwell et al., 1992) 307 patients with osteo-
sarcoma were randomized to one of two regimens of chemotherapy. In
that trial a regimen of cisplatin (CDDP) and doxorubicin (DOX), given
pre- and postoperatively for a total of 6 cycles to patients with operable
nonmetastatic osteosarcoma, produced a 5-year survival rate of 64% and
a S-year progression-free survival (PFS) rate of 57%. These results were
comparable with those reported from a collaborative West German study
in pediatric osteosarcoma (Winkler et al., 1984), in which the chemo-
therapy was based on the T10 regimen introduced by Rosen et al (Rosen et
al., 1982). A modification of the T10 regimen was also used in Link’s study
(Link et al., 1986), in which 36 patients were randomized after surgery to
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either early chemotherapy or chemotherapy at relapse. The results showed
an advantage in PFS for the early use of chemotherapy.

The T10 regimen has been the basis of much osteosarcoma chemo-
therapy and an update of the results of this and other similar regimens
used at the Memorial Sloan Kettering Cancer Center showed that 65% of
279 patients were alive and disease free at 8 years (Meyers et al., 1992).
Their results are among the best reported in this disease.

Nonrandomized studies of treatment do not allow an unbiased com-
parison of treatment outcomes. For this reason, after completion of the
previous trial (Bramwell et al., 1982), the EOI embarked on a formal
comparison of a 44-week multidrug T10-based regimen (multidrug) with
the 18-week CDDP and DOX (two-drug) regimen, which was the more
effective of the two treatments previously compared. This paper reports the
results of the trial. We use a Bayesian framework of analysis that allows
interpretation of the results both from the usual “objective” viewpoint and
also incorporating the prior opinions of participating clinicians. Using this
analysis framework we are able to show how the observed results would
affect these opinions.

2.2. Patients and Methods
Patients

The details of this trial are only summarized in this paper as they have
previously been reported elsewhere (Souhami et al., 1997). Patients were
eligible for this trial if they were <40 years, had histologically diagnosed
osteosarcoma of the extremity, no evidence of metastatic disease, and nor-
mal renal and cardiac function. Patients were excluded if they had received
previous chemotherapy or had a previous malignancy. A member of the
pathology panel of the EOI reviewed histological diagnosis. The accepted
interval between diagnostic biopsy and randomization was 35 days.
Preliminary staging included plain radiological examination of the tumor,
isotope bone scan, chest X-ray, and CT scan of the thorax. CT and MRI
scans of the primary tumor were performed according to local practice.

Chemotherapy

The details of drug administration were as follows:

Two-drug: DOX 25 mg/m? days 1-3, CDDP 100 mg/m? day 1. Each
cycle administered at 21-day intervals for 6 cycles. Surgery was
planned for week 9 (day 63) after 3 preoperative cycles. Two
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weeks after surgery the first of 3 postoperative cycles was
scheduled. Details of administration have been described else-
where (Bramwell et al., 1992).

Multidrug: Preoperative treatment consisted of vincristine (VCR) 1.5
mg/m? (max. 2 mg) and high dose methotrexate (HDMTX) 8 g/
m” (12 g/m? below 12 years of age) on days 0, 8, 35, 42, and
DOX 25 mg/m? d1-3 on days 15-17. Folinic acid 12 mg/m?
intravenously or 15 mg/m? orally commencing at 24 hr given
every 6 hr X 10 doses, the dose being adjusted according to 24
and 48 hr serum concentrations. Surgery was scheduled at week
7 (day 49). Postoperatively patients received the first cycle of
BCD (Bleomycin 15 mg/m?, Cyclophosphamide 600 mg/m?,
and Dactinomycin 0.6 mg/m?” each on days 1 and 2) on week 9.
Further cycles of VCR and HDMTX were given on weeks 12,
13,17, and 18, and a further cycle of DOX on week 14 (all at the
same preoperative dose). On week 20 the regimen changed to
DOX 30 mg/m? days 1 and 2 and CDDP 120 mg/m? day 1. This
was given on weeks 20, 23, 29, 32, 38, and 41. Further cycles of
BCD were given on weeks 26, 35, and 44.

For both regimens recommended dose modifications were based on
blood counts (all counts 10°L) obtained between 9 and 14 days and at 21
days. Reductions were based on the lower of these two counts and ap-
plied to all subsequent cycles. The scheme was as follows: Total white
blood count (WBC) > 2.0, platelets > 50—100% dose; WBC > 1.0 and
< 2.0, platelets > 25 and < 50—85% dose; WBC < 1.0, platelets <25—
70% dose. If the total WBC was < 3.0 or granulocyte count< 1.0 at
scheduled time of next treatment, this treatment was delayed 1 week.

Surgery

At the time of randomization the projected surgical procedure was
recorded. In the multidrug regimen surgery was planned for week 7, 1
week after the fourth course of HDMTX. In the two-drug arm surgery was
at week 9, 3 weeks after the third cycle of CDDP and DOX. The decision
about whether to perform an amputation or limb sparing surgery (usually
endoprosthetic replacement) was made by the individual clinical teams.

Response Assessment

Clinical response was defined as a definite reduction of swelling and pain
following preoperative chemotherapy and was assessed by the responsible
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clinician. Radiological criteria of response were not used. During the pe-
riod of this trial MRI scans were not generally available for response as-
sessment. Those patients in whom response was not assessed are regarded
as nonresponders.

Histopathological response was based on the resection specimen.
Good response was defined as at least 90% necrosis of the tumor and
poor response any degree less than this. Pathology was reviewed centrally
at diagnosis and in assessment of response.

Treatment at Relapse

Local recurrence was treated according to the judgment of the partic-
ipating clinicians and consisted of local resection or amputation some-
times combined with radiotherapy. Pulmonary and other metastases were
managed according to the clinical circumstances and treatments consisted
of second-line chemotherapy, thoracotomy, or palliative care.

Statistical Methodology—Sample Size

The multidrug schedule was anticipated to result in, at best, a survival
rate of 70% at 5 years. The two-drug regimen was associated with a 5-
year survival rate of approximately 55%. The sample size was determined
to give at least a 80% chance of rejecting the null hypothesis of no
difference between the treatments (on the basis of the 95% credible
interval for the treatment difference not including zero, using an unin-
formative prior distribution) when the true difference in 5-year survival
rates is 15%. This 15% difference corresponds to a hazard ratio (HR) of
1.68 (where HR > 1 implies a survival advantage to multidrug treatment).
The target recruitment to achieve this was 400 patients (Machin et al.,
1997).

Statistical Methodology—Analysis

The analysis of this trial has been performed on an intention to treat basis
including as many eligible patients as possible for each endpoint. The
statistical analyses were conducted using the SPSS and SAS statistical
packages. Survival curves were calculated using the Kaplan-Meier
method. The Mantel-Cox version of the logrank statistic was calculated
to provide the likelihood portion of the Bayesian analysis (see below).
Estimated hazard ratios are used to compare treatments (Parmar and
Machin, 1995). Survival was calculated from date of randomization and
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progression-free survival (PFS) from date of surgery as inadequate sur-
gery is thought to be a cause of disease progression.

We employ Bayesian methods to analyze the data from this trial.
The use of Bayesian methodology in the design, monitoring, and analysis
of clinical trials have been described in detail in the statistical literature
(Spiegelhalter et al., 1994; Spiegelhalter, Freedman, and Parmar, 1993;
Parmar, Spiegelhalter, and Freedman, 1994; Fayers, Ashby, and Parmar,
1997).

A Bayesian approach to trial analysis allows external evidence to be
formally incorporated into the reporting of a trial. Usually trial reports
introduce such evidence informally in the Discussion section, the aim
being to put the results in some kind of clinical context. In this paper an
extra Interpretation section is placed between the Results and Discussion
to contain the Bayesian perspective. In the Interpretation section, atten-
tion is focused on the impact that the trial results will have on the opinion
of participating clinicians.

The crucial issue in performing a Bayesian analysis is appropriate
specification of the prior distribution, which is a statistical formulation of
the prestudy beliefs. When deciding on a prior distribution, many options
are available: the uninformative prior, which represents a lack of clinical
opinion about the potential treatment difference; the skeptical prior,
which considers only a small probability that the alternative hypothesis
(in this case that multidrug therapy offers a significant survival advan-
tage) is true; the clinical prior, which formalizes the opinion of individ-
uals who are reasonably well informed of the nature of the treatments on
trial; and the enthusiastic prior, which takes the treatment difference
specified in the alternative hypothesis to be the best guess of the true
treatment difference. We will consider all these priors in relation to the
analysis of the primary endpoint, survival time, and we will thereby
examine the robustness of our conclusions from the trial to a variety of
different “starting points.”

While the trial was still in the design stage, information was collected
on clinicians’ opinions of the likely efficacy of the new treatment, via a
carefully structured interview (Freedman and Spiegelhalter, 1983). Seven
clinicians planning to take part in the trial were interviewed and asked to
indicate what weight of belief they would give to probable differences in
S-year survival between the two treatments. These could thus be
expressed as probability distributions representing the likely treatment
difference. Converted to the log hazard ratio (LHR) scale they form the
clinical prior distributions for the Bayesian analysis. The reason for con-
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verting to the LHR scale is because it is approximately normally dis-
tributed with variance 4/n, where n is the number of observed events
(Tsiatis, 1981).

The clinicians were also asked to mark on a given scale the absolute
improvement required in the 5-year survival rate to offset the extra
difficulty, cost and possible extra toxicity of the multidrug regimen.
Following early discussions it was assumed that if the absolute improve-
ment in 5-year survival with multidrug therapy was 0% then they would
use the two-drug regimen and if the improvement was 20% they would
presumably adopt the multidrug regimen. Somewhere between these
values there would be a changeover point, or a range of points (termed
the range of equivalence), where it is difficult to decide between the two
chemotherapy schedules. After the trial was closed, the log hazard ratio
for the difference between the treatments was calculated. The probability
of obtaining this value of the LHR for different values of the treatment
difference was calculated and is known as the likelihood.

Finally, the posterior distribution was calculated, which is simply the
prior distribution modified as a consequence of the observed results,
expressed via the likelihood. As the prior and likelihood distributions are
all approximately normally distributed, combining them to form the pos-
terior distribution is straightforward. When a clinical prior is used, the
posterior distribution provides an estimate of the clinician’s belief if
realistic allowance is made for the information obtained from the trial. It
is this posterior distribution that provides the necessary information for
judging the opinion of each clinician on the efficacy of the new treatment.
All endpoints besides survival were analyzed assuming noninformative
prior distributions. Such analysis corresponds to the usual frequentist
analysis. Results are given as estimates with credible intervals (Cls) which
are the Bayesian equivalent of confidence intervals when a noninforma-
tive prior distribution is assumed.

Prior Beliefs

The prior beliefs of the participating clinicians are shown in Table 1,
along with range of equivalence and median expected improvement in 5-
year survival. These distributions are represented graphically in Figure 1.
The histograms of opinions are superimposed with a normal distribution
obtained from these opinions. The normal distribution is actually fitted
on the log hazard ratio (LHR) scale, using their median expected
improvement compared to the baseline 5-year survival rate of 55%,
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Table 1 Pretrial Prior Beliefs of Seven Clinicians Interested in Participating in the Trial

Absolute 5-year survival advantage (%)

of two-drug over multidrug Median
Range of expected

Clinician equivalence —20——15 —-15--10 —10—-5 -5-0 0-5 5-10 10-15 15-20 20-25 improvement (%)

1 0-5 0 1 12 20 26 21 13 6 1 3
2 5-5 1 4 12 22 28 18 9 5 1 0
3 0-7 0 0 1 9 15 26 29 19 1 10
4 5-10 1 5 18 26 30 19 1 0 0 4
5 5-12 0 1 4 15 35 31 13 1 0 6
6 10-15 0 0 5 10 25 50 8 2 0 2
7 5-10 1 14 32 33 14 5 1 0 0 -5
Mean 4-9 0 4 12 19 25 24 11 5 0 3%
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and the probability they accord to observing a treatment difference of less
than zero.

The skeptical and enthusiastic prior distributions are also shown on
Figure 2. The skeptical prior was calculated by assuming that there is no
difference between the two treatments and that the probability of the
difference in 5-year survival being more than 15% in favor of multidrug
(the alternative hypothesis) is 0.05. The enthusiastic prior distribution
was calculated by assuming the alternative hypothesis to be true; i.e.,
multidrug therapy offers a 5-year survival advantage of 15%. It is as-
sumed to have the same precision as the skeptical prior.

The prior opinions of the seven participating clinicians on the log
hazard ratio (LHR) scale are shown in Figure 2. The ranges of equiv-
alence are also converted to the LHR scale, assuming a baseline 5-year
survival rate of 55%, and are shown on the graphs. These distributions
will form the clinical prior distributions for the Bayesian analysis.

It can be seen that there is much variation in the clinicians’ prior
opinions regarding the relative efficacy of multidrug chemotherapy.
Clinician 3, for example, believed that the new treatment would improve
5-year survival by 10% whereas clinician 7 predicted it would most likely
be worse than the two-drug regimen. It can be seen that clinician 3’s
opinions were most similar to the enthusiastic prior, whereas clinician 7’s
opinions were more negative than those represented by the skeptical
prior.

There was also considerable variety in the ranges of equivalence
recorded by the seven clinicians. Some (clinician 1 and 3) would consider
using multidrug treatment if it offered a benefit in 5-year survival of
greater than zero, whereas clinician 2 would not consider adopting it if it
did not improve 5-year survival by 10% or more.

Looking at the group means on Figures 1 and 2, it is worth noting
that the lower bound of the range of equivalence is close to the median
expected improvement on multidrug chemotherapy. This provides an
argument for the ecthical basis for randomization, since in general the
participating clinicians are unsure whether the new treatment will prove
to be clinically worthwhile. It has been previously stated that the variance
of the prior on the LHR scale is approximately equal to 4/n, where n is
the number of deaths to have occurred. Thus the distribution of the
group mean of the clinicians’ opinions can be considered equivalent to
having conducted a trial in which a total of 69 deaths have occurred with
equal follow-up in the two arms. This is in contrast to the trial design
which anticipated 124 deaths.
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2.3. Results
Patient Characteristics

Between September 1, 1986 and January 31, 1993, 407 patients with
operable nonmetastatic limb osteosarcoma were entered into the trial.
Of the patients randomized 139 (69 two-drug, 70 multidrug) came from
the MRC, 139 (71, 68) came from the UKCCSG, 54 (28, 26) from the
EORTC, 44 (22, 22) from CSG, 14 (7, 7) from Brazil, 13 (6, 7) from
SIOP, and 4 (2, 2) from New Zealand. Of these patients, 15 (3.7%)
were ineligible for the following reasons: incorrect pathology 9 (4 two-
drug and 5 multidrug); metastases or previous chemotherapy 4 (1, 3);
nonlimb tumors 2 (1, 1). In addition, for one patient randomized to
multidrug the date of randomization is known and no further informa-
tion was obtained. This left 391 eligible patients who have been fol-
lowed for a minimum of 4.5 years with median duration of follow-up
5.6 years.

The characteristics of eligible patients in the two treatment groups
are shown in Table 2. The two arms were well balanced with respect to
each of the characteristics. Approximately half (56%) of the patients were
less than 17 years old; tumors of the femur (55%), tibia (26%), and
humerus (13%) were most prevalent, and a large majority (67%) had
common histology.

Compliance with Protocol

In the two-drug arm 164 (84%) patients underwent surgery after the third
cycle of treatment as specified in the protocol. Of the remainder, 20
(10%) had their operation earlier and 12 (6%) later than that specified by
the protocol. In the multidrug arm 133 (72%) patients had surgery after
the fifth cycle as specified by the protocol, 42 (23%) had surgery earlier,
and 10 (5%) later.

The median time to surgery was 75 days for the two-drug treatment
and 57 days for multidrug. The difference between these medians of 18
days is a little longer than the planned 2-week difference but it is clear
that the majority of patients underwent surgery at or very near the
planned time. Of those who did not have surgery, two died (one in each
treatment arm), before it could be performed, two were lost to follow-up
(both receiving multidrug), one developed pulmonary metastases while
on treatment (multidrug); for two (one on each arm), the parents refused
any further treatment, one patient moved and was lost to follow-up after
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Table 2 Characteristics of Eligible Patients by Treatment

Two-drug Multidrug Total
N % N % N %
Age
<I1 43 22 25 13 68 17
12-16 72 36 80 42 152 39
>17 84 42 87 45 171 44
Sex
Male 131 66 130 68 261 67
Female 68 34 62 32 130 33
Site of tumor
Femur 113 57 102 53 215 55
Tibia 50 25 51 27 101 26
Humerus 24 12 25 13 49 13
Fibula 9 5 10 5 19 5
Radius 3 2 0 0 3 1
Ulna 0 0 3 2 3 1
Calcaneus 0 0 1 1 1 0
Histology
Common 133 67 128 67 261 67
Chondroblastic 25 13 19 10 44 11
Fibroblastic 23 12 20 10 43 11
Osteoclast rich 4 2 4 2 8 2
Telangiectatic 4 2 6 3 10 3
Anaplastic 4 2 12 6 16 4
Small cell 2 1 0 0 2 1
Osteoblastic 4 2 3 2 7 2
Total 199 192 391

three cycles of chemotherapy (two-drug), and surgery was not done for
an unspecified reason in one patient who went on to complete 19 cycles
(multidrug).

The distribution of the (total) number of cycles actually received by
patients was summarized in Table 3. There was considerably more
variability in the total number of cycles administered in the multidrug
regimen. In this regimen 97 patients (51%) received 18 or more cycles,
125 (65%) 15 cycles or more, and 141 (73%) more than 12 cycles. The
reasons for failure to complete the assigned chemotherapy are given in
Table 4. The numbers discontinuing treatment were very similar in the
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Table 3 Total Number of Chemotherapy Cycles Received

Two-drug Multidrug
Cycles N % Cycles N Y

No chemotherapy 0 0 0 0 3 2
Before surgery

Phase I 1-3 21 11 1-5 23 12
After surgery

Phase II 4-6 178 89 6-11 25 13

Phase III — — — 12-14 16 8

Phase IV — — — 15-17 28 15

Phase V — — — 18-20 97 51
Total 199 192

two-drug group and in the multidrug group during the first six cycles;
however, after cycle 6 of the multidrug regimen the most common
reasons for discontinuing treatment were toxic effects or patient refusal.

Toxic Effects

Both regimens produced considerable toxicity, the main components of
which are given in Table 5. The most severe toxicities were associated

Table 4 Reasons for Terminating Protocol Chemotherapy

Multidrug

o Two-drug First six cycles After cycle 6
Reason for terminating

treatment N % N % N Y
Treatment completed 167 84 — — 72 37
Progression 14 7 10 5 22 11
Toxic effects 10 5 5 3 30 16
Refusal 3 2 3 2 24 12
Postoperative complications 2 1 0 0 3 2
Change from protocol 2 1 6 3 14 7
schedule

Lost to follow-up 1 1 1 1 2 1
Total 199 192
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Table 5 Serious (WHO Grade 3 or 4) Toxic Effects During Treatment

Multidrug

Two-drug First six cycles After cycle 6

N % N % N %
Leucopenia 150 75 35 19 124 73
Thrombocytopenia 91 46 5 3 48 28
Nausea and vomiting 148 74 85 85 112 66
Mucositis 40 20 11 6 23 14
Alopecia 171 86 104 57 153 90
Cardiac rhythm 0 0 1 1 4 2

disturbance

Infection 42 21 6 3 31 18
Renal impairment 3 2 1 1 5 3
Liver 1 1 35 19 20 12
Hearing loss 0 0 0 0 3 2
Skin effects 1 1 1 1 3 2
Neurotoxicity 1 1 1 1 1 1
Pulmonary 0 0 1 1 1 1

with the cisplatin/doxorubicin cycles of treatment in both arms. Severe
nausea and vomiting, thrombocytopenia, leucopenia, mucositis, and
infection were common. Liver function abnormalities were common after
high-dose methotrexate in the multidrug arm, but were not so prevalent
during later cycles. Severely impaired renal function was rare (2%). There
were no deaths from cardiac toxic effects. Chemotherapy toxicity was a
major reason for dose reduction and delay, and for discontinuation of
chemotherapy.

Surgery

The surgical procedures planned at diagnosis for each patient, and the
procedure eventually carried out, are shown by treatment arm in Table 6.
138 (69%) in the two-drug arm and 129 (67%) in the multidrug arm
actually underwent the surgery planned at diagnosis. Of 40 patients in the
two-drug arm who were planned to undergo amputation, this was per-
formed in only 22 while 17 were able to have a limb sparing procedure. In
the multidrug arm 13 of 41 were spared the planned amputation.
Conversely, of 141 patients scheduled for conservative surgery in the
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Table 6 Planned and Actual Surgery Received

Intended surgery

Other
Actual surgery Amputation Prosthesis Rotation conservative Allograft Unknown Total
Two-drug
Amputation 22 19 1 1 0 2 45
Prosthesis 9 106 0 3 0 — 118
Rotation 3 1 2 0 0 — 6
Other 5 13 0 8 1 — 27
conservative
Allograft 0 0 0 0 0 — 0
None 1 2 0 0 0 — 3
Total 40 141 3 12 1 2 199
Multidrug
Amputation 27 24 1 3 0 1 56
Prosthesis 5 95 0 2 0 — 102
Rotation 0 1 0 0 0 — 1
Other 8 6 1 7 2 — 24
conservative
Allograft 0 2 0 0 0 — 2
None 1 6 0 0 0 — 7
Total 41 134 2 12 2 1 192

two-drug arm, 19 (13%) had to have an amputation, while in the mul-
tidrug arm the figures were 24 (18%) of 134.

Clinical Response

It was not possible to obtain data on response for eight patients (one two-
drug, seven multidrug). The response rates in the two-drug and multidrug
were 117/198 (59%) and 85/185 (46%), respectively, with an odds ratio of
2.02 (95% credible interval (CI) 1.34-3.07) in favor of the two-drug arm.
Although the response rate differed according to type of histology (for
example, the highest response rates were observed in those with fibro-
blastic tumors), the odds ratio for comparing the two treatments was
unaffected after adjustment for histology.

Histopathological Response

268 (69%) tumors were available for detailed analysis. The histopatho-
logical response rate was similar in the two arms: 41 (30%) of 137 tumors
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showed a good response in the two-drug group compared with 37 (29%)
of 129 in the multidrug group (OR = 1.10, 95% CI 0.66-1.88).
Progression-Free Survival

Progression-free survival is shown in Figure 3 and was very similar in the
two arms with an estimated value at 3 years after surgery of 47% (95%
CI 42-52) and at 5 years after surgery of 44% (95% CI 39-49%). There
was a high rate of tumor progression in the first year; 117 (56%) of the
208 relapses or deaths occurred during that time. The hazard ratio (two-
drug/multidrug) for risk of progression or death was 1.01 (95% CI 0.77—
1.33).
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Figure 3 Progression-free survival by treatment group.
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Survival

The analysis in this section assumes a noninformative prior distribution.
Other prior distributions are considered in the Interpretation section that
follows. The hazard ratio for risk of death was 0.94 (95% CI 0.69-1.27)
in favor of the two-drug arm, representing a 2% (95% CI —8-12%)
absolute difference in 5-year survival from 54% for the multidrug arm to
56% for the two-drug arm (Figure 4). Adjustment of the treatment
comparison for age, sex, tumor site, and initial pathology by means of
Cox regression models made little difference to the estimate of the hazard
ratio. Preoperative histopathological response appears to be a major prog-
nostic indicator for survival (Figure 5), although this result should be

3.9
0.8
0.7

0.61

0.51

Survival

0.4

0.3

.24

Evenls  Tatal

Tna-org [ TR
--------- Multi-drug
-] 191

0.0 T T T
5 1 2 3 4 ) & 7

Patienls of rigk  [Eyenss) Years

Twar—druy 97 (10y 186 (38) 145 (18} 172 [14)  9n (4 3] Q) 43 {1} e
Muiti--grug 1w {4y 7S (34} 19 (A} o i BB (3] 7z {1} 4 {7 b7

Figure 4 Survival by treatment group.
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Figure 5 Survival by treatment and histopathological response.

treated with caution as histological response was determined after ran-
domization. There was no evidence that the hazard ratio was different in
groups with good histological response and those with a poor response. The
hazard ratio for treatment was 1.44 (95% CI 0.60-3.46) in the good
responders and 1.05 (95% CI 0.71-1.54) in the poor responders.

2.4. Interpretation

Assuming an uninformative prior distribution, the hazard ratio for sur-
vival comparing two-drug therapy to multidrug therapy is 0.94 (95% CI
0.69-1.27) in favor of two-drug therapy. This represents a 6% reduction
in the risk of death with the two-drug regimen. A total of 168 deaths
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occurred in this trial. These results can be expressed in the form of a
normal distribution with mean log(0.94) and variance 4/168. This dis-
tribution is called the likelihood and is shown on the log hazard ratio
scale in Figure 6.

The likelihood was combined with the various prior distributions
(Figure 2) to form posterior distributions, shown in Figure 7. These
posterior distributions represent the prior opinions taking into account
the results of the trial. It is worth noting that these estimates of treatment
difference are considerably more precise than those expressed in the prior
distributions. This is the consequence of prior opinions being updated by
evidence from the results of a randomized trial.

From the skeptical posterior distribution, the probability of there
being any benefit to multidrug therapy is 36%, and the probability of
observing an absolute benefit in 5-year survival of 5% or more is 7%, so a
skeptic is likely to feel that their initial caution was justified. An en-
thusiast’s posterior probability of there being benefit to the multidrug
treatment would be 64%, but they would still have only a 22% proba-
bility of a benefit of 5% or more.

The participating clinicians would only consider using the multi-
drug treatment if the difference in 5-year survival was greater than the
lower bound of their range of equivalence, and would adopt it routinely if
the survival difference was greater than the upper bound. The posterior
probabilities that the real treatment difference is greater than the lower
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Figure 6 Likelihood distribution of the observed data on the log hazard ratio
(LHR) scale.

Copyright n 2004 by Marcel Dekker, Inc. All Rights Reserved.



Skeptical posterior Ernthusiastic posterior

4- 4
3 3y
2: /\ b4
1 1
a N . - [a ) P
-1 o 1 —1
Log haozard ratic Log hozard ratio
Clinician 1 Clinician 3
44 [ 4 . |
3 . 3 ™,
2: | 2
1 a 1] N
[w] — 0 - 19} — JREp— . © e iz immemene
=1 o 1 =1 o 1
Log hozard ratic Log hazard ratic
Clinician 2 Clinician 6
4. 4
3 3
2 i 2
14 ; 1 |
ol . P D Ol .. e i e )
—1 o 1 —1 1
Log hazord ratie Log hazord ratie
Clinician 3 Clinician 7

|0 =NUWh
|
{
|
[0 Nwh

1 ! 1 1 1
Lag hozard ratic Leg hazard ratio
Clinician 4 Group mean

4 4
5 o 3|
2 2
tl / : 1
ol =_ _ e o
-1 s/ 1 -1
Leg hazard ratio Leg hazard ratio

Figure 7 Posterior distributions, including the opinions of the seven participat-
ing clinicians modified by the results of the trial. Vertical lines represent the
boundaries of the range of equivalence.
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and upper bounds of the range of equivalence for each clinician are
shown in Table 7. These probabilities vary considerably depending on the
outlook of the clinician involved.

Clinician 3, who was the most enthusiastic about the new treatment,
may require the most convincing that there was little difference observed
between the treatments. Combining his or her prior opinion with the data
suggested that his or her probability of the multidrug regimen being
clinically worthwhile was 63%. However, the posterior probability of the
LHR exceeding the upper bound of the range of equivalence was only 9%
and thus even clinician 3 would be unlikely to adopt multidrug therapy
on the basis of these results. Clinician 7, who did not believe that multi-
drug therapy would offer any survival benefit, would feel further vin-
dicated by the result of the trial. According to that individual’s posterior
distribution, there is only a 1% chance that the multidrug regimen is
likely to be clinically worthwhile. The maximum posterior probability
over the seven participating clinicians that the effect of multidrug treat-
ment exceeds their upper limit of the range of equivalence, and therefore
is clearly indicated, was only 0.09.

The group mean posterior distribution, which summarizes average
clinical opinion on the trial, suggests that multidrug therapy offers insuf-
ficient survival benefit to warrant usage. The probability of the LHR ex-
ceeding the minimum clinically worthwhile benefit (4% benefit to
multidrug) was 14%, and the probability of exceeding the upper bound
of the range of equivalence (9% benefit) was 1%.

Table 7 Probability That the Log Hazard Ratio Is Greater Than the
Boundaries of the Range of Equivalence for Each Clinician

P (LHR lies
Range of P (LHR > P (LHR > in range of

equivalence lower bound) upper bound) equivalence)
Clinician 1 0-5 0.48 0.09 0.39
Clinician 2 5-5 0.08 0.08 0.00
Clinician 3 0-7 0.63 0.09 0.54
Clinician 4 5-10 0.05 <0.01 0.05
Clinician 5 5-12 0.13 <0.01 0.13
Clinician 6 10-15 0.01 <0.01 0.01
Clinician 7 5-10 0.01 <0.01 0.01
Group mean 4-9 0.14 0.01 0.13
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2.5. Discussion*®

In rare tumors such as osteosarcoma, nonrandomized studies are useful
to show whether new treatments are feasible and effective. However, ma-
jor differences in treatment policy must be assessed by randomized trials.
One such major difference, between the complex and lengthy T10
protocol and the shorter and simpler two-drug regimen, was the subject
of our randomized trial.

The reported results of Rosen using the T10 protocol in a non-
randomized study (Rosen et al., 1982) were so much better than the
results reported from studies of simpler chemotherapy regimens [e.g., the
first EOI study (Bramwell et al., 1992)], that a randomized comparison
was demanded to settle the issue.

This trial found no evidence of a difference in progression-free or
overall survival in favor of the T10 protocol. The hazard ratio estimated
from the trial was 0.94, representing a 2% absolute reduction in the 5-
year survival rate (i.e., a reduction from 56 to 54%). However, values of
the hazard ratio from 0.69 up to 1.27 are feasible, equivalent to anything
from a 12% decrease to an 8% increase in the 5-year survival rate due to
multidrug treatment.

The social consequences of very lengthy chemotherapy regimens are
quite severe in patients of this age group, many of whom are attending
school or university courses. There is a substantial advantage to a
treatment that takes only 18 weeks. The cost of drugs was substantially
greater for the multidrug regimen (about $9000) than for the two-drug
regimen (about $3000), and the bed occupancy rate was higher. Both
regimens were associated with considerable toxicity for the duration of
treatment. For these reasons, participating clinicians felt that to be clearly
preferable multidrug therapy needed to increase the 5-year survival rate
by about 10% (see Table 1). The results of the trial indicate that such an
increase is highly unlikely.

Our Bayesian analysis demonstrates that this conclusion is robust
to a wide variety of “starting positions” with regard to the likely benefit
of the multidrug treatment. Table 7 shows that after the trial the posterior
probability that multidrug treatment is clearly preferable to two-drug

* Author’s note: The original trial report (Souhami et al., 1997) provides a full discussion of
the results of this trial, and although the rest of the paper follows exactly the lines of an
intended medical publication, in this section we will reproduce only some of their more
general points and will add some extra points that result from the use of a Bayesian analysis.

Copyright n 2004 by Marcel Dekker, Inc. All Rights Reserved.



treatment was less than 0.1 for all the participating clinicians, despite
their starting from varying positions of skepticism or enthusiasm.

Despite this conclusive result, the cure rate for osteosarcoma is still
unsatisfactory and further progress is necessary. The European Osteo-
sarcoma Intergroup has shown that cisplatin and doxorubicin can be
intensified further with the use of hemopoietic growth factors such as
granulocyte-colony stimulating factor (Ornadel et al., 1994), and this
approach is the basis of the new treatment being tested in their current
randomized trial. Since we have shown in our trial that shorter periods of
intensive treatment are as effective for osteosarcoma, dose intensification
becomes a feasible option. Other drugs, such as ifosfamide, have activity
in osteosarcoma, but no randomized comparison of the efficacy of
regimens including this drug have been reported. Future trials should
aim to discover more effective ways of combining these agents.

3. EPILOGUE

In this chapter we have attempted to show by example how to report a
clinical trial analyzed using Bayesian methods. The advantage of such an
approach in the present example is undoubtedly the sensitivity analysis in
the Interpretation section, which supports the conclusions drawn in the
Discussion and demonstrates their robustness. The availability of prior
clinical opinion in this trial no doubt strengthens the sensitivity analysis.
However, sensitivity analysis can be conducted without the elicitation of
prior opinion as shown in the calculation of the ‘skeptical’ and ‘enthu-
siastic’ posterior distributions, and can be used in a similar manner to
support or qualify the conclusions from a trial.

Bayesian analysis carries other advantages, particularly for trial
monitoring, and for the analysis of trials that terminate early for some
reason. Those advantages are not seen in this particular trial which con-
tinued until its recruitment goals were met and until all patients were
followed for an adequate period. It might be instructive to repeat the pres-
ent exercise for such an example.

The approach outlined in this chapter is not the only way that
Bayesian methods can be used to analyze clinical trials. In a pair of recent
papers, Goodman argues that the p value approach to hypothesis testing
is fundamentally flawed (Goodman, 1999a) and advocates basing infer-
ence on the likelihood, or Bayes factor (Goodman, 1999b). The rationale
for this is to emphasize that Bayesian methods do have a solid, data-
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based core and are not simply based on subjective opinion. However, the
Bayes factor in itself is not necessarily easy to interpret, and the ad-
vantage of our method is that it provides a context for the trial results
which can be easily understood by the intended audience.

One of the criticisms that could be levelled at this paper is that the
sections explaining the methodology and analysis of the trial are too long.
We accept this argument, but feel it is necessary to give a detailed and
hopefully understandable explanation of techniques that are still unfami-
liar to a nonstatistical audience. If Bayesian methods become more
popular they will require as little explanation as Kaplan-Meier curves,
the logrank test and Cox proportional hazards models in current trial
reports.

The same criticism could be made of the Interpretation section. We
would argue that a full explanation of how the trial results would
influence participants who hold a wide range of opinions is one of the
advantages of these methods. It is also likely that the addition of the
Interpretation section will lead to a proportionate reduction in the length
of the Discussion section, which can be fully devoted to examining the
wider implications of the trial results.

We hope that the example we present in this chapter will help to
convince investigators that it is quite possible to present a report of a
clinical trial analyzed by Bayesian methods in a manner that will be
acceptable and even welcomed by the clinical community, or at least will
encourage them to try!
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1. INTRODUCTION

As pointed out by Neyman (1923) and Fisher (1925), randomization is a
cornerstone of scientific experimentation. Traditional theories of inference
based on randomization formally require that all experimental units com-
ply with their assigned treatment. However, in studies involving human
subjects, noncompliance is common and the compliance pattern may differ
between treatment arms. The standard approach is to rely on the random-
ization distribution as if compliance had been perfect, and thus to compare
response distributions by assignment, ignoring information on compliance
(Lee et al., 1991). This is often referred to as the intent-to-treat analysis.
The intent-to-treat analysis does not, however, measure biologic efficacy,
but rather programmatic effectiveness, which depends on the biologic ac-
tion as well as on the compliance with the treatment regimen. As the num-
ber of noncompliers increases, effectiveness will decrease regardless of the
biologic efficacy of the treatment.

Treatment effectiveness and treatment efficacy address distinct
scientific questions, both of which are important. Biologic efficacy is, how-
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ever, more likely to be reproducible in different populations and sub-
groups. Similarly, potential effect modification is better assessed on the
efficacy scale, since factors that modify the treatment effect may also in-
fluence compliance. While the intent-to-treat analysis is usually straight-
forward, acceptable approaches for estimating efficacy have been lacking.
It is reasonable to assume that the treatment protocol presents a different
challenge for compliance than the control protocol, and those who adhere
to the protocol in the different treatment arms are not as a rule com-
parable. This results in serious potential for selection bias if individuals
who complete the treatment regimen are compared with controls who
complete the control regimen.

The causal framework of Rubin (1978) and Holland (1986) provides
new tools for evaluating average treatment efficacy. Models are specified in
terms of potential responses and potential receipt of the experimental treat-
ment, and a randomization-based inference procedure is used. In order to
avoid selection bias comparison is made to the subgroup in the placebo
arm that corresponds to the treatment compliers and not to the subgroup
of placebo compliers. Although the individual treatment compliers in the
placebo arm cannot be identified, their average response can be compared
to the average response among similar treatment compliers in the treated
arm. The efficacy so estimated pertains to the subgroup of compliers, and
extrapolation to the full population under study requires additional model
assumptions. Additional model assumptions are also needed if non-com-
pliance is measured on an ordered categorical or continuous scale.

Our aim is to give a flavor of the recent development of methodology
for estimating treatment efficacy when faced with nonrandom noncom-
pliance. We focus on model specification for the two-group parallel trial,
with one treatment arm and one placebo arm. Basic concepts are illus-
trated using the Efron and Feldman (1991) data from the Lipid Research
Clinics Coronary Primary Prevention Trial (LRC-CPPT). This was a
placebo-controlled double-blind randomized clinical trial assessing the
efficacy of cholestyramine for lowering cholesterol level and thereby reduc-
ing coronary heart disease. The Lipid Research Clinic Program (1984)
describes the complete study. Efron and Feldman estimated the efficacy of
treatment received by making a strong assumption for noncompliance:
They assumed corresponding compliance quantiles in the treated and in
the control arm to have similar average treatment-free response distribu-
tions. As argued by Albert and DeMets (1994) this nonselection assump-
tion has considerable impact on the inferences drawn.

In Section 2 we dichotomize the nominal dose of cholestyramine
received for the purpose of illustrating null versus full compliance. Those

Copyright n 2004 by Marcel Dekker, Inc. All Rights Reserved.



on the lower relative dose are treated as null compliers and those on the
higher relative dose as full compliers. Following Angrist, Imbens, and
Rubin (1996) we define a set of potential outcomes and present the con-
cept of Local Average Treatment Effect (LATE), i.e., the average effect
of treatment received on cholesterol reduction in the subgroup of com-
pliers. Angrist, Imbens, and Rubin also emphasize that the randomization
indicator serves as a so-called instrumental variable, a well-known tool for
handling errors that are correlated with the explanatory variable in linear
econometric models. In Section 3 we dichotomize the response (choles-
terol reduction) and recapture the procedure proposed by Sommer and
Zeger (1991) and Zeger (1998) for estimating biologic efficacy for a binary
response with null versus full compliance. We extend the argument to
ordered categorical compliance by elaborating on the Goetghebeur and
Molenberghs (1996) analysis of the cholestyramine data. They present
efficacy estimates for partial dose in the subgroup of partial treatment
compliers and for full dose in the subgroup of full treatment compliers.

When data on compliance with experimental treatment are more
detailed a parametric structural model may be used, which links the com-
pliance information to the potential response data. The structural model
may further include compliance-covariate interaction terms, which
describe differential efficacy in subgroups determined by values of mea-
sured covariates. In Section 4 we present the main features of the structural
mean model used by Goetghebeur and Lapp (1997) for assessing blood
pressure reduction for 300 hypertensive patients randomized to treatment
or placebo. The blood pressure was measured on a continuous scale, and
compliance to treatment was assessed by the medical event monitoring
system (MEMS) producing essentially continuous relative dose informa-
tion. While the structural mean models handle responses measured on a
continuous scale, structural failure time models are useful for responses
measured on a time-to-event scale. In Section 5 we refer to several appli-
cations of structural failure time models, and in Section 6 we sketch current
directions for the development of models and procedures for nonrandom
noncompliance.

Inferences for the models discussed throughout this chapter rely
heavily on the randomization distribution: conditional on any subspace
spanned by covariates measured before randomization, the expected
distribution for any pre-randomization characteristic should be iden-
tical in the two trial arms. Two constructs are used as prerandomization
characteristics: the potential treatment compliance and the potential treat-
ment-free response. These two constructs are assumed to exist as inherent
features of the individual prior to randomization. Treatment compliance
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is subsequently observed for those randomized to the treated arm, but for
those in the placebo arm it remains a latent construct. Treatment-free
response is observed for those who receive no treatment, and for others
it may be computed from a more or less complex structural model. For
the models in Section 3 we formulate a multinomial likelihood with the
cell probabilities parameterized to reflect similarity for treatment compli-
ance and for treatment-free response, respectively, in the two trial arms.
For the structural models in Sections 4 and 5 we set up estimating
equations that correspond to test statistics for testing equality of features
of the distributions for the expected treatment-free response in the two trial
arms.

In the treated arm the compliance subgroups may differ in terms of
measured covariates. We argue throughout that conditioning on cova-
riates that simultaneously predict treatment compliance and placebo
response improves the precision for estimating efficacy.

2. POTENTIAL OUTCOMES AND “CAUSAL” EFFECTS
2.1. Potential Outcomes

Figure 1 illustrates the observed cholesterol reduction for 337 patients in
the Lipid Research Clinics Coronary Prevention Trial (LRC-CPPT) as a
function of percentage of prescribed dose actually taken of cholestyr-
amine and placebo, respectively. Smoothed curves are fit to the scatter-
plots.

The data in Figure 1 were analyzed by Efron and Feldman (1991),
who treated cholesterol reduction and dose as continuous variables and
focused on a linear model for the average reduction as function of dose
and other covariates. For the same data Zeger (1998) used a dichoto-
mized dose scale and response scale, and Goetghebeur and Molenberghs
(1996) used an ordered categorical dose scale.

Itis clear from Figure 1 that the percentage of the dose actually taken
varies between the two treatment arms, with a tendency for higher
percentages in the placebo arm. Figure 1 also shows a steeper rise in
cholesterol reduction in the treated group as function of percentage of
prescribed dose. Although randomization guarantees overall comparabil-
ity between the treated and the control arm, it is likely that individuals are
differently distributed over the compliance axes in a fashion which may
directly or indirectly be associated with cholesterol reduction. If selection
of this kind is present, it would be seriously misleading to draw conclusions
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Figure 1 Observed compliance-response relationship in the LRC-CPPT trial.

concerning efficacy from comparing the trend in cholesterol reduction for
the two panels in Figure 1.

Here we treat cholesterol reduction as a continuous response varia-
ble, while the percentage of the nominal dose actually received is dichot-
omized at 60%. Those below the cut point are treated as noncompliers and
those above the cutpoint as full compliers. This crude approximation
serves the purpose of illustrating the null versus full compliance pattern.
Let R; = 1 and R; = 0 indicate the assignment of individual i to the
cholestyramine arm or to the control arm, respectively. For given assign-
ment R;, the individual receives a dose of cholestyramine as indicated by
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D{(R;) = 0(<60% of nominal dose) or 1 (>60%), and then experiences a
cholesterol reduction of Y, {R;, D{R;)} units. Note that D(R,) refers to the
dose received of the experimental treatment in the respective arms, and that
the percentage of nominal placebo dose will not be used in the model
specification. If the experimental treatment is not available in the placebo
arm, then D40) = 0 for all i. We refer to D{R;) and Y{R;, D{(R;)}, for R; =
0 or 1, as potential outcomes. The potential outcomes that get observed for
any given individual 7 depends on the random assignment of treatment. If
individual 7 is assigned to experimental treatment, then D,(1) and Yi{I1,
D{1)} are observed, and if assigned to placebo, then D40) and Y;{0, D«(0)}
are observed. Throughout we assume that D{R;) and Y, {R;, D{R;)} depend
only on R;, the treatment assigned to individual i, and not on the treatment
assignment to other individuals under study. In the causal literature this
independence assumption is called the stable unit treatment value assump-
tion (Angrist, Imbens, and Rubin, 1996).

The double argument for the cholesterol reduction is useful for
making explicit the so-called exclusion restriction: Y{R; D(R;)} =
YA{D{(R;)} (Angrist, Imbens, and Rubin 1996). This restriction states that
any effect of R; on Y;{R,, D(R;} must be via the effect of D(R;). The
treatment assignment is thus assumed conditionally independent of the
response, given the dose of the experimental treatment that was actually
received. This exclusion restriction is plausible if the study was appropri-
ately blinded, in which case the random assignment per se is not expected to
affect the response. Under the exclusion restriction any comparison of
Y{D«1)} with Y;{D«0)}, i.e., the potential response for an individual i if
allocated to the treatment arm versus if allocated to the placebo arm, will
depend solely on the experimental treatment received in the respective
arms.

In studies with prolonged follow-up, postrandomization treatment
changes for reasons other than non-compliance may occur. Distinctions
between direct and indirect effects of treatment are discussed by Green-
land and Robins (1994) and by White and Pocock (1996). They are also
taken up in Chapter 12 by Babiker and Walker on AIDS models.

2.2. Local Average Treatment Efficacy (LATE)

In Table 1 the difference in cholesterol reduction between the treated arm
and the control arm for an individual i is cross-classified according to the
value of the potential treatment compliance variable D{1) when assigned
to the treatment arm, and D;(0) when assigned to placebo.
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Table 1 Treatment Arm Difference in Cholesterol Reduction Y(1, Di(1)) —
Y0, D{0)), for an Individual i Classified by D«1) and D«0)

D(0)
0 1
D(1) 0 Yi(1, 0)-Y,0,0) = 0 Y1, 0)—Y(0, 1) = —(Y{(1)—Y«0))
Never taker Defier
1 Y(L, )=Y(0,0) = Y(1)-Y«0) Y1, D—Y«0,1) =0
Complier Always taker

The category corresponding to D(0) = D{1) = 0in Table 1 defines
an individual who would never take the treatment, regardless of treatment
assignment. If the experimental treatment is available also in the placebo
arm, then the category D0) = D{1) = 1 defines an “always taker.” Under
the exclusion restriction the never takers and the always takers contribute
nothing to an aggregated group difference in cholesterol reduction when
comparing the two trial arms. Following Angrist, Imbens, and Rubin
(1996) we summarize the entries in Table 1 as Y {1, D(1)} — Y;{0, D(0)} =
Y{D{1)} — Y{D(0)}, and for D{0) = D,(1) this difference is zero. For the
category D{(1) = 1, D(0) = 0, i.e., for the compliers, the difference
YA{DA(1)} — Y{D«0)} is written Y1) — Y,(0), and for the category D«1)
= 0, D/0) = 1, the defiers, i.e., those who always do the reverse of what
their assignment requires, the difference is —{ Y,(1) — Y,(0)}.

Referring to Table 1, the difference in cholesterol reduction for an
individual i as function of treatment arm allocation can be written in the
form

Yi{1,D:i(1)} = Yi{0,D:(0)} = Yi{Di(1)} — Yi{D:(0)}
= [Yi(1)Di(1) + Yi(0){1 — Di(1)}] — [Yi(1)D:(0) (1)
Yi(0){1 — D;(0)}] = {Yi(1) — Yi(0) H{Di(1) — Di(0)}.
Before taking expectations the strong monotonicity assumption of Imbens
and Angrist (1994) is invoked, which states that D,(1) > D,(0) for all i, with
inequality for at least one i. This monotonicity assumption excludes the
existence of defiers, and the proportion of compliers Pr{D,(1) — D(0) = 1}
equals the expected value E{D{(1) — D«0)}, with E{D(1) — D(0)} > 0.

When averaging both sides of the expression in (1), the always takers and
the never takers contribute nothing, and by excluding the existence of
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defiers, the average difference in response between treatment arms ‘as
assigned’ has the form

E[Y{1,Di(1)} — Yi{0, D;(0)}]
= E[{Yi(1) = Yi(0) }{Di(1) — D;(0)}]
— E(Y,(1) — ¥0) | DA1) — Di(0) = 1}Pr{D(1) — D,(0) = 1)
= E{Yi(1) = Y;(0) | D;i(1) — D;(0) = 1} E{D;(1) — D;(0)}

and we can write the average difference in response among the compliers
as

= =

E{Y;(1) = Yi(0) | Di(1) — D;(0) = 1}

_ E[Y{1,D,(1)} ~ ¥{0.D,(0)) .
ED()-D(O)]

By virtue of the random assignment, the numerator in (2) is equal to
E(Y;)) — E(Y)), and the denominator is equal to E(D;;) — E(Djo), with ji
indexing individuals assigned to arm k, for k = 0, 1. An estimate of the
right-hand side of (2) is obtained by dividing the difference in mean
response between the two treatment arms by the difference in the average
experimental treatment received between the two treatment arms. An
estimator for the biologic treatment efficacy among compliers can thus be
computed from observable data, by dividing the intention-to-treat esti-
mator of treatment effectiveness with the treatment arm difference in the
proportion taking the experimental substance. Imbens and Angrist (1994)
call this the Local Average Treatment Effect (LATE). Although this
average efficacy measure is estimable, it is in general not possible to
identify the latent subgroup of compliers (cf. Table 1) to which the effect
pertains. This is particularly true if the experimental treatment is available
also in the placebo arm, in which case the observed group of treatment
compliers is a mixture of true compliers and always takers. If the experi-
mental treatment is not available in the placebo arm, then the column
D(0) = 1 in Table 1 vanishes, and the compliers are identified from the
observed entries in the treated arm.

In the LRC-CPPT-trial cholestyramine was not available for those
randomized to placebo, i.e., D{0) = 0 for all i, and thus neither “defiers”
nor “always takers” were possible. Those observed to comply with the
assignment to cholestyramine in the treated arm are all “compliers” and
those observed not to comply with the assignment to experimental
treatment are all “never takers.” For the cholestyramine data the
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intent-to-treat effectiveness, i.e., the difference in cholesterol reduction
between the treated arm and the control arm “as assigned” is estimated
to E(Y;) — E(Yp) = 20.79 units. The treatment arm difference in the
propotion taking at least 60% of the prescribed dose of experimental
treatment is E(D;) — E(D,)) = E(D;) = 88/165 = 0.53, and thus an
estimate of the Local Average Treatment Efficacy (LATE) is 20.79/0.53
= 39.23 units for the compliant subgroup. Here the biologic efficacy is by
definition greater than the intent-to-treat effectiveness of treatment.

As emphasized by Angrist, Imbens, and Rubin, an analogue to the
LATE estimator in (2) may be derived from a simple structural linear
equation model (Haavelmo, 1943; Goldberger, 1972). The randomization
indicator R; plays the role of an exogenous instrumental variable. An
instrumental variable is useful for disentangling “causal” effects when the
regression of response on exposure has residual errors which are corre-
lated with exposure. The instrumental variable is defined to be associated
with exposure, but conditionally independent of response given exposure.
If such a variable is available, then an appropriate set of structural equa-
tions allows estimation of the causal effect of exposure on response. Use
of instrumental variables in econometric modeling is hampered by the
difficulty in finding real world instruments that fulfill the required con-
ditions. In the compliance setting the randomization indicator R; does by
definition fulfill the conditions for an instrument, provided treatment
allocation has been both random and appropriately blinded. The
assumption of random as well as blinded treatment allocation constitutes
the key which allows causal questions to be asked when faced with non-
random noncompliance in clinical trials.

3. STRUCTURAL MODELS FOR BINARY RESPONSES
3.1, “Null” versus “Full” Compliance

Table 2 summarizes the information in Figure 1 by dichotomizing cho-
lesterol reduction using 20 units as the cutpoint, and by retaining the null
versus full compliance, with 60% as the cutpoint for the percentage of the
prescribed dose actually taken. Note that the placebo compliance rate in
the placebo arms is 126/172 = 73%, which is considerably larger than the
treatment compliance rate in the treated arm, which is 88/165 = 53%.
The possibility of nonrandom noncompliance is apparent. Table 3 sum-
marizes the structure of the observed data that will be used for assessing
efficacy.
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Table 2 Cross-Classification of Cholesterol Reduction (Y = 1 if at least 20 units;
Y = 0 otherwise), Treatment Arm Assignment (R = 1 for treated arm; R = 0
for control arm) and Compliance (<60%; >60%)

Placebo (R = 0) Treatment (R = 1)
Placebo compliance Treatment compliance
<60% >60% <60% >60%
0 42 98 140 50 16 66
Y
1 4 28 32 27 72 99
46 126 172 77 88 165

In Table 3 placebo compliance categories are replaced by latent
unobserved treatment compliance categories in the placebo arm. The
selection problem for compliance is thus avoided since by definition the
compliance categories in the two arms in Table 3 are comparable.

The observed data in Table 3 follow a multinomial distribution with
four cells in the treated arm, and a binomial distribution in the placebo
arm. We write Pr {D(1) = 1 | R, = 1} = Pr{D(1) = 1| R, =0} =9
and Pr {Y(0) = 1 | D(1) = 0, R, = 0} = Pr{Y(1) = 1| D(1) =0,
R; = 1} = uay, to reflect that the distributions for expected treatment
compliance and expected treatment-free response are similar in the two
trial arms, due to randomization. We further write Pr { Y,(0) = 1| D(1)
= 1, R; = 0} = o for the response probability in the subgroup of
potential treatment compliers in the placebo arm. The corresponding

Table 3 Data in Table 2 Used for Estimation of Efficacy Among Compliers

Placebo (R = 0) Treatment (R = 1)
Treatment compliance Treatment compliance
D=0 D=1 D=0 D=1
0 Moo = ? mo; = ? my+ = 140 noo = 50 no; = 16 o+ = 66
' 1 mpg =7 my =17 myy = 32 ny = 27 ny =172 n+ =99
mig="7 my =717 my =172 nyo=77 ny; =88 n., =165
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response probability in the treated armis Pr { Y1) = 1 | D(1) = |, R; =
1}, and the risk of interest y is defined as the ratio

Y PI‘{Y1<1) =1 | D,(l) = l,Rl‘ = 1}
"I Pr{Y(0) =1 | Di(1) = R, = 0}

Table 4 presents the multinomial cell probabilities for the observed
and latent counts in Table 3. The risk parameter y simply captures the
excess risk in the subgroup D,(1) = 1 due to experimental treatment
actually received in the treated arm. The treated arm has 3 degrees of
freedom and the placebo arm one degree of freedom for joint estimation
of 0, ag, o1, and y. The model is thus saturated with four parameters, all of
which are identifiable. Using the notation for the observed counts in
Table 3 and for the expected counts in Table 4, we write the log likelihood
function / = I + [, with /7 the contribution from the multinomial in the
treated arm

" = ngo log{(1 — 6)(1 — ag)} + noy log{5(1 — yo;)}
+ nyo log{(1 — d)etg} + nyy log(dyay)

and /* the contribution from the binomial in the placebo arm

¥ = moy, log{(1 — 8)(1 — ap) + (1 — o)} +my log{(1 — &)ag
+(3061}.

Table 4 Expected Cell Probabilies for the Cross-Classification in Table 3,
Assuming Similar Placebo Response and Treatment Compliance in the Two
Treatment Arms. (The relative risk y captures the treatment efficacy among
compliers.)

Placebo (R = 0) Treatment (R = 1)
Treatment compliance Treatment compliance
D=0 D=1 D=0 D=1
0 (I =0)1 — =) o(1 — o) (I = o)1 — ) o(1 — yoy)
' 1 (1 = d)ag do (1 — ) dyo
1 -9 0 1—-0 0
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The maximum likelihood estimators have the form

& nio 5 no1 + npy
f=——— =—0
noo + N1o Nyt
LY e
== = Y= a
myy + moy nip + noy
with 71 = myy — ’;7++ ny and Mg = moy — }::: ngo . The estimated ex-

pected cell counts for the cholestyramine data are given in Table 5, and
the corresponding estimates are &g = 0.35, &; = 0.042, 5 = 0.53, and
7 = 19.5.

A straightforward extension of the above model is obtained by
conditioning on baseline covariates. For a vector of given baseline co-
variate values Z, the expected counts have a similar structure as in Table
4, parameterized in terms of oy(Z), 01(Z), (Z), and y(Z). Different
subsets of Z may be used for the different parameters. A rich set of
restrictions on the parameter space may thus be tested using standard
methods for likelihood inference. For a product of binomial and multi-
nomial likelihoods, where the cell probabilities are nonlinear functions
of the parameters of interest, it is convenient to use the relation to a
likelihood of independent Poisson counts. The restrictions needed for
the estimated expected Poisson counts to be equivalent to the expected
product multinomial counts are inherent in the parameterization of
Table 4 (Palmgren and Ekholm, 1987). Baseline covariates of interest
include the set of predictors for treatment compliance and for placebo
response, denoted Z; and Z,, respectively. To form a master set of

Table 5 Estimated Expected Cell Counts for the Multinomial Data Structure in
Table 3, with Parameterization as in Table 4

Placebo (R = 0) Treatment (R = 1)
Treatment compliance Treatment compliance
D=0 D=1 D=0 D=1

Y

0 I’ﬁoo =52.12 I?fl()l = 87.88 my+ = 140 Noo = 50 nop = 16 Nno+ = 66

1 I’fllo = 28.15 I’fl]] = 3.85 my+ = 32 Ny = 27 nygy = 72 n o+ = 99

myo=8027 my1=91.73 my =172 nyo=77 nyp =88 nip =165
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baseline covariates Z, the union of Z; and Z, may be supplemented by
covariates argued from biologic plausibility. A parsimonious model for
efficacy y(Z) is the main target. By specifying treatment compliance in
terms of §(Z;), and placebo response in terms of og(Z,) and «;(Z,), the
precision for estimating y(Z) may be substantially increased. This is likely
to be the case even when y(Z) is modeled using covariates that are not
included in the sets Z; and Z,. For modeling y(Z) one may thus start by
conditioning on a rich set of covariates Z; and Z, to form 6(Z,), oo(Z>),
and «,(Z,), and then proceed to search for a parsimonious model for
7(Z). Standard likelihood based tools may be used to assess goodness of
fit for the overall model.

3.2. Null, Partial, and Full Compliance

In Table 6 the cholestyramine data is presented with dichotomized
response and the compliance in three categories defined by the cutpoints
20 and 60% for percentage experimental and placebo dose, respectively.
As before, we are not interested in the placebo compliance categories,
and the structure for the observed data used for modeling is given in
Table 7.

The three treatment compliance categories in Table 7 are referred to
as null, partial, and full compliance. The null compliance in the treated
arm translates to receiving no experimental treatment, and the full
compliance to receiving 100% of the nominal dose. This is at best a

Table 6 Cross-Classification of Cholesterol Reduction (Y = 1 if at least 20
units; ¥ = 0 otherwise), Treatment Arm Assignment (R = 1 for treated arm;
R = 0 for control arm) and Ordered Compliance (<20%; 20-60%; >60%)

Placebo (R = 0) Treatment (R = 1)
Placebo compliance Treatment compliance
<60% 20-60%  >60% <60% 20-60%  >60%
0 14 28 98 140 24 26 16 66
' 1 3 1 28 32 8 19 72 99
17 29 126 172 32 45 88 165
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Table 7 Data in Table 6 Used for Estimation of Partial Efficacy Among Partial
Compliers and Full Efficacy Among Full Compliers

Placebo (R = 0) Treatment (R = 1)
Treatment compliance Treatment compliance
D=0 D=1 D=2 D=0 D=1 D=2

0 }7’[00:? moy =7 m02:? mgy+ = 140 n00:24 No1 =26 Npx = 16 Ny + =66
Y
1 n’ll():? m“:? Wll2:? m1+:32 I’l10:8 I’l“:lg I’l12:72 I’l|+:99

mio=? my1=? mi>=? miy=172 nyy=32 ny =45 ni,=88 ni =165

crude approximation for the cholestyramine trial, but serves the purpose
of illustrating the model. The observed data follow a multinomial
distribution with six cells for the treated arm, and a binomial distribution
for the placebo arm. By virtue of the randomization, the distributions for
the expected treatment compliance and for the expected treatment free
response are again assumed similar in the two trial arms. This is reflected
in the parameterization Pr{D{1) = k| R, = 1} = Pr{D(1) = k| R; = 0}
= 0 with 27 _ g 0 = 1,and Pr { Y(0) = 1 | D(1) = 0, R, = 0} = Pr
{Y(l) = 1| D(1) = 0, R; = 1} = 09. We further write Pr { Y(0) = 1|
D(l) =k, R; = 0} = o and Pr { Yi(1) = 1| D(1) = k, R; = 1} = poy,
for k = 0, 1, 2. The two risk parameters of interest are

k=1,2.

P = 1 Dil) =k, Ri = 1)
’Vk =
L

[)l‘{ YZ(O) = D,(l) = k, R,‘ = 0}

Note that since treatment-free response is assumed equal in the two
treatment arms, yo = 1 by definition, and y; and vy, reflect respectively the
partial treatment efficacy in the group of partial compliers, and full
treatment efficacy in the group of full compliers. Expressions for the
expected cell probabilities for the data structure in Table 7 are given in
Table 8.

In the treated arm the multinomial distribution has 5 degrees of
freedom and in the placebo arm the binomial distribution has 1 degree of
freedom, resulting in a total of 6 degrees of freedom for estimating the
seven parameters o, o, d, 01, 02, V1, and y> (yg = 0, o9 = 1 — 01 — 7).
The model is overparameterized and at least one additional restriction is
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Table 8 Expected Cell Probabilities for the Cross-Classification in Table 7 (The
distribution of placebo response and treatment compliance is similar in the two
treatment arms, with do + 6; + J, = 1. The relative risk parameters y, and 7,
capture the treatment efficacy among partial and full compliers, respectively.)

Placebo (R = 0) Treatment (R = 1)
Treatment compliance Treatment compliance
D=0 D=1 D=2 D=0 D=1 D=2
y 0 do(I—ag) 01(1—on) a(l—o2)  Jo(1—09)  S1(1—p101)  Sa(l—72002)
1 do%o 010 0202 oo d1y10y 02720
So 81 5> do d1 0,

needed for identification. Goetghebeur and Molenberghs (1996) suggest a
model in which the two parameters y; and y, are kept distinct, and
instead a set of intuitively reasonable, but rather complex second-order
parametric restrictions are put on the association between the treatment
compliance and the response. This approach is feasible for the three
ordered categories, null, partial and full compliance, but when a more
refined compliance scale is used, the Goetghebeur and Molenberghs
essentially nonparametric relative risk model becomes intractable.

An alternative to the Goetghebeur and Molenberghs model for the
ordered categorical null, partial, and full compliance is to give the com-
pliance categories numerical scores, k£ = 0, 1,2, and to use a linear model of
the form y, = f'D(1), with D(1) = k. The structural parameter f§ captures
how a change in the level of experimental treatment received affects the
risk. As argued earlier, it will be efficient for the estimation of the structural
parameter to stratify the data according to baseline covariates Z which
predict both placebo response and treatment compliance. Furthermore,
differential treatment efficacy over subgroups can be incorporated by
adding effect modification by baseline covariates to the structural model.
The extended model takes the form y, = f/D(1) + ©D(1) * Z, with D(1) * Z
the interaction term. These linear restrictions on the y parameters allow for
a smooth conceptual transition from models presented for the binary and
ordered categorical compliance scales to structural models for compliance
measured on a continuous scale. The latter approach is discussed in
Sections 4 and 5 and the dual role of baseline covariates as conditioning
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covariates in the estimation model and effect modifiers in the structural model
is further elaborated upon.

4. STRUCTURAL MEAN MODELS
4.1. The Model and Semiparametric Estimation

Continuous measures of exposure raise the problem of estimating the
average effect of treatment over very detailed exposure levels. The ap-
proach in Section 3 leads naturally to a structural mean model for inference
regarding partial efficacy in this setting. Let D(R) be a possibly continuous
and multidimensional measure of exposure to experimental treatment
following assignment R, with D = 0 indicating no exposure. As before,
both D(1) and D(0) are considered potential exposures, by design equally
distributed over randomized arms. In the special case where subjects on the
control arm have no access to experimental therapy, D(0) = 0, different
values of D are seen only on the treatment arm.

A linear structural model assuming the expected difference between
potential outcomes with and without treatment to be constant over
subgroups with different Z values is

E{Y(1) - pD(1) | Z,D(1)} = E{Y(0) | Z, D(1)}. 3)

In words, after subtracting f'd from observed outcomes in the treatment
arm subset [Z = z, D(1) = d] one recaptures expected treatment-free
outcome for this subset. More generally, E{ Y(1) — Y(0) | Z, D(1)} may
depend on Z as well as D(1), and a linear model respecting the zero dose
constraint can, for instance, take the form

E{Y(1) = pD(1) =7 (D(1) * Z2) | Z,D(1)}

(4)
= E{Y(0)| Z,D(1)}

where D(1) * Z refers to interaction terms between dose and baseline
covariates. Estimation for models (3) and (4) is not fundamentally
different. For ease of expression we develop the argument for the simpler
model (3) and refer to extensions in the discussion (cf. also Fischer-Lapp
and Goetghebeur, 1999).

Equation (3) does not enable straightforward least squares or
likelihood estimation. Although for given f§ the left-hand side is observ-
able in the treatment arm, the placebo arm carries no direct information
on the association between observed ( Y(0),Z) and the corresponding
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latent D(1). Since the assumption of random noncompliance is not made,
one cannot rely on E{Y(0)|Z, D(1)} = E{Y(0)|Z}, but unbiased estimating
equations follow from an equation implied by (3):

E{Y(1) - pD(1) | 2} = E{Y(0) | Z}. (5)

For any choice of Z dependent weights, the weighted average of the left-
hand side of (5) equals the similarly weighted average of the right-hand
side:

E'[E{Y(1) = p'D(1) | Z}] = E"[E{Y(0) | Z}] ()

where E" indicates the weighted mean. Due to randomization unbiased
estimates of the left- and right-hand sides of (6) can be derived from the
treatment and control arm, respectively. For fixed weights this leads to
unbiased linear estimating equations for  which are easy to solve. The
corresponding estimator f§ is consistent and asymptotically unbiased
under mild regularity conditions, with covariance matrix estimated by
the sandwich estimator. This estimator f relies heavily on the random-
ization assumption and can be seen as a dose-specific intent-to-treat
estimator.

4.2. Efficiency

Efficiency is an issue in this semiparametric setting with no direct as-
sumptions on the selectivity of compliance. Consider the extreme situation
where no baseline covariates are measured. With just a single equation (5),
structural models with more than one unknown parameter are unidenti-
fied. In the special case of a single structural parameter however, equation
E{ Y(1) — BD(1)} = E{ Y(0)} imposes no restrictions on the observed data
and can be solved by the (inefficient) instrumental variable estimator
described in Section 3. A good choice of weights in Egs. (6) leads to more
efficient parameter estimates when the stricter assumption (5) holds.
Optimal weights have been derived for general structural nested mean
models by Robins (1994). Goetghebeur and Lapp (1997) suggest estima-
tion of those weights in placebo-controlled trials using predictions of
placebo outcome and treatment compliance from baseline covariates. The
better those predictions, the more precise the treatment effect estimates.
The clear message for design is that good baseline predictors for com-
pliance as well as for treatment-free response should be recorded to
increase information on dose-specific intent-to-treat estimators. Some-
times, compliance measures taken over a run-in period during which all
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subjects are given the same treatment yield good predictors for treatment
compliance. Some have argued against run-in periods on placebo, how-
ever, claiming it is incompatible with the informed consent obligation.
Creative run-in designs which avoid the certainty of placebo for the entire
run-in period may provide an alternative that does not hamper accrual
and resolves ethical concerns.

4.3. Implementation: An Example

That useful results can be obtained is illustrated by the blood pressure
example previously analyzed by Goetghebeurand Lapp (1997). A new treat-
ment is compared with placebo in a double blind randomized blood pres-
sure reduction trial, assigning patients to take one tablet daily. Drug intake
is electronically monitored over the experimental study period which
follows a run-in on placebo. The dosing experience is subsequently sum-
marized in a scalar D(1) representing the percentage of prescribed exper-
imental drug which is taken. The experimental treatment is not available on
the control arm; hence D(0) = 0. The response measure of interest is change
in blood pressure over the experimental study period (negative is good).
An intent-to-treat analysis shows a highly significant difference between
mean response on placebo, —3.54 mmHg (s.e. 1.49), and on treatment,
—11.04 mmHg (s.e. 0.95). Table 9 shows the fit of three structural mean
models with structural predictors: 1. {D(1)}, 2. {I{D(1) > 0}, D(1)}, 3.
{DQ), D(1) * W}, where I{D(1) > 0} indicates whether any experimental
drug was taken versus none at all and W represents body weight minus its
sample average. The effect is modeled conditionally on baseline predictors
Z which include sex, height, weight, several run-in blood pressures and

Table 9 Estimated Structural Mean Models for Blood Pressure
Reduction, with D(1) the Percentage of Prescribed Dose of
Active Drug, W the Centered Body Weight, and I{D(1) > 0}
an Indicator for Any Drug Taken or Not

Model Structural effects [is se(fs)
1. D(1) —7.41 1.84
I(D(1)>0) 15.90 13.38
D(1) —24.83 14.88
3. D(1) -7.61 1.73
D()*W 0.36 0.14
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their interaction with sex and height. This analysis is based on 54 available
patients in the treatment arm and 51 in the placebo arm.

Model 1 estimates a linear dose effect quite precisely, but model 2
requires more information to formally distinguish between a constant
effect of dose within the observed range and a linear effect. The fit sug-
gests, however, that more variation in outcome is explained by the linear
dose effect. Diagnostic plots constructed after fitting model 1 suggested
an interaction effect with baseline covariate W, centered body weight.
Model 3 confirms a significant interaction: heavier people achieve less
reduction at the same dose level.

In general, once an identifiable structural mean model has been pro-
posed, estimation is relatively straightforward. Implementation is achieved
through just a few lines of code in Splus or SAS, for instance. However,
without further assumptions on the selection mechanism, limited informa-
tion makes parsimony for the structural model paramount. The challenge
in practice thus lies in proposing meaningful structural models and in
interpreting parameters correctly. The key question is: What aspect of drug
exposure drives the treatment effect and how? Depending on the drug,
different biologically plausible candidates present themselves. Besides
percentage of prescribed drug taken, compliance summaries may contain
length and duration of drug holidays and other covariates related to timing
and dose of drug actually taken.

5. STRUCTURAL DISTRIBUTION MODELS

Besides the mean difference, other contrasts between the distributions of
Y(1) and Y(0) can be modeled. One then relies on the randomization as-
sumption to demand equality of the ( Y(1), Y(0), Z) distribution between
arms rather than mere equality of means. Particularly for right censored
response data, comparing estimated distributions via Kaplan-Meier
curves rather than via means is a natural approach. Structural failure
time models based on accelerated failure time models were introduced by
Robins and Tsiatis (1991). Mark and Robins (1993) use these to estimate
the effect of smoking cessation in the MRFIT study which randomizes
over a life style intervention targeting multiple risk factors. Greenland and
Robins (1994) compared high and low dose AZT in a trial which did
randomize over the high and low dose, but where differential adminis-
tration of a third drug (PCP prophylaxis) over the two arms had taken
place post randomization. White et al. (1999) and White and Goetghebeur
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(1998) examine the effect of treatment changes in randomized trials with
long-term follow-up (see also Chapter 12). Recently, Korhonen, Laird
and Palmgren (1999) and Korhonen and Palmgren (2001) have used the
structural accelerated failure time model to assess the effect of beta-
carotene supplementation on right-censored times to death from all causes
in the ATBC Study. Along the same lines, Korhonen et al. 2000 estimate
the effect of one dose of vitamin A on subsequent 4-month mortality in
children under 6 months of age in a randomized, double-blind, placebo-
controlled community trial in Nepal (West et al., 1995). Cluster random-
ization is an added complexity in this vitamin A trial.

6. DISCUSSION

Naive interpretation of intent-to-treat estimators ignoring actual exposure
breeds poorly informed decisions (Goetghebeur and Shapiro, 1996).
Incorporating exposure explicitly in an analysis bridges the gap between
“biological” and “statistical” models. This cannot be done, however,
without some additional assumptions. Recent approaches avoid the ex-
treme assumption of completely nonselective noncompliance. Rather, ran-
domization-based estimators are constructed for models cast in terms of
potential outcomes (latent variables). This chapter has introduced the
basic principle behind these estimators.

More general models than the ones presented here can be cast in
this framework and have been usefully implemented in clinical trials.
When active treatment is received on several (all) arms of the trial, esti-
mating equations are derived from equalities between arms of potential
treatment-free distributions, none of which need to be directly observed
on any one arm (Greenland and Robins, 1994). Repeated outcomes and
sequentially randomized designs can be analyzed by structural nested
mean models or marginal structural models (Robins, Greenland, and Hu,
1999; Robins, 1999). Also, Bayesian approaches were built on the causal
formulation; see for instance, Imbens and Rubin (1997) and Hirano et al.
(2000). Besides the hopes generated by all these tools, there are also haz-
ards as pointed out by Pocock and Abdalla (1998).

Diagnostic tools for latent variable models are necessarily limited in
power. The model assumptions are sometimes subtle and must be well
understood. It is not generally recognized for instance, that once struc-
tural (mean) models have been estimated, the (average) selection mech-
anism is identified, for instance in model (5), by regressing Y(2) — pD(1)
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on D(1) in the treatment arm. Sensitivity of conclusions to untestable
assumptions must be explored. Another important concern in practice
regards data quality. Urquhart and De Klerk (1998) point out that good
measures of compliance are hard to get and Dunn (1999) emphasizes that
analyses treating compliance as an explanatory variable should account
for this.

It is reassuring that the structural analyses discussed here protect
the a-level when testing the null hypothesis of no difference between
randomized arms. However, the corresponding estimators rely in part on
modeling assumptions. For this reason, the traditional intent-to-treat
analysis will continue to hold a key position.

In summary, while structural estimators are potentially more mean-
ingful, they are also more complex. It will take time to educate statis-
ticians and clinicians alike to better understand their role. There is a need
for more practical experience and further theoretical development for
instance in the realm of design and sample size calculation, analysis of
equivalence studies, analysis of repeated outcome measures, the study of
dynamic treatment regimes (involving sequentially randomized designs to
study treatment changes over time as a function of observed effects and
covariate evolutions), sensitivity analysis with respect to various model
assumptions, etc. In our view, the recent developments show exciting
prospects for subject matter scientists as well as statisticians. When
handled with care, the new tools will lead to deeper insight into the
nature of drug action in patient populations.
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1. INTRODUCTION

The defining feature of a longitudinal clinical trial is that individuals are
measured repeatedly across time. This is in contrast to many clinical trials
in which observations are taken at baseline and then perhaps at one follow-
up time. In this chapter, we will make the distinction between longitudinal
analysis in which individuals are followed over time and multiple measure-
ments are made, and survival analysis, in which individuals are followed
and their time to event or censoring is analyzed. Our focus will be on
discussing issues in missing data for longitudinal clinical trials in which the
outcome is measured repeatedly at follow-up visits.

* The portions of this chapter written by Margaret Wu were written in her private capacity.
The views expressed in the chapter do not necessarily represent the views of NIH, DHHS,
nor the United States.

f Retired.

Copyright n 2004 by Marcel Dekker, Inc. All Rights Reserved.



We will discuss three clinical trials in which the primary outcome is
observed repeatedly in a longitudinal setting and the repeated outcomes are
occasionally missing due to missed visits or censoring due to death or loss
to follow-up (to be referred to as dropout). The scientific focus in all these
studies is on evaluating the effect of treatment over time. These clinical
trials will serve as motivation for methodological issues relating to analyz-
ing longitudinal data in clinical trials with missingness. These examples are:

1. The Intermittent Positive Pressure Breathing (IPPB) Trial (Inter-
mittent Positive Pressure Trial Group, 1983). This was a ran-
domized clinical trial that evaluated the effect of an intervention
(IPPB) as compared with standard compressor nebulizer therapy
on pulmonary function over time in 985 patients with obstructive
pulmonary disease. The primary response was forced expiratory
volume in 1 second (FEV;) measured at baseline and at 3 month
intervals over a 3 year period postrandomization (13 scheduled
visits including baseline). The outcomes are continuous with
many missing observations due to missed scheduled visits or
dropout due to death and loss to follow-up. Approximately 23%
of the patients died before the end of the study and 13.5%
dropped out because they moved away or refused to return for
follow-up visits. In addition, almost all subjects have at least one
missed scheduled visit either before the occurrence of death or
the end of the study.

2. A three-arm randomized clinical trial to compare buprenorphine
with two doses of methadone for reducing opiate use in a group
of 162 addicts (Johnson et al., 1992). Sample sizes were 53, 55,
and 54 patients in the buprenorphine, methadone 20 mg, and
methadone 40 mg groups, respectively. The outcomes of this
trial were a series of repeated binary responses of whether an
individual failed a urine test at each of three visits per week (on
Monday, Wednesday, and Friday) over a 17 week period. These
repeated responses are often missing due to missed visits or with-
drawal from the study. More than 50% of the patients withdrew
from the study before the end of the follow-up period. A sub-
stantial number of patients occasionally missed visits but re-
mained in the study.

3. A randomized trial of felbmate versus placebo for treating in-
tractable partial epilepsy (Theodore et al., 1995). The study ran-
domized 40 patients and the outcomes were repeated daily
seizure counts over a 3 day titration period and a 14 day follow-
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up period. Approximately one-half of the patients withdrew
from the study prematurely. An inspection of average seizure
frequency by dropout time suggested that seizure frequency
was positively related to dropout time and that this relationship
might be different in the two treatment groups.

There are many other examples of clinical trials in which the outcome
is measured longitudinally. In Chapter 12, Babiker and Walker discuss the
issue of analyzing repeated biological markers subject to informative cen-
soring in an AIDS clinical trial. Other examples include cancer clinical
trials in which quality-of-life assessments are measured repeatedly over
follow-up and may be subject to different informative censoring mecha-
nisms in the treatment and control arms.

Before discussing methodology for analyzing longitudinal data with
missingness, we will briefly review the literature on longitudinal data. This
review is presented in Section 2. Section 3 discusses terminology, and
Section 4 discusses the implications of various type types of missingness
on standard methodology for analyzing longitudinal data. General ap-
proaches for analyzing longitudinal data with missingness are outlined in
Section 5. We will analyze our motivating examples in Sections 6 to 8.
Conclusions follow in Section 9.

2. METHODOLOGY FOR ANALYZING
LONGITUDINAL DATA

A review of methodology for analyzing longitudinal data in clinical trials is
presented by Albert (1999). This section summarizes much of that review.
Methods for longitudinal data can be separated into three broad catego-
ries: (1) simple univariate analyses of summary measures where the lon-
gitudinal outcome are summarized by a single variable for each subject, (2)
methods for continuous longitudinal data, (3) and methods for discrete
longitudinal data.

2.1. Simple Univariate Analyses of Summary Measures

When the treatment comparisons reduce to comparing the average
responses over follow-up time, a simple approach is to summarize each
person’s longitudinal observations and compare these univariate measures
across treatment groups (Pocock, 1983). These comparisons can be done
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with univariate statistical techniques (i.c., two-sample ¢ tests or Wilcoxon
rank sum tests) since there is only one summary measure per person and
observations on different subjects are independent. For the epilepsy clinical
trial data, a comparison of average daily seizure frequency between treat-
ment groups was performed (Theodore et al., 1995). In the analysis of the
IPPB trial (Intermittent Positive Pressure Trial Group, 1983), the pro-
gression of lung function over time was compared by testing differences in
the average individually estimated slopes between treatment groups. In the
opiate clinical trial, the average individual proportions of positive urine
tests were compared across treatment arms (Johnson et al., 1992). Uni-
variate comparisons of means or slopes can be an attractive alternative
to complex modeling approaches. However, for highly imbalanced data
caused by missing observations, as in the three previous examples, this
simple comparison can be highly inefficient. This is demonstrated in Albert
(1999) using IPPB clinical trial data. It is shown that an analysis based on
comparing individually estimated slopes between treatment groups is sub-
stantially less efficient than an analysis based on a longitudinal model. We
present this example in detail in Section 6.

2.2. Longitudinal Methods for Gaussian Data

Various methodologies exist for analyzing longitudinal Gaussian data.
Traditional multivariate techniques (Morrison, 1976) such as the Hotel-
ling’s T2, the multivariate analog of the ¢ test for testing whether mean
vectors are different in two samples, and profile analysis, a method for
testing for parallelism and differences between two mean vectors in multi-
variate data, can be used to analyze continuous longitudinal data when
observations are taken at the same time points on all subjects and there
are no missing data. This is rarely true in longitudinal clinical trials where
observations are not taken at the same time points on all subjects and data
are often missing.

Alternatively, random effects models can be used to analyze longi-
tudinal data. They provide a framework for analyzing longitudinal clinical
trials data in which there is a sizable amount of missing observations (either
due to missed visits, loss to follow-up, or death). In the IPPB trial, for
example, scheduled follow-up visits at 3 month intervals were often missed
or delayed and a large percentage of patient observations were censored
due to death or dropout; only 77 out of 985 patients (8%) had complete
equally spaced follow-up measurements.
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The random effects model is typically formulated in two stages. Con-
ditional on each subject’s random effects, the model for the first stage is

Yy =XiB + Zijvi +ey (1)

where Xj; and Z;; are p and ¢ element vectors of fixed and random effects
covariates, respectively, and €;; are considered independent Gaussian with
mean 0 and variance o2, or can have an autoregressive moving average
(ARMA) correlation structure. In the second stage, the random effects +y;
are assumed to have a multivariate normal distribution with covariance
matrix D. The parameter vectors (3 and vy; measure the effect of fixed and
random effect covariates on the mean responses. In a clinical trial, fixed
effects covariates may include treatment group, time, treatment by time
interaction, or baseline characteristics, while only the intercept and time
effects are included as random effects covariates. Tests of treatment effects
are usually constructed by testing for the significance of fixed effect co-
variates corresponding to treatment. Laird and Ware (1982) discuss an
estimation procedure which allows for highly irregularly spaced observa-
tions where €;; are independent. Chi and Reinsel (1989) discuss estimation
when the g;7s follow an autogressive process.

2.3. Longitudinal Methods for Discrete Data

Many longitudinal clinical trials collect repeated outcomes which are not
Gaussian. The epilepsy and opiate clinical trials are examples in which the
repeated responses are seizure counts and binary opiate-use responses at
repeated times post-randomization. Broadly speaking, models for discrete
longitudinal data can be separated into three categories: marginal, random
effects, and transition models.

Marginal models focus on estimating the effect of a set of covariates
on the average response in a population. Liang and Zeger’s (1986) gener-
alized estimating equation (GEE) approach is the seminal work in this
area. They extend the generalized linear and quasi-likelihood models (Mc-
Cullagh and Nelder, 1989), regression models for discrete and continuous
outcomes, to the longitudinal setting. Denote p; as the mean of the jth
response on the ith subject. In the terminology of generalized linear mod-
els, the mean can be related to a set of covariates through a link function,
h, where h(p;) = h(E(y;) = Xi; 8. The relationship between the variance
and mean is specified as Var( Y;) = ¢g(u;) and the correlations on obser-
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vations taken on the same subject are modeled by the function Corr( Yy,
Y;) = p(a), where the parameter vector o characterizes this function.
The approach is attractive in that both continuous and discrete response
variables can be modeled by choosing / and g in an appropriate way. For
Gaussian longitudinal data like FEV, in the IPPB trial, h(u;) = p; and
g(p;) = 1. For binary longitudinal data as in the opiate clinical trial, 7 and
g may be chosen as A(u;) = logit(u;;) and g(u;) = w1 — ;). For repeated
count data like in our epilepsy clinical trial, #(u;) = log(u;) and g(p;) =
w;- The appeal of the GEE approach is that although a model for the
correlation and variance structure of the longitudinal observations must
be specified, inferences are not sensitive to the assumed model. Liang and
Zeger propose the use of a robust variance estimator which produces the
correct asymptotic inference even when the correlation structure is misspe-
cified. Diggle, Liang, and Zeger (1993) apply the GEE approach to analyze
an epilepsy clinical trial where the outcome is repeated seizure counts.
Random effects models have been proposed for modeling discrete
longitudinal data (Zeger, Liang, and Albert, 1988, among others). Pa-
tient-to-patient variability is modeled by adding random effects as linear
predictors in the regression terms in a generalized linear model. These
random effects models generalize the standard random effects models for
Gaussian data and are often referred to as generalized linear mixed mod-
els. As in the linear mixed models discussed in the previous section, gen-
eralized linear mixed models can be viewed in two stages. In the first stage,
the mean response for the ith person is w; = h(Ylvi) = X§iB + Zfjvi, and
the conditional variance is specified as var(Y;) = ¢g(u;). In the second
stage, a distribution for the random effects is assumed to be normal with
mean 0 and variance D. The generalized linear mixed model encompasses
a wide range of random effects models. The linear mixed model, obtained
with h(u;) = p;;, can be used to analyze the IPPB trial data. A random
effects model for logistic regression, obtained with A(u,;) = logit(u;;) and
g(py) = w1l — py), can be used to analyze the opiate clinical trial data.
Likewise, a random effects model for count data, obtained with A(y;) =
log(p;) and g(u;) = py, can be used to analyze the epilepsy trial data.
These models have been discussed by a number of authors (Zeger, Liang,
and Albert, 1988; Zeger and Karim, 1991; Breslow and Clayton, 1993,
among others). Covariates such as treatment group can be interpreted as
the effect of treatment on an individual’s average response. This is in con-
trast to marginal models where the effect of covariates is on the population
averaged mean response. For this reason, Lindsey and Lambert (1997)
have argued that random effects models are more appropriate than
marginal models for analyzing data in longitudinal clinical trials.
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A third approach for analyzing longitudinal discrete data is transi-
tional models. They examine the effect of covariates on the transition pat-
terns in binary or categorical longitudinal data. Specifically, for binary
data, as in our opiate trial, these models reduce to lagging previous
observations in a logistic regression,

q

logit P(Yi =1 Yi1, Yia, oo, Yig) = XiB+ D OYui  (2)
k=1

where ¢ is the order of the Markov dependence (Cox, 1970). This model has

been used to analyze the opiate trial data by Follmann (1994) and by Albert

(2000). Transitional models have been generalized to generalized linear

model outcomes by Zeger and Qagqish (1988), and to ordinal data by

Diggle, Liang, and Zeger (1993).

3. MISSINGNESS IN LONGITUDINAL CLINICAL TRIALS:
TERMINOLOGY

There is a distinction between two types of missingness in longitudinal
studies: dropout and intermittently missed observations. Dropout refers to
the case when an individual ceases to participate in the study due to loss to
follow-up or death. Dropout occurs for both reasons in our examples.
Dropout in the opiate trial occurs when patients refuse to participate (i.e.,
return for scheduled visits) after being randomized in the study. Patients in
the epilepsy clinical trial drop out when they withdraw from the study and
leave the hospital. Patients in the IPPB trial drop out because of death or
refusal to return for follow-up visits. Intermittent missingness occurs when
individuals miss particular follow-up visits, but do not withdraw from the
study. In the opiate clinical trial, many subjects miss particular visits and
then return for additional follow-up visits. In the IPPB data, many obser-
vations are missed, followed by subjects returning and then dropping out
from the study due to death or withdrawal from the study. Missing data
mechanisms in which patients do not return after having missed an obser-
vation are called monotonically missing mechanisms. Similarly, missing
data mechanisms in which patients return after having missed an obser-
vation are called non-monotonic missing data mechanisms.

Missing data can be missing for various reasons which may relate to
the actual longitudinal responses. Little and Rubin (1987) classify missing
data into three categories. First, data are missing completely at random
(MCAR) if the missing data mechanism is independent of both the ob-
served and actual missing values. Second, data are said to be missing at
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random (MAR) if the occurrence of missing data relates to the values of
the observed responses, but not on the values of the missing observations.
Last, data are missing nonrandomly if the probability of missing depends
on the actual value of the missed observation. Little and Rubin (1987)
have coined the phrase ignorable missingness to describe MCAR and
MAR missing data mechanisms and nonignorable missingness to describe
nonrandomly missing data mechanisms in which the probability of miss-
ingness depends on the actual value of the missed responses. The terms
ignorable and nonignorable missingness refer to the fact that likelihood-
based methodology is insensitive to ignorable missing data mechanisms,
but will be biased when missing data are nonignorable.

In longitudinal clinical trials, a special type of nonignorable miss-
ingness called informative missingness is used to describe a missing data
mechanism in which the distribution for both the repeated response and
the missing process are linked by common random effects. Models that
induce informative missingness are called shared random effects models
(Wu and Carroll, 1988; Follmann and Wu, 1995). These models are
discussed in detail in Section 5.3.

4. IMPLICATIONS OF MISSING DATA ON
LONGITUDINAL METHODOLOGY

Most methods for the analysis of longitudinal data make valid inference
with MCAR data. For MAR data, as was previously mentioned, like-
lihood-based methods are valid. However, moment-based methods, such
as GEE, are biased. This point has been mentioned by various authors,
including Liang and Zeger (1986) in their original paper on GEE. Rot-
nitzky and Wypij (1994) quantify this bias for GEE. Thus, recent method-
ology for analyzing longitudinal data with missingness has focused on
MAR data for GEE and nonignorable missingness for likelihood based
procedures. We discuss these methodologies in Section 5.

5. MISSING DATA IN LONGITUDINAL CLINICAL
TRIALS: GENERAL APPROACHES

5.1. Analyses on Summary Measures

There have been various general approaches proposed for analyzing
longitudinal clinical trials data with missingness. We begin by discussing
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simple summary measures across groups. Dawson and Lagakos (1993)
propose an approach which involves summarizing each individual’s lon-
gitudinal outcome into a single summary measure, and then propose a
non-parametric test which stratifies over the missing data patterns. This
approach is shown to have the correct type I error rate under a wide range
of ignorable missing data patterns. The approach does, however, make the
restrictive assumption that there are only a few missing data patterns
and does not have the correct type I error rate when missingness is non-
ignorable. Unstratified comparisons of summary measurements (e.g., the
comparison of individual summary measures across treatment groups)
have the advantage of allowing for large numbers of missing data patterns
and have the correct type I error rate under certain types of nonignor-
able missingness. The disadvantage of unstratified tests, as mentioned by
Dawson (1994), is that they have substantially less power than stratified
tests. In the IPPB study, for example, interest focuses on comparisons
of rate of change in FEV; across treatment groups. There are too many
missing data patterns in this relatively long sequence to perform a stratified
test. Unstratified tests that compare summary measures between treatment
groups can be done by estimating each individual slope and comparing
these slopes across treatment groups. The IPPB data was originally ana-
lyzed in this way. Similarly, the original analysis in the epilepsy clinical
trial was a comparison between average individual seizure frequency be-
tween treatment arms. Wu and Carroll (1988) show that such an unstrat-
ified comparison produces unbiased estimation of treatment effects even
under certain types of nonignorable missing data mechanisms. They point
out, however, that tests based on these unstratified comparisons can have
low power, particularly in situations like the IPPB data where there is very
large variation across individuals in the number of available observations.
Wu and Carroll (1988) propose a modeling strategy for informative miss-
ing data which does not suffer from this low power which will be discussed
in Section 5.3.

Follmann, Wu, and Geller (1994) propose approaches for testing
treatment efficacy in clinical trials with repeated binary measurements with
missing data. The methods they discuss include (1) rank tests between
treatment groups where the unit of analysis is each subject’s average ob-
served binary response, (2) a combined test of missingness and efficacy
using a multivariate rank test (O’Brien, 1984), where the units of analysis
are the subject’s average observed binary response along with the subject’s
estimated proportion of missed visits, and (3) simple imputation where
missed responses are replaced with positive responses (this method makes
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the assumption that missed visits if they had been observed would have
resulted in positive opiate tests).

5.2. Selection Versus Pattern Mixture Models

Two very general classes of models have been proposed for modeling lon-
gitudinal data with nonignorable missingness. Little (1995) discusses the
distinction between selection models and pattern mixture models for
modeling longitudinal data with missingness. Denote Y; = (v, Vio, - - - »
i) as the complete data vector for the ith subject, M; as a vector of indi-
cator variables which represent the missing data status, and X; as a vector
of covariates which could include a treatment indicator as well as base-
line or time-dependent covariates. For both classes of models, maximum-
likelihood estimation involves parameterizing the joint density of the
complete data and missing data indicator vector, f(Y;, M;). For selection
models,

S5, Mi | X5) = g(Yi | Xi)A(Mi ] Yi, XG). (3)

Estimation follows by maximizing the joint density of the observed data
and the missing data vetor, /(Y{, M;) = >_(Y/, Y, M;), where Y; and Y;”
are vectors of observed and missed observations, respectively, and the
summation is taken over all possible occurrences of the binary missed
observations.

In selection models, the complete data distribution of the Y;i’s is
parameterized separately from the missing data mechanism conditional on
the complete-data vector. Parameters in this formulation have a natural
interpretation. Parameters for g(Y;/X;) address the scientific question of
interest, namely, the effect of treatment on the complete-data vector Y;.
Parameters for #(M;|Y;, X;) characterize the nonignorable missing data
mechanism.

Various authors have proposed selection models in which the miss-
ing data mechanism depends on the repeated responses Y;, either observed
or missing. Diggle and Kenward (1994) propose a model for continuous
Gaussian data with nonignorable dropout. They parameterize g as a mul-
tivariate Gaussian and /i as a logistic regression which characterizes the
probability of dropping out at the jth time point. Specifically, the proba-
bility of dropout is modeled as

q
logit P(ith subject drops out at time j) = f, + f,v; +Z Biyij—k- (4)
k=1
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For these dropout models, testing whether ;1 = 0 would be a test of
whether dropout was non-ignorable. Testing whether ; = f, = - -~ = fi4
= 0 would be a test of whether dropout was completely at random.
Molenberghs et al. (1997) extend this model to repeated ordinal data and
propose an E-M algorithm for parameter estimation. Troxel et al. (1998)
proposes methodology for analyzing repeated continuous data with non-
montone missingness (e.g., intermittent missingness). This methodology is
well suited for a situation where we have short sequences of continuous
data on each subject. In the spirit of these models, Albert (2000) propose a
transitional model for binary data subject to nonignorable missingness.
This work extends work by Conaway (1993) to allow for long sequences of
repeated binary data with both nonignorable dropout and intermittent
missing data as in our opiate dependence trial. In (3), g is a transitional
model as in (2), and the dropout mechanism / is modeled as a three state
Markov chain (states corresponding to the binary response observed, in-
termittently missed, or dropout) which depends on the current value of
the binary response. An E-M algorithm is implemented for parameter es-
timation.

For pattern mixture models, the joint probability of Y; and M;
given X; is decomposed as

S, Mi | Xi) = g(Yi | M, X6)2(MG | XG) (5)

where /& parameterizes the missing data pattern and g the complete-data
distribution conditional on the missing data pattern. For example, Little
and Wang (1996) propose a pattern mixture model for dropout in which g
is a multivariate normal whose parameters are indexed by dropout time,
and / is a multinomial which characterizes the marginal distributions of
dropout times. Inferences about treatment effect can be made by compar-
ing the parameters of g across treatment groups (i.e., an analysis which
stratifies by dropout time) or by comparing functions of the marginal
complete-data likelihood by averaging the g over the missing data pattern.
In the case of a saturated model, this approach reduces to an unweighted
analysis.

5.3. Shared Random Effects Models and Informative
Missingness

In longitudinal clinical trials, repeated measures are often highly variable
over time. Rather than modeling the missing data mechanism directly as a
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function of Y;, as in the selection models discussed in the previous section,
Wu and Carroll (1988) exploit the fact that we have repeated responses on
each individual to model the missing data mechanism in terms of features
of an individual’s underlying response process. They propose methodology
in which informative dropout is accounted for by introducing random
effects that are shared between the model for the longitudinal observations
and the dropout mechanism. Thus, the missing data mechanism depends
on an individual’s underlying response process as opposed to the actual
responses. Let d; denote the dropout time for the ith subject. The joint
distribution of (Yj, d;, 3;| X;) can be factored as

S, di, 3| X6) = g(Yi | Xi, Bk (B | Xi)h(di | X3, Yi, 33) (6)

where h(d;| X;, Y;, B;) is assumed to depend on Y; only through (3;, i.e.,
h(d;| X5, Yi, B) = h(d;| X, By)-

These models were first proposed by Wu and Carroll (1988) for
modeling nonignorable dropout and have been referred to as random
coefficient selection models (Little, 1995). Wu and Carroll (1988) propose
their methodology in the setting of a two group longitudinal clinical trial
where interest focuses on comparing change over time in the presence of
informative dropout. They proposed a random effects model with a ran-
dom intercept and slope (e.g., a random vector 3; = (f1;, f2;) for the ith
subject). The dropout mechanism was modeled as a multinomial with
shared random effects incorporated through a probit link. Specifically, the
probability of the ith subject dropping out within the first j intervals is pa-
rameterized as P(d; < j) = p; = ¢(o/'B;i + o)), where oo = (ay, arp). Large
positive values of o; or a, correspond to the situation where those indi-
viduals with large intercept or slopes tend to drop out of the study sooner.
They propose jointly estimating the parameters of both probability mech-
anisms using weighted least squares. Others have proposed shared random
effects models of this type. Schluchter (1992) proposed an E-M algorithm
for maximume-likelihood estimation for a model where an individual’s
slope and log survival are assumed multivariate normal. Mori et al. (1994)
proposed a model where the slope of continuous repeated data is related to
the number of observations on each subject though a shared random
effect. Similarly, Follmann and Wu (1995), Ten Have et al. (1998), and
Pulkstenis et al. (1998) have proposed shared random effects models for bi-
nary longitudinal data subject to missingness. Albert and Follmann (2000)
proposed a shared random effects model for repeated count data with in-
formative dropout.
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Wu and Bailey (1989) proposed an alternative approach to account
for informative dropout which conditions on the dropout times. In this
approach, they model the joint distribution of Y; and 3; given d; and X;.
Specifically,

.f(YhBi | div Xl) = g(Yl | Bia dia Xia )’n(ﬁi | di7 Xi)v (7)

where g(Y;|Bi, di, X5) = g(Y;|B;, Xj). Little (1995) mentions that this
approach fits into the class of models he calls random coefficient pattern
mixture models. Wu and Bailey (1989) illustrated that the shared random
effects model (6) can be well approximated by the conditional models (7).
They approximated (3;/d; as normal with constant variance and with mean
given as a polynomial expression of d;, where the variance and polynomial
are estimated separately in the two treatment groups. Follmann and Wu
(1995) proposed a conditional model for analyzing binary longitudinal
data with non-monotonic missing data mechanisms. Albert and Follmann
(2000) proposed similar methodology for analyzing repeated count data.
They developed three approaches: a full shared random effects model, a
likelihood-based, conditional approach, and a GEE-based conditional ap-
proach, and applied these approaches for analyzing the epilepsy clinical
trial data. Wu and Follmann (1999) discussed a generalization of the condi-
tional model to more closely approximate the shared random effects model
when the missing data mechanism is generated through time-dependent
shared random effects models.

The shared random effects models are inherently different from the
selection models discussed in the previous section. Unlike the selection
models in which the missing data mechanism depends on actual (either
observed or missed) response values, the missing data mechanism for the
shared random effects model depends on an individual’s propensity to
respond (i.e, an individual’s random effect). The choice of model formu-
lation may depend on the scientific problem. Longitudinal data in which
missingness is believed to be related to the actual observations (such as the
opiate trial in which addicts may miss visits because they took drugs and
know that there is a high likelihood that they would test positive) may be
more appropriately modeled with a selection model. Longitudinal data
in which missingness is believed to be related to an individual’s disease
process and not a particular realization of this process are better modeled
by a shared random effects model. Shared random effects are particularly
appropriate for modeling longitudinal data in which the response is highly
variable over time. Examples include the epilepsy and the IPPB clinical
trials in which dropout and missingness are most likely related to an
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individual’s underlying seizure process or chronic lung disease process, and
not to a particular daily seizure count or lung function measurement.

5.4. GEE with Missingness

As discussed previously, GEE is a useful method for analyzing discrete
and continuous longitudinal data when the mean response is of primary
interest. Unlike likelihood-based methodology, however, GEE produces
biased parameter estimates when data are missing at random. Rotnitzky
and Wypij (1994) developed expression which can be used to quantify
this bias in various settings. Robins et al. (1995) proposed an extension
of GEE that allows for unbiased parameter estimation for MAR data.
They propose a class of weighted estimating equations which result in
consistent estimation of mean structure parameters with a correctly spec-
ified missing data mechanism. Their approach reduces to a weighted ver-
sion of GEE in which each element of the residual vector (Y; — py) is
weighted by the inverse of the probability of having a positive response.
Paik (1997) discusses alternative GEE based methodology that allows for
unbiased parameter estimation for MAR data. She proposes imputation
techniques, in which missing observations are imputed in the data set.
More recently Rotnitzky, et al. (1998) have proposed GEE estimation for
nonignorable missingness.

6. ANALYZING LONGITUDINAL GAUSSIAN DATA
WITH MISSINGNESS: IPPB TRIAL

The primary objective in this trial was to compare the rate of change in
(FEV,) over time between standard nebulizer therapy and the experimen-
tal IPPB treatment for patients with obstructive pulmonary disease. The
trial was designed to test for a change in average slope between the two
treatment groups at the end of the study. Analysis was complicated by the
large amount of potentially informative dropout (e.g., censoring due to
death or loss to follow-up) and intermittently missed observations. The
mean number of missed observations is slightly smaller in the IPPB treat-
ment group (3.65 out of 13 in the IPPB group and 4.56 out of 13 in the
standard compressor nebulizer therapy group; P < 0.001, Wilcoxon rank
sun test). In addition, individual estimates of the slope of FEV; (rate of
change in FEV,) were positively correlated with the number of missed
visits for the IPPB group (Spearman r = .10, p = 0.04) and essentially
uncorrelated for the standard therapy group (Spearman r = —0.03,
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p = .53). We examined the effect of treatment on linear change in FEV,
with three analyses. First, we fit a linear mixed model (Laird and Ware,
1982) to these data. Second, we compared average individual estimated
slopes between the two treatment groups. Third, we fit a conditional model
which adjusts for potentially informative missingness.

We model the longitudinal FEV, data with the linear mixed model.
This approach results in valid inference if missingness is ignorable. The
model is

Yi = Bo + Bty + B Ti+ B3 Tity + vio + vty + & (®)

where ¢; ~N(0, 62) and vi = (yio, 1) ~iid N (0, D), T; is equal to
1 when the ith subject was randomized to IPPB treatment and equal
to 0 when randomized to standard compressor nebulizer therapy, and
t; is the time from randomization for the jth follow-up time on the
ith subject. The coefficient f/; measures change over time, f, measures
the treatment differences at baseline, and f5 the treatment differences
over time. The two random effects y,y and y;; reflect individual departure
in baseline FEV; measurements and slope, respectively. In addition, the
diagonal elements in the random effects covariance matrix D summarize
the between subject variation in baseline and slope measurements.

We transformed the outcome variable to the log-scale since the
outcome was close to being normally distributed on that scale. We fit this
model using the linear mixed models routine in SPLUS (SPLUS version
4.0) The parameter estimates were: B, = —.0471 (SE = .0172), B, =
—.00331 (SE = .000355), B, = .0203 (SE = .0241), and B; = —.00014
(SE = .00049). The test of whether f5 is zero provides a test of treatment
effect; the Z value was —.28, which suggests that there is no effect of
treatment on change in FEV, over time.

An alternative to the linear mixed model analysis is a two-stage un-
weighted analysis in which average individually estimated slopes are
compared across treatment arms. Although this approach is valid when
missingness is informative (Wu and Bailey, 1989), it can be highly ineffi-
cient because all subjects’ data are weighted equally (e.g., a subject with
only 2 observations gets the same weight in the analysis as a subject with
13 observations). We compared the differences in the slope estimates be-
tween the IPPB treatment group and the standard compressor nebulizer
therapy group. The difference in average slope by the simple method was
computed as —.0000605 (SE = .0010). We compare this value to our esti-
mate of P;. Although both approaches result in insignificant effects, the
resulting standard error in the simple two-stage approach was twice as
large as the standard error obtained with the random effects approach.
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In the third approach we condition on the number of missed obser-
vations (Wu and Bailey (1989)). Denote m; as the number of missed obser-
vation on the ith subject. We implement the conditional approach by fitting
the linear mixed model

Yi=Bo+ Bity + BoTi + B3 Tityy + Bami + BsTim; + Betymy
)
+ By Titymi + vio + Vi lij + &

where ¢; ~N(0, 03) and y; = (vi, vi1) ~iid N(0, D). This model was fit
using the linear mixed modeling routine in SPLUS. The effect of treat-
ment on average slope can be assessed by comparing slope values
averaged over m; across treatment groups. Specifically, we can assess
this effect through the quantity iz + [f¢ (m; — mg) + fym; where m
and m g are the average number of missed observations in the IPPB and
the standard therapy groups, respectively. This was estimated as
—.000640 and the standard error was estimated by bootstrap as .000677.

Each of the three approaches demonstrates a nonsignificant differ-
ence between mean slopes (where the average slope is slightly more
negative in the IPPB treatment than in the standard compressor nebulizer
therapy group) in the two treatment groups. These results are slightly dif-
ferent from the previously reported results (Intermittent Positive Pressure
Trial Group, 1983), where the slopes were estimated as slightly more
negative in the standard treatment group than in the IPPB treatment
group. This small difference may be due to the fact that the prior compar-
ison was based on analyzing FEV; on the original scale and on weighting
each individual’s slope by the number of observations present.

For our three analyses, the standard error was smallest for the linear
mixed model which does not account for potentially informative missing-
ness. The standard error was approximately twice this value for the simple
unweighted analysis which adjusts for informative missingness. The con-
ditional model which adjusts for informative missingness is substantially
more efficient than the unweighted analysis (i.e., this standard error was
0.68 times that of the unweighted analysis).

7. ANALYZING LONGITUDINAL BINARY DATA
WITH MISSINGNESS: OPIATE TRIAL

The opiate clinical trial had substantial amounts of dropout and inter-
mittent missingness and dropout. Over 50% of patients dropped out of

Copyright n 2004 by Marcel Dekker, Inc. All Rights Reserved.



the study prematurely. All patients had at least one intermittent missed
visit before dropping out or completing the study. We will focus on a key
comparison, the comparison of the low-dose methadone (20 mg) group
with the experimental buprenorphine treatment group.

Follmann, Wu, and Geller (1994) discuss simple summary measure
comparisons for assessing treatment effect in the opiate trial. They show
that the estimated proportion of positive tests is correlated with the es-
timated missing data rate, and that this correlation is greater in the
buprenorphine group (r = .51 and .18 in the buprenorphine and metha-
done group, respectively). The average estimated proportion of positive
tests (among nonmissed tests) was .49 and .69 in the buprenorphine and
methadone groups, while the average estimated proportion of missed visits
was .48 and .58 in these two groups, respectively. All tests of summary
measures that involve the comparisons of the proportion of positive re-
sponses between the two groups were statistically significant. Z values for
(1) a rank tests of average proportion of positive responses, (2) tests of the
average proportion of positive response or missing (simple imputation),
and (3) O’Brien’s rank test (O’Brien, 1984) for the multiple endpoint of
proportion of positive responses and proportion of missed visits, were
—3.01, —3.48, and —2.70, respectively.

Follmann and Wu (1995) propose a conditional model for for
examining treatment effect while adjusting for informative missingness.
They fit the generalized linear mixed model

logit E(Yj|b;,m;) = By + B T; + (1 — Ti)wom; + Tiwoym;

(10)
+ (1 = Ti)byi + Tiby,

where m; are the number of missed visits and b; is a vector of treatment
group specific random effects with mean 0 and a diagonal covariance
matrix. In addition, the indicator Ti denotes whether a patient is in the
buprenophine group. Follmann and Wu (1995) propose parameter esti-
mation assuming a nonparametric mixture for the random effects using
methodology described by Follmann and Lambert (1989). More typically,
a Gaussian mixture can be assumed and Gaussian quadrature can be used
for parameter estimation (e.g., Ten Have et al., 1998). Inference about
treatment efficacy can be made by averaging summary statistics over m;.
Follmann and Wu (1995) assess treatment effect using the statistic

1 A 1 -
— > E(Yu |bi,my) —— > E(Y |bi,my), (11)
mo no =0
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where ng and n; are the number of patients in group 0 and 1, respectively,
and where b; are empirical Bayes estimates of the random effects. Standard
errors for this statistic were computed using the bootstrap. For the opiate
clinical trial data a Z test based on the above statistic divided by its
standard error was —3.85, which demonstrates a highly significant treat-
ment effect.

An examination of the opiate trial data suggests that addicts may
have periods without opiate-use separated by bouts of opiate-use. Albert
(2000) develops a transitional model for binary longitudinal data which
allows for nonignorable intermittent missing data and dropout. This is a
selection model where the complete data are modeled through a transi-
tional model, and the missing data mechanism is modeled as a first order
Markov chain whose parameters depend on the current response value.
Unlike the approach of Follmann and Wu, 1995, intermittent missingness
is modeled separately from dropout, and the probability of missingness is
assumed to depend on the actual value of the response (either observed or
missing), and not the propensity to have a positive response. In addition,
this model adjusted for day-of-the-week effects. Specifically, the transi-
tional model is

lOgit P( )/[, == 1 | Y[‘f_]) == 180 + ,81 T[ + ﬁzMOn[[ + ﬁ3Wed,[

(12)
+ ByYi—1 + BsTi Y

where Mon;, and Wed;, are indicator functions which are 1 when the tth
visit for the ith subject is a Monday or Wednesday, respectively. The non-
ignorable missing data mechanism is modeled with a multinomial logit
transformation of the probability of changing missing data status over
visits. Specifically, we model

¢ (l,m)
S 1 b(l,m)

where ¢(1, 1) is constrained to be 1, ¢(2,0) = ¢(2, 1) = 0, and

d)(la m) = eXp(VOlm + Viim T + Y2im Yi + y3lmTi Yif)> (13)

and where M;, = 0, 1, or 2 when the ith subject rth observation is observed,
is missing intermittently, or is missing due to dropout, respectively.
Including treatment group 7; by response Y, interactions in (13)
allows for different nonignorable missing data mechanisms in the two
treatment arms. These interaction terms were highly significant for the

P(M,-, = mlMit—l = la Yit) =
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opiate data. A global test of treatment effect can be obtained by jointly
testing whether §; and f5 are zero. A test of 5 equal to zero was not sig-
nificant (Z = 1.25) while a test of §; was highly significant (Z = 6.37). This
suggests that the opiate process for patients on buprenophine is signifi-
cantly different the process when patients are on methadone. The transi-
tional model can then be used to derive summary measures of the opiate-
use process that can be compared across treatment groups. Specifically, we
estimated the average proportion of positive responses as .61 (SE = .055,
obtained with a nonparametric bootstrap) and .34 (SE = .048) for the
methadone and buprenorphine groups, respectively. In addition, we
estimated the time to the first occurrence of a positive urine test 4 weeks
after randomization as 1.75 (SE = .31) and 4.48 (SE = .89) for the metha-
done and buprenophine groups, respectively. These summary measures
demonstrated a large beneficial effect of buprenophine over the standard
methadone treatment.

8. ANALYZING LONGITUDINAL COUNT DATA
WITH DROPOUT: EPILEPSY CLINICAL TRIAL

Theodore et al. (1995) discussed this trial, which was designed to assess the
effect of Felbamate on seizure frequency in patients with intractable partial
epilepsy. Patients recruited to this trial had difficulty controlling seizures
while on their current antiseizure medications. Patients were taken off their
prior medications and randomized to either placebo (n = 21) or Felbmate
(n = 19). Treatment was titrated to full dosage over a 3 day period and pa-
tients were followed to monitor daily seizure frequency over an additional
14 day period. A complication of this trial was the large amount of dropout
and the large heterogeneity in seizure counts. Time to dropout was earlier
in the placebo group, but the difference was not statistically significant
(p = .21 with a log-rank test). Theodore et al. (1995) discuss various anal-
yses including a rank test to compare the mean daily seizure counts
between treatment groups. Albert and Follmann (2000) propose method-
ology for analyzing repeated count data subject to informative dropout.
In particular, a shared random effects model was developed where the
repeated count data and the dropout mechanism were jointly modeled
by including random effects which are shared between the two proba-
bility mechanisms. In addition, conditional likelihood approaches (like-
lihood and GEE methods) which condition on the dropout times were
developed.
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We focus here on the likelihood-based conditional model. We fitted
the generalized linear mixed model (see Albert and Follmann (2000) for
details),

logE[Y; | bi,di] = By + B T + wilog(di) (1 — T)

(14)
+mlog(dy)T; + (1 — Ty)bi + Tibin

where the choice of a log transformation for the dropout time was made by
examining a plot of mean seizure counts by dropout times in each of the
two treatment groups. The estimate of w; in (14) was highly significant,
while the estimate of #; was not significant. This suggests that the infor-
mative dropout mechanism is different in the two treatment arms. Treat-
ment effect was assessed using a summary measure which was averaged
over the dropout times. Specifically, the test statistic was based on

p = Er,_ [logE(Yn |bi)] — Er,_,[logE(Ya | bi)]. (15)

The treatment effect p was estimated by averaging over the dropout times
p=>_ EllogE[Ya|d;bi)|bi]/ny — > E[logE[Y | di,b]|bi]/no,

Ti= Ti=o
(16)

where

EllogE[Yji |di, i) [bi] = By + B T; + dnlog(di) (1 — T)) "

+ 1 log(d;) T (7
and where ny and n; are the sample sizes in the placebo and treatment
groups, respectively (ng = 19 and n; = 21). Standard errors were estimated
with the bootstrap. The analysis in Albert and Follmann (2000) resulted in
a Z statistic of 1.68, which was not statistically significant at the .05 level.
Although the rank test suggested a significant effect, based on the analysis
with the conditional model, we should be cautious in concluding that
Felbamate is effective in this population. More studies are needed to
confirm the positive effect of Felbamate.

9. CONCLUSIONS

This chapter discusses recent methodology for analyzing longitudinal data
subject to missingness. We reviewed the various types of missing data and
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discussed how these types of missingness affect various methodologies
for analyzing longitudinal data. We also discussed various techniques for
analyzing continuous and discrete longitudinal data in clinical trials sub-
ject to ignorable and nonignorable missing data.

Data analysis in this paper was done using S-Plus (Version 6.0). S-
Plus code for some of the examples in this paper is included in the ap-
pendix of Albert (1999). In addition, a general discussion of software for
the analysis of longitudinal data is presented in section 7 of Albert (1999).

A major difficulty in analyzing longitudinal data with missingness is
that it is difficult to examine the adequacy of models for missingness.
Diggle (1989) proposes a test for random dropouts in repeated continuous
longitudinal data that can be used to examine whether dropout depends
on the past history of the observed process or occurs completely at ran-
dom. However, it is well recognized that methods that account for non-
ignorable missing data are very subject to modeling assumptions (Laird,
1988; Little, 1995, and more recently, Scharfstein et al. (1999)). Thus, one
approach for analyzing longitudinal clinical trial data with missingness is
to model this missingness in various ways and examine the sensitivity of
the treatment effect to these modeling assumptions (as we did with the
IPPB and opiate clinical trials, for example). Consistent treatment effects
under a wide range of missing data models will reassure the investigator
that the treatment effect is most probably valid.
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Statistical Issues Emerging from
Clinical Trials in HIV Infection

Abdel G. Babiker and Ann Sarah Walker
Medical Research Council Clinical Trials Unit,
London, England

1. INTRODUCTION

The first randomized trial of antiviral therapy in HIV type 1* infection
included 282 patients with AIDS or advanced AIDS-related complex
(ARC) and was stopped early in 1986 after an average follow-up of 4
months because of a substantial reduction in mortality in the group who
received zidovudine (ZDV) (Fischl et al., 1987). The era of anti-HIV
treatment had begun. This chapter will discuss some of the issues faced by
clinical trialists and governmental regulatory agencies in the evaluation of
therapies for HIV disease over the subsequent years as new anti-HIV
drugs have been developed requiring evaluation in clinical trials.

A number of features specific to HIV infection have influenced trial
design and interpretation. Even without treatment, the disease has a long
asymptomatic phase, on average about 10 years. During this time HIV-
infected individuals are essentially well although some laboratory markers,
principally the CD4 lymphocyte count and viral load, as measured by HIV
RNA in plasma or serum, are indicative of disease progression. As the

* Throughout, HIV will be used to denote HIV-1.
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disease progresses, individuals become increasingly susceptible to a num-
ber of different opportunistic infections and tumors, some of which are life
threatening. They may also develop a number of nonspecific symptoms
(e.g., fever and weight loss) and hematological and neurological symptoms
which may be due to the direct effect of HIV.

It is difficult to find exact parallels between HIV and other diseases.
The design of current treatment strategies reflects present ideas about
development of drug resistance which have much in common with the
chemotherapy of tuberculosis and malignant tumors. However, the need
for long-term suppressive therapy, which is likely to be an essential feature
of the management of the disease, has much in common with other chronic
diseases such as diabetes, hypertension, rheumatoid arthritis, ulcerative
colitis, and multiple sclerosis. An additional factor not present in many
chronic diseases is the substantial toxicity and burden to the patient of the
current effective highly active antiretroviral therapies (HAART). In par-
ticular, over the last few years it has become apparent that a substantial
proportion of patients taking HAART long term are suffering from
metabolic abnormalities and/or significant fat redistribution (“lipodys-
trophy”) that, in combination with other risk factors, may put them at
higher risk of cardiovascular disease (Shevitz et al., 2001; Egger et al.,
2001). The balance between assessing short-term effects of treatment
regimens and long-term effects of treatment strategies [essentially the dif-
ference between testing the direct effect of a treatment regimen under
idealized conditions (efficacy) and pragmatic trials of effectiveness which
assess the impact of a treatment regimen in clinical practice] has yet to be
found.

Many of the issues discussed in other chapters, such as the analysis of
failure time and longitudinal data, methods for multiple endpoints and
early stopping, and methods for assessing compliance, are highly relevant
to clinical trials in HIV infection. HIV trials face several other practical
problems which affect their design and analysis and may threaten their
successful outcome (Ellenberg et al., 1992; Foulkes, 1998; Albert and Yun,
2001).

As many HIV-infected individuals take large numbers of drugs (both
antiretrovirals and prophylaxis), there has been considerable interest in
trial designs which maximize the information gained on drugs while
minimizing the number of participants involved and the time spent on
inferior drug combinations. Factorial designs are attractive to HIV re-
search for two reasons. First, they are the only trial designs that allow
investigation of synergistic or antagonistic interactions when these are
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thought to exist: second, when interactions are assumed to be small, mul-
tiple drug effects may be estimated more efficiently in one trial (DeGruttola
et al., 1998; Ellenberg et al., 1992; Schoenfeld, in Finkelstein and Schoen-
feld, 1995). However, they do have lower power to detect interactions than
main treatment effects. When the same endpoint is used to compare more
than one treatment regimen, the sample size required to assess one treat-
ment effect must be inflated to incorporate the likely smaller number of
events due to both effective treatments. For fixed power, the inflation
factor is the ratio of the probability of an event in a nonfactorial trial where
there is only one effective treatment to the probability of an event in the
factorial trial where both treatments are effective. Therefore in a 2 X 2
factorial trial, where treatments 1 and 2 have hazard ratios o and P,
respectively, compared with placebo, and 1 — = is the event rate on the
double placebo arm on which the sample size is based, the inflation factor
can be shown to be

2x(2—mn—n"
4—n—n*—qf — b’

The inflation factor is only large when event rates are low and treatments
moderately efficacious. A practical (rather than statistical) method for
reducing patient time spent on inferior drug combinations has been the
increasing use of coenrollment in more than one protocol of a clinical trials
organization (Larntz et al., 1996). Coenrollment can be more realistic than
factorial designs in HIV infection, where the type of interventions to be
tested depend on disease stage. However, factorial designs have great
potential for trials in HIV infection, in particular in small populations
such as children, and also to simultaneously assess different types of
treatment strategies, such as testing two regimens of antiretroviral drugs
together with two criteria for defining treatment failure and change of
treatment.

Regardless of general trial design, the endpoints used to evaluate
anti-HIV therapy have changed markedly over the last 15 years. End-
points used in HIV trials to date include mortality, various measures of
morbidity, biological markers of disease progression (surrogate markers),
and adverse events. Mortality is the natural choice of endpoint in the
definitive evaluation of therapy in a fatal disease such as HIV. It is clearly
relevant to patients, it is a unique endpoint, and all trial participants are
at risk. However, trials using death as an endpoint need to be much larger
and last longer than trials which use earlier endpoints. With the advent of
HAART in clinical practice from 1997 [usually consisting of at least two
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nucleoside analog reverse transcriptase inhibitors (NRTI), with an addi-
tional drug which is usually either a nonnucleoside analog reverse tran-
scriptase inhibitor or a protease inhibitor], the use of survival as the
primary outcome is likely to be impractical, except in patients with late
HIV disease.

As a result, the most commonly used clinical outcome measure is
time to the first new AIDS-defining event or death. Delaying the onset of
the first AIDS event and preventing subsequent new AIDS events is
certainly clinically relevant. However, two issues remain: (1) the impli-
cations for the size and duration of the trial and (2) the composite nature
of this endpoint. Although progression to a new AIDS-defining event or
death is more common than mortality, with the advent of HAART this
endpoint is likely to be rare enough to still require large numbers of
patients to be recruited and followed over a long period, particularly in
early HIV disease. However, several international trials with AIDS as a
primary clinical endpoint are currently recruiting patients (see, for exam-
ple, Emery et al., 2002). Some trials in the early 1990s used other (non-
AIDS) clinical events (such as AIDS-related complex, ARC) in addition
to AIDS or death. These events may provide early evidence of a treat-
ment effect, but their usefulness is questionable because they are largely
subjective relatively minor symptoms and are clinically much less im-
portant than AIDS. AIDS-defining illnesses, in contrast, are more clin-
ically relevant and can more easily be assessed objectively. However,
the current definition of AIDS includes a variety of over 20 different
conditions including opportunistic infections and malignancies (Centers
for Disease Control, 1992) in addition to a CD4 cell count of less than
200 cells/ml (ignored for the purpose of this discussion). A major issue in
using progression to a new AIDS defining event or death is the composite
nature of this endpoint, which treats all events equally regardless of their
clinical significance. Furthermore, information on second or subsequent
AIDS events are ignored (or sometimes not even collected) as is the total
number of events experienced by a participant. In the Delta trial (Delta
Coordinating Committee, 1996) a total of 1451 AIDS-defining events and
498 deaths were observed in 2765 participants who were AIDS-free at
entry. When the relative risks of death associated with different AIDS
events were simultaneously estimated from a Cox proportional hazards
model using the occurrence of these events as time-dependent covariates,
the impact of the different types of AIDS events on mortality ranged be-
tween no effect to an increase of about 20-fold. The composite endpoint
of progression to AIDS or death utilized 936 (48%) of the total observed
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events. Thus one clear disadvantage of the composite endpoint of AIDS
or death is that more than 50% of all events and the great majority of
severe events have not been utilized. Methods for the analysis of multi-
variate failure time data can be used to include all events in the analysis,
and to investigate differences in treatment effects across different AIDS
events (see Section 2).

The use of biological markers of disease progression to assess differ-
ent treatments is attractive because it may provide direct evidence of
treatment activity and lead to smaller and shorter trials. Disadvantages
in using markers to measure treatment effects include their large within-
patient biological variability and problems with quality control. A more
relevant criticism is that a biological marker generally measures activity in
only one mechanism of action of a drug regimen, be it efficacy or toxicity.
Furthermore, the choice of timing of marker measurements and final
clinical outcome will clearly affect the degree to which a marker measures
the treatment effect on the clinical endpoint. There are a number of
examples from other disecases where the inappropriate use of such sur-
rogate markers has led to misleading conclusions and consequently to the
inappropriate treatment of many patients, the most notable being the use
of anti-arrhythmic drugs (see, for example, Fleming and DeMets, 1996).
Candidate markers in HIV include CD4 lymphocyte count and viral load
measured by plasma or serum HIV RNA. CD4 lymphocytes are the main
target of the HIV virus and a key part of the defence against infection
provided by the immune system. Declining numbers of CD4 cells are
therefore associated with an increase in susceptibility to infections to which
a person would not usually succumb (opportunistic infections). HIV RNA
levels in plasma or serum directly measure the number of circulating copies
of the virus, and quantitative plasma HIV RNA measurements are now the
most commonly used primary outcome measures in phase III trials.
Although the prognostic significance of both viral load and CD4 cell count
is beyond dispute (Mellors et al., 1997), neither viral load nor CD4 cell
counts are particularly strong surrogates for clinical outcome in the
evaluation of therapy (HIV Surrogate Marker Collaborative Group,
2000). The assessment of surrogacy of biological markers is discussed in
Section 3.1. However, even assuming surrogacy of a marker, a number of
issues of analysis remain. If a marker is analyzed as a continuous variable,
then repeated measures methods must be employed and informative
dropout accounted for (Section 3.2). HIV RNA levels are also often
reported as below a limit of assay detectability, so this censoring of
continuous data must also be considered. Alternatively, biological markers
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can be synthesized into failure time data; in this case, methods for interval
censored failure time data should be used (Section 3.3).

When drug regimens are taken over the long term, the relative con-
tribution of toxicity and efficacy becomes more important, particularly
when endpoints are markers of efficacy only, such as levels of HIV RNA.
For example, since 1998 a sizeable proportion of individuals infected with
HIV have begun to present with severe disturbances of metabolic param-
eters and body fat redistribution or “lipodystrophy” (both at levels asso-
ciated with increased cardiovascular disease risk) (Carr, 1999; Shevitz et
al., 2001). The precise relationship between these changes and antiretro-
viral therapy is currently unclear, although epidemiological studies are
ongoing (Friis-Moller, 2002). Toxicity data are a second example of mul-
tivariate failure time data with the additional problems of sparse data. The
methods described in Section 2 can be used to investigate the effect of
treatment on the time to multiple adverse events, but may have little power
when there are small numbers of events.

Independently of the choice of endpoint, however, the long asymp-
tomatic phase of HIV infection means that trials which are designed to
evaluate the effectiveness of therapy in early disease need to have long-
term follow-up. To date more than half of the published phase III trials
with clinical endpoints have a median follow-up of 1.5 years or less. Long-
term trials are considered undesirable by many clinicians and patient
groups because of the urgency of making new treatments available, and
the rapid changes in perceptions about therapy. In addition, HIV drugs to
date have demonstrated only transient benefit, and so the emphasis has
shifted to determining efficacy over short periods of time (particularly in
studies sponsored by the pharmaceutical industry for regulatory purpo-
ses). This is achieved through trials of relatively short duration using
endpoints such as biological markers which occur earlier in the disease
and are thus more proximal to randomization. However, there is a clinical
need for extra information beyond that required for regulatory purposes:
It is precisely because the effect of treatment might be of only very short
duration that long-term follow-up is needed to assess durability of the
effect as well as the effectiveness of treatment strategies. The transient
nature of the benefit of ZDV was only established after the completion of
trials with relatively longer duration [the Concorde trial (Concorde
Coordinating Committee 1994), and the extended follow-up of the ACTG
019 (Volberding et al., 1994)]. This has been further confirmed by the
extended follow-up of the Concorde and Opal trials (Joint Concorde and
Opal Coordinating Committee 1998) and the overview of trials of ZDV in
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asymptomatic and early symptomatic infection (HIV Trialists’ Collabo-
rative Group, 1999). The difference between assessing biological efficacy
and clinical effectiveness embodied in the difference between explanatory
and pragmatic trials (Schwarz and Lellouch, 1967) is central to the
arguments for and against longer term follow-up (Schoenfeld, 1996) and
the level of agreement expected between short- and long-term results.
The third, and perhaps the most important, reason for short follow-
up is the high rate of change from allocated trial therapy (noncompliance
or treatment change). In addition to toxicity and tolerability, the reasons
for change from allocated treatment include perceived or actual treatment
failure, desire to try new but perhaps unproven drugs, or simply the feeling
of clinicians and participants that it is ““time for a change.” Figure 1 shows
that the rate of withdrawal from allocated therapy for reasons other than
disease progression increases with follow-up but does not appear to depend
on the therapy or the size of the trial. The effect of a large number of
treatment changes is to reduce the interest of some participants and
investigators in the trial because of concerns that the initial treatment
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Figure 1 Rate of withdrawal from allocated therapy for reasons other than dis-
ease progression by median follow-up in antiretroviral trials with clinical end-
points in HIV infection. O, monotherapy with NRTIs; A, combination therapy
with NRTIs; O, combination therapy including a PI. The size of the symbol is
proportional to the size of the trial.
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effect might be diluted, the treatment comparison might be confounded
and therefore the trial will not provide useful results. That this view is not
necessarily correct and should not be used to justify early stopping of a trial
of effectiveness is demonstrated by experience in the Delta trial, although
there is a clear difference between trials primarily concerned with estimat-
ing efficacy rather than effectiveness in the way treatment changes are
considered. Delta was a multinational double-blind randomized trial
which compared the policy of dual therapy with ZDV plus didanosine
(ddl) or zalcitabine (ddC) compared with the policy of monotherapy with
ZDV alone (median follow-up 30 months) (Delta Coordinating Commit-
tee, 1996). More than 2000 patients had not had anti-HIV therapy prior
to entry (Delta 1) and over 1000 had taken ZDV for at least 3 months
(Delta 2). There was a high rate of change from allocated treatment in both
Delta 1 and Delta 2, with median time from randomization to stopping
blinded allocated treatment only about 15 months in Delta 1 (Figure 2).

‘1,00“

0.757]
0.80

0.25

Proportion on allocated treatment

0 T T T
0 1 2 3

Years of follow-up

Number at risk
Deltat1 2124 1214 641 158

Figure 2 Time from randomization to stopping blinded allocated treatment in
Delta 1.
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Largely because of this, but also because of “trial fatigue” and of the
availability of new drugs [notably lamivudine (3TC)], there was strong
pressure to terminate Delta early. The Data and Safety Monitoring Com-
mittee (DSMC) finally recommended termination of Delta 3 months be-
fore its scheduled completion, not because of the negative impact of the
high rate of treatment changes, but because of the clear evidence of the
superiority of combination therapy. Table 1 shows that the effect of com-
bination treatment on mortality in Delta 1 became increasingly apparent,
and the magnitude of the treatment effect larger, with longer follow-up.
Had the trial been stopped on the basis of the high rate of withdrawal from
allocated treatment, an important effect would have been missed. This
unexpected result (an increasing effect of treatment at least during the first
3 years in spite of a high rate of change from allocated therapy) may be due
to the fact that, like Concorde, Delta 1 addressed a generic question on the
effectiveness of a treatment policy (namely, initiation of treatment with
combination therapy or with monotherapy). Such questions may be more
robust to treatment changes of the magnitude observed in Delta, because
the treatment changes are part of the policy.

Clearly statistical methods cannot be used to assess rapid changes in
therapeutic options. However, transient benefit of anti-HIV therapy can
be investigated, at least in the setting of survival data, by either fitting
flexible time-dependent treatment effects using natural cubic splines
(Hess, 1994), or by considering weighted Schoenfeld residuals (Grambsch
and Therneau, 1994). Exploring the impact of treatment changes on the
estimated treatment effect in a manner which avoids the introduction of
selection bias is considerably complex, and will be considered in detail in
Section 4.

Table 1 Relative Risk of Death (RR) in ZDV + ddl and ZDV + ddC
Compared to ZDV Alone by Follow-up Time in Delta 1

ZDV + ddl vs. ZDV ZDV + ddC vs. ZDV

Years from Total

randomization deaths RR 95% CI RR 95% CI
0-1 49 7 (.39-1.52) 78 (.40-1.53)
1-2 151 .60 (.40-.88) 1 (.49-1.03)
2-3 137 44 (.29-.67) .57 (.39-.85)
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2. ANALYSIS OF MULTIPLE EVENTS

For the first decade of HIV trials, before the advent of effective therapies,
the majority of trials used composite clinical endpoints such as AIDS or
death. It soon became clear that analyses of these endpoints were placing
undue emphasis on the events that tend to occur earlier in the natural
history of the disease. Events in a composite endpoint are likely to be
heterogeneous in their effect on subsequent mortality, the physiological
system they affect, their response to treatment, and their effect on quality of
life. If the majority of early events are less severe events that are more easily
treated and have a relatively small impact on patients, then the relevance of
the endpoint to clinical practice becomes questionable. In addition, if
treatment has a different impact on the different events, comparisons based
on the composite endpoint may be misleading. These issues were first
considered, in HIV infection at least, by Neaton et al. (1994). On the other
hand, large numbers of treatment changes after a first event in the com-
posite endpoint mean that it is only possible to compare treatments in
terms of effectiveness not efficacy if events after the first are also included.
A number of alternative methods to utilize the available information on all
AIDS events have been proposed.

Mocroft et al. (1995) proposed a simple staging system based on a
score calculated as a function of the patient’s AIDS events and CD4 cell
count history up to this time. The proposed score is intuitive, objective,
simple to calculate, and can be useful for patient management. However,
the use of the score as an outcome measure in clinical trials is likely to give
undue emphasis to changes in CD4 count particularly when only a few
severe AIDS events are observed. Although moderate changes in CD4
count may be more predictive of mortality than some AIDS events, the
predictive ability of CD4 counts may be different in different treatment
groups (Sec. 3.1).

Bjorling and Hodges (1997) suggested a rule-based ranking scheme
whereby patients are ranked according to their clinical experience
throughout follow-up and treatment groups are compared in terms of
the ranks. This is intuitively similar to the rank-sum global test proposed
by O’Brien for testing multiple endpoints (O’Brien, 1984). Several ranking
rules were proposed, based on the total number, severity, and timing of
AIDS events. However, this approach can lead to inappropriate conclu-
sions, particularly with heavy censoring, because the method forces a total
order in constructing the ranks in a situation where only a partial ordering
exists because of the censored observations. For example, in a trial with 10
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deaths occurring early among 100 patients in one treatment group and no
events in 100 patients in the other group, the ranking method comparing
scores with the Wilcoxon rank sum test leads to p = .36 while the logrank
test gives p < .005.

Multivariate failure time data methods can also be used to analyze
multiple events in a composite endpoint such as AIDS (Neaton et al.,
1994; Finkelstein et al., 1997; Walker et al., 2000). Available techniques
include marginal (Wei et al., 1989), frailty (Clayton and Cuzick, 1985;
Klein, 1992), and conditional models (Prentice et al., 1981; Kay, 1984),
reviewed in Wei and Glidden (1997).

2.1. Marginal Models

Marginal models fully respect the randomization in a clinical trial and
are therefore most appropriate for treatment comparisons. In these mo-
dels, the treatment effect on the hazard of progression to each event (or
group of events) is of primary interest, while the correlations between the
different events are treated as nuisance parameters. The method of Wei et
al. (1989) is based on standard proportional hazards partial likelihood fol-
lowed by robust adjustment of the covariance matrix of the estimated
treatment effect on the marginal hazards [similar to the generalized esti-
mating equations (GEE) of Liang and Zeger (1986)]. For each individual
i =1,...,Ithe hazard of experiencing an event in groupj = 1, ..., J1is

/‘{U(l‘) = in([) exp(ﬂ_,-zi)

with z; the treatment group indicator. A working assumption of inde-
pendence between events is used to construct a working partial likelihood
and large sample martingale arguments are used to derive the variance
adjustment. This method can be used to compare the treatment groups
with respect to the hazard of progression to different events or groups of
events, and is implemented in standard statistical software (SAS, STATA,
S+). A summary treatment effect can be calculated from a weighted
average of the treatment effect on the separate AIDS events (Wei et al.,
1989). The choice of weights is arbitrary, but can depend on clinical
considerations. Wei et al. (1989) proposed weighting by the information
matrix, while Neaton et al. (1994) proposed using subjective weights
elicited from clinicians and patients. Adjustment for multiple testing can
be made based on the covariance matrix (see Chapter 6). However, with
these marginal multivariate models, Hughes (1997) has shown that the use
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Table 2 Cause-Specific Analysis for Progression to a First AIDS-Defining Event
or Death in Delta: Relative Risk (RR) for Participants Entering Without AIDS

ZDV + ddl vs. ZDV ZDV + ddC vs. ZDV

Event Total events log(RR) (se) log(RR) (se)

AIDS 1 756 -.277 (.091) —.109 (.088)
AIDS 11 96 —.617 (.256) —.362 (.239)
Death 84 .082 (.266) —.016 (:275)
First 936 —.279 (.081) —.132 (.078)

of events after the first may lead to loss in power in estimating event-
specific treatment effects in some situations when a substantial number of
participants change their allocated treatment after the first event.

Based on the relative risk of mortality associated with the occurrence
of AIDS events, the AIDS events in Delta can be divided into two cat-
egories, where AIDS II are events of poorer prognosis (relative risk of
death greater than 5: namely multifocal leukoencephalopathy, non-Hodg-
kin’s and cerebral lymphomas, indeterminate cerebral lesions, HIV ence-
phalopathy, and HIV wasting syndrome) and AIDS I consists of the
remaining less severe events. The vast majority (81%) of first events were
AIDS 1. The effect of randomized group on the cause-specific hazards
for progression to AIDS I, AIDS 1II, and death are shown in Table 2,
together with the composite endpoint analysis. Table 3 gives the parameter

Table 3 Marginal Analysis of Multiple Endpoints for the ZDV + ddl Versus
ZDV Alone Comparison in Delta (for Participants Entering Without AIDS)

ZDV + ddl vs. ZDV

Correlations
Total events log (RR) (se) AIDS 1 AIDS 11
AIDS T 525 —.307 (.088)
AIDS 11 116 —.500 (.191) 21
Death 342 —.346 (.109) .52 45
Any 983 —.343 (.085) —
First 624 —.281 (.081) — —
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estimates (log relative risk) for the ZDV + ddl versus ZDV comparison in
Delta from the multivariate marginal model, together with the correlation
matrix. The closed testing procedure of Marcus et al. (1976) applied to the
estimates in Table 3 shows that ZDV + ddl significantly reduces the mar-
ginal hazard to AIDS I, AIDS II, and death (p < .02).

2.2. Frailty Models

Frailty models represent the association between events experienced by
the same individual as the effect of a single unobservable covariate (frailty
w;), conditional upon which the times to the different events are assumed
independent. For each individual i = 1, ..., I the hazard of experiencing
an event in groupj = 1, ..., Jis now

Aij(t) = 2oj(1) exp(Bzi)wi.

Semiparametric inference for multivariate failure time data was developed
for gamma-distributed frailties (Klein, 1992), although inverse Gaussian
and positive stable frailties can also be used (Wanget al., 1995, Klein et al.
1992). Parameter estimation proceeds via the EM algorithm (Dempster et
al., 1977). A profile likelihood estimate is constructed for the baseline
hazard, resulting in a likelihood for the effect of factors and the frailty
parameters similar to the partial likelihood. However, complex (numer-
ical) maximization routines are required to estimate the parameters of the
continuous frailty distributions. Further, standard errors should be
adjusted for the use of the profile likelihood estimate for the nonpara-
metric baseline hazard (Andersen et al., 1997).

Currently, a SAS macro is available for implementing the gamma
frailty model (Klein and Moeschberger, 1997), but only with a common
nonparametric baseline hazard across event groups [4o;(1) = 4¢(?)V]]. This
is clearly inappropriate for a composite endpoint such as AIDS or death
when the underlying rates vary substantially across the individual events
making up the composite endpoint. A simpler semiparametric method of
estimation assumes the frailties come from a finite number of frailty
subpopulations, with the simplest form a binary frailty similar to that
proposed for multivariate binary data by Babiker and Cuzick (1994). Now
the frailty w; = exp(yU;), where U; € {0, 1} with P(U; = 1) = 0. This model
is estimable using standard software for Poisson regression (Walker, 1999).
Table 4 gives the parameter estimates (log relative risk) for the ZDV + ddl
versus ZDV comparison in Delta from the multivariate semiparametric
binary frailty model, together with the correlation matrix. Models with
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Table 4 Binary Frailty Analysis of Multiple Endpoints for the ZDV + ddl
Versus ZDV Alone Comparison in Delta (for Participants Entering Without

AIDS)
ZDV + ddl vs. ZDV
Correlations
Total events log (RR) (se) AIDS 1 AIDS 11
AIDS T 525 —.264 (.938)
AIDS T1 116 —.500 (.166) 274
Death 342 —.395 (.111) 415 283
Any 983 —.329 (.083) — —

Note: Estimated proportion of frail individuals was .22, and the relative risk associated with
being frail was 32.26.

parametric hazards are considerably easier to fit (Pickles and Crouchley,
1995), but at the expense of potential model misspecification.

Whether parametric or nonparametric hazards are used, parameter
estimates from any frailty model are conditional on the frailty and must
be interpreted as such. Ratios of hazards averaged over the frailty
distribution can be constructed for comparison with the hazard ratio
from the corresponding marginal model, but these depend on the (profile)
baseline hazard and thus vary over time. In addition, in the setting of
clinical trials, although the randomization ensures that the unobservable
frailty covariates are on average identically distributed in the different
treatment groups, it does not ensure that the effect of the frailty of the
hazard is independent of treatment group: that is, there may be frailty-
treatment group interactions.

2.3. Conditional and Multistate Models

Conditional and multistate models extend the concept of frailty models
further by conditioning treatment effects on more of an individuals’
covariate history than the value of a single unobserved covariate. Prentice
et al. (1981) propose a conditional model which can be used to investigate
recurrent events of the same kind, based on proportional hazards models
and conditional on the history of the event and covariate processes
[denoted A(7) and X(r), respectively]. One choice is to condition on the
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previous number of events experienced by the individual. The hazard for
the jth event in individual i is then

A{t14(2), X(1)} = 2o;(1) exp(B;z)-

Time can either be measured from randomization, or from the previous
event. This type of recurrence model can be fitted in any standard soft-
ware which allows data to be input in the counting process formulation
for failure time data and simultaneously allows stratification of the base-
line hazard (such as SAS, STATA, and S+).

Multistate models (Kay, 1984) extend these conditional models
further to include conditioning information on the type rather than merely
the number of previous events. Separate proportional hazards models are
specified for transitions between any pair of events or group of events. All
estimated treatment effects must now be interpreted conditionally on the
entire covariate history. Table 5 gives the parameter estimates (log relative
risk) for the ZDV + ddl versus ZDV comparison in Delta from the multi-
state model. The effect of combination therapy on the overall rate of pro-
gression to AIDS II events is much less clear from this model.

A distinction has to be drawn between accurately modelling disease
processes and covariate effects, and presenting the likely effects of treat-
ment in a manner which is easily understood by clinicians and patients, and
applied to clinical practice. For the latter marginal models remain the most
appropriate for use in clinical trials, while for the former the simple frailty
models present an alternative which is easy to interpret. Conditional and
frailty models provide a richer alternative for hypothesis generating.

Table 5 Multistate Analysis of Multiple Endpoints for the ZDV + ddl Versus
ZDV Alone Comparison in Delta (for Participants Entering Without AIDS)

Transition ZDV + ddl vs. ZDV
From To Total events Log (RR) (se)
Entry AIDS I 759 —.281 (.090)
Entry AIDS 11 98 —.662 (.254)
Entry Death 79 216 (.281)
AIDS T AIDS I1* 67 —.155 (.293)
AIDS I Death?® 284 —.311 (.147)
AIDS 11 Death® 135 —.122 (.213)

# Timescale measured from previous event.

Copyright n 2004 by Marcel Dekker, Inc. All Rights Reserved.



3. BIOLOGICAL MARKERS OF DISEASE
PROGRESSION

Without a doubt, the greatest change in the design of HIV trials over the
last 15 years has been the move from clinical endpoints to the use of
endpoints based on biological markers of disease progression. The 1990s
saw substantial statistical interest in the validation of these markers as
surrogates for clinical outcome. Eventually, however, the FDA and other
regulatory authorities decided to licence anti-HIV drugs on the basis of
their effects on these markers rather than on clinical outcome. Plasma HIV
RNA measurements are now the most commonly used primary outcome
measures in Phase III trials.

3.1. Surrogacy

A perfect surrogate for clinical outcome should satisfy the condition that
a test of the null hypothesis of no treatment effect on the marker should
also be a valid test of the null hypothesis based on clinical outcome
(Prentice 1989). This requires that

1. The ability of the marker to predict clinical outcome should be
independent of treatment.

2. The marker should capture any relationship, positive or neg-
ative, between the treatment and clinical outcome.

In the Concorde trial (Concorde Coordinating Committee, 1994), imme-
diate treatment with ZDV induced significant increases in CD4 count,
which remained on average more than 30 cells/uL higher than in the
deferred treatment group for at least 3 years. Yet clinical outcome up to
3 years showed no significant difference between the two treatment groups
in mortality or progression to AIDS or death, and with longer follow-up
there was a significant excess of deaths in the immediate group. Thus CD4
does not seem to satisfy conditions 1 and 2. Neither of the Prentice con-
ditions for surrogacy, condition 2 in particular, appear to be adequately
satisfied by HIV RNA viral load. In the Delta trial, plasma and/or serum
was available for viral load assessment in about 40% of the participants.
Compared to ZDV alone, the unadjusted relativ