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Preface

The History of SeqAn

Before setting up the Algorithmic Bioinformatics group at the
Freie Universität Berlin, Knut Reinert had been working for years
at a U.S. company – Celera Genomics in Maryland – where he
worked on large genome assembly projects. A central part of these
projects was the development of large software packages contain-
ing assembly and analysis algorithms developed by the Informat-
ics Research team at Celera. Although successful, the endeavor
clearly showed the lack of available implementations in sequence
analysis, even for standard tasks. Implementations of needed al-
gorithmic components were either not available, or hard to access
in third-party, monolithic software products.

This experience in mind, and being educated at the Max-Planck-
Institute for Computer Science in Saarbrücken – the home of very
successful software libraries like LEDA (Mehlhorn and Näher 1999)
and CGAL (Fabri, Giezeman, Kettner, Schirra, and Schönherr
2000) – Knut set the development of such a software library high
on his research agenda.

The fundamental idea was that the library should be comprehen-
sive for the field of sequence analysis, it should be easy to use,
and most of all (having the tremendous data volumes in genomics
in mind) be efficiently implemented. In 2003, Andreas Gogol-
Döring joined the Algorithmic Bioinformatics group. In the next
18 months, lively discussions about goals, different software de-
signs, and the possible content of the library followed which led to
various prototypes that allowed us to verify the design ideas with
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the corresponding implementations. Although this approach was
rather work-intensive, it led to a lot of insights and finally to the
current SeqAn design which in our opinion fulfills our initial goals.

In this first phase Andreas bore the main implementation work.
He was aided by some B.Sc. and M.Sc. students of the Bioinfor-
matics curriculum at the FU Berlin. In this mode of operation,
even with hard work, SeqAn would not have become what it is to-
day. For this to happen, we were very lucky to be able to attract
a handful of very talented Ph.D. students who joined the project.
In 2006, David Weese and Tobias Rausch joined the SeqAn team
followed by Anne-Katrin Emde in 2008. Their help in augmenting
the functionality of SeqAn and in implementing algorithms, data
types, and providing documentation and tutorials was indispens-
able in making SeqAn a great product.

SeqAn is currently used by several leading companies in the field
as well as various research groups in Europe and the USA. The
development is secured in the future: SeqAn will be improved,
expanded and soon support multicore platforms.

The SeqAn Team

At the time of the writing of this book, the following people formed
the main SeqAn team and contributed significant parts of the li-
brary, its documentation, and the supporting infrastructure.

Andreas Gogol-Döring started the SeqAn
project together with Knut Reinert in
the spring of 2003. He designed SeqAn
and participated in basically every major
project undertaken with SeqAn.

Knut Reinert initiated the SeqAn project
and started working on it together with
Andreas Gogol-Döring in the spring of
2003. He is the overall coordinator for
staffing and research directions in SeqAn.
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Anne-Katrin Emde joined the SeqAn
project in the spring of 2008 and is the
latest addition to the team. She imple-
mented the multiple segment match re-
finement.

Tobias Rausch joined the team in October
2006. He is the main contributor to the
graph type in SeqAn. Apart from stan-
dard algorithms on graphs and automata,
he implemented the graph-based, multiple
alignment strategy in SeqAn.

David Weese joined in 2006. He is the
main contributor to the string indices and
mapping tools in SeqAn.

In addition to the core SeqAn team, many other people con-
tributed to the book, in particular, Tobias Marschall, Marcel
Martin, and Sven Rahmann, who wrote Chapter 16, and Simona
Rombo, Filippo Utro and Raffaele Giancarlo, who wrote Chap-
ter 15. And last but not least, many external Ph.D. and M.Sc.
students made valuable contributions to SeqAn. Our thanks go to
Ji-Hyun Lim, Carsten Kemena, Marcel Schulz, and others.

About this Book

Part I gives an introduction to the SeqAn project, and it
describes the general library design. Chapter 1 introduces the
reader briefly to biological sequence analysis problems and the
benefit of using software libraries. In Chapter 2 we summarize
the general goals and design principles of SeqAn. More details
follow in Chapter 3 where we state the main goals we want
to achieve with the library design. The means to reach these
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goals are proposed in Chapter 4, where the main programming
techniques used in SeqAn are elaborated on. The application of
these techniques is demonstrated using examples in Chapter 5.

Part II explicitly describes the components provided by SeqAn.
After proposing some basic functionality in Chapter 6, we describe
sequence data structures in Chapter 7, alignments in Chapter 8,
pattern and motif searching in Chapters 9 and 10, string indices
in Chapter 11, and graphs in Chapter 12.

Part III presents some applications of SeqAn. In Chapter 13
we use a well-known genome alignment program – Lagan – to
illustrate how complex analyses can be quite easily programmed
in SeqAn. We show how Lagan can be implemented in about
200 lines of code without losing any efficiency. In Chapter 14
we demonstrate the versatility of the multiple sequence alignment
component in SeqAn. It can be configured to serve a multitude
of alignment tasks ranging from protein alignment to the com-
putation of a consensus sequence in assembly projects. The last
two chapters (15, 16) address the algorithm engineers. Chapter
15 shows how to add new functionality to SeqAn using the algo-
rithmic components already present in the library and Chapter 16
gives a very nice example of how to incorporate a new algorithm
(in this case for the construction of a suffix array) into SeqAn.

Andreas Gogol-Döring and Knut Reinert

© 2010 by Taylor and Francis Group, LLC



Part I

The SeqAn Project

In Part I, we first discuss the role of sequence analysis in the life
sciences, and explain how software libraries could facilitate the
development of new software tools and algorithms for sequence
analysis. SeqAn is the only software library available that fo-
cuses explicitly on the development of highly performant sequence
analysis software by providing a comprehensive collection of the
common algorithmic components and data structures. Chapter 2
gives a short overview of the SeqAn project and our measures for
quality assurance and dissemination of the library.
SeqAn relies on a unique generic design. We explain the main
goals that we pursued by the library (Chapter 3), as well as the
programming techniques that we applied to achieve these goals
(Chapter 4). These techniques are illustrated by some examples
in Chapter 5.
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Chapter 1

Background

1.1 Sequences in Bioinformatics

Sequences play a major role in biology as a means of abstraction.
For example deoxyribonucleic acid (DNA), the carrier of genetic
information in the nucleus, as well as proteins, a main ingredient
of the cell responsible for most biological activity, can be repre-
sented as sequences over an alphabet of four, respectively twenty
characters. This is due to the fact that those molecules are biopoly-
mers, large organic molecules assembled from small building blocks
called monomers, which are all of the same kind and linked to-
gether to long chains. The monomers of nucleic acids like DNA
or RNA (ribonucleic acid) are nucleotides, and each nucleotide
contains one out of four possible nucleobases. The structure of
a nucleic acid strand is therefore defined by the actual sequence
of bases in its nucleotides. Proteins on the other hand are com-
posed of amino acids. In natural proteins, twenty different kinds
of amino acids occur. They all have a phosphate backbone and
differ in their residues. In proteins, these amino acids may oc-
cur in any order and number. We call the information about the
succession of the monomers in a nucleic acid and protein its bi-
ological sequence, and thus we consider these biopolymers a kind
of storage for this information. Many functions which are fulfilled
by biopolymers like nucleic acids and proteins depend on their se-
quence composition. A DNA sequence for example encodes genes,
which are construction plans for proteins. The cell first transcribes
the genes into messenger RNA (mRNA), which is then, after some
modifications, translated into a peptide, where every three nucle-
obases form a codon that corresponds to one specific amino acid in

3
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4 Biological Sequence Analysis Using the SeqAn C++ Library

the synthesized protein. The sequence of nucleotides in the DNA
therefore defines the order of amino acids in the protein, which fur-
ther specifies the three-dimensional shape the protein folds into.
RNA may also fold into a structure that is crucial to fulfill its
purposes in the cell. Moreover the degree of molecular binding be-
tween proteins and nucleic acids depends on their sequences; the
protein synthesis for example involves certain proteins that can
dock only on specific patterns in the DNA.

A deeper understanding of biological processes thus requires a
broad knowledge of the biomolecule sequences, and in the last
decades a lot of research was aimed to decode those sequences.
The most prominent projects in this field were certainly the Hu-
man Genome Project (International Human Genome Sequencing
Consortium 2001) and its counterpart by Celera Genomics (Ven-
ter et al. 2001) which both aimed to sequence the entire human
genome. Decrypted biological sequences are deposited in public
databases as strings, i.e., ordered sequences of characters from a
finite alphabet Σ. The succession of bases in a DNA can for exam-
ple be stored in a string of the alphabet Σ = {A,C,G, T}, where
each letter stands for one nucleic base, e.g., A for adenine. Figure 1
shows the rapid progression of the data volume deposited in Gen-
Bank (Benson et al. 2008) and UniProtKB/Swiss-Prot (UniProt
Consortium 2008). The number of nucleotides stored in GenBank
has doubled approximately every 20 months and thus risen in two
decades by four orders of magnitude. The protein database Swiss-
Prot grew somewhat slower: From the beginning of the 1990s,
the amount of amino acids increased about 20% per year, i.e., it
doubles every four years.

Lately, several new sequencing technologies like pyrosequencing
(also known as Roche/454 sequencing; Margulies et al. 2005) or
sequencing-by-synthesis (also known as Illumina/Solexa technol-
ogy; Bentley 2006) were invented, and they allow a much higher
throughput than previous approaches. Hence, the size of the
databases is expected to grow even faster in the future, since the
availability and decreasing cost of sequencing open the door to
new applications in metagenomics or personalized medicine. The
analysis of these data may help to explain processes in the cell,
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Figure 1: Sequence Database Growth. Left: Total number of bases stored
in GenBank from the beginning of the year 1987 to the end of 2008. Right:
Total number of million residues that were stored in UniProtKB/Swiss-
Prot database during the same period. The data were taken from the
release notes. Note the logarithmic scale.

like the regulation of gene expression, and this understanding of-
fers the opportunity to develop new treatments of diseases or im-
proved agricultural crops, and it will give us deeper insights into
evolution.

1.2 Sequence Analysis

Sequence analysis is the processing of biological sequences by
means of bioinformatics algorithms and data structures. The typ-
ical objective of sequence analysis is to answer questions from bio-
logical or medical research. In this section, we will present several
examples of sequence analysis tasks as well as some common tools
for sequence analysis.
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6 Biological Sequence Analysis Using the SeqAn C++ Library

1.2.1 Sequence Assembly

All known methods for determining biological sequences are only
capable to directly decrypt sequences of limited lengths. We need
sequence analysis algorithms to produce longer sequences. For
example, the first sequencing of the human genome (Venter et al.
2001; International Human Genome Sequencing Consortium 2001)
was based on the chain-termination sequencing technique (Sanger
et al. 1977) which is only capable to produce sequence reads
shorter than a thousand nucleotides. For longer sequences a pro-
cedure called shotgun sequencing proved to be viable, and it is
able to determine even the sequences of whole eucaryotic genomes
(whole-genome shotgun sequencing, Staden 1997; see also Istrail
et al. 2004). This method randomly samples and sequences frag-
ments from the DNA such that on average any part is covered
several times. The resulting sequence reads are then assembled by
means of sequence analysis methods to get the complete sequence.
This is not trivial because errors occur during the sequencing of
the reads, it is not clear which strand of the double-helix the read
stems from, and because genomes are highly repetitive.
A first step in sequence assembly is usually to compute overlap
alignments between the reads, for example by a dynamic program-
ming alignment algorithm (see Section 8.5.4 on page 124). If two
reads significantly overlap, then they putatively originate from the
same location. For large numbers of reads, the computation of all
needed overlap alignments could be accelerated by applying fil-
tering. For example one could limit the search for overlapping
candidates to those pairs of reads that share at least a given num-
ber of common q-grams (see Section 11.2.1 on page 187). The
question is then how to derive from the overlap information the
complete sequence. Usually several processing steps are necessary
for computing a final consensus sequence (see, e.g., Huson et al.
2001). Sequence assembly is especially hard for DNA that contains
long repeats, since all reads that stem from repetitive regions can-
not be definitely assigned to a single position. In this situation
it may be helpful to apply double-barrel shotgun sequencing, that
is to sequence both ends of fragments that have a fixed length of
several thousand nucleotides; see Figure 2. From that we get pairs
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Figure 2: Double-Barrel Shotgun Sequencing. Fragments of a DNA
strand are sequenced from both sides. The sequence assembly problem is
to reconstruct the sequence of the DNA from the sequences of the reads.

of sequence reads with a certain distance in between, so if one of
these reads falls into a repeat region, it may still be possible to
determine its real position relative to its mate read. There are
several de-novo sequence assemblers available; some of the more
recent tools can even handle the rather short reads that are gener-
ated by next-generation sequencing technologies (e.g., Dohm et al.
2007; Zerbino and Birney 2008).

1.2.2 Blast: Finding Similar Regions

Searching is probably the most basic operation in sequence anal-
ysis, and a program called Basic Local Alignment Search Tool
(Blast, Altschul et al. 1990) has become the most widely used
sequence analysis tool in bioscience. Comparable tools like for ex-
ample FastA (Pearson 1990) or Blat (Kent 2002) are less pop-
ular. Blast is a heuristic for finding optimal local alignments
(Section 10.1) in two input sequences a and b. That means it
searches similar substrings in a and b, where the similarity (Sec-
tion 8.3.2 on page 114) between two strings is defined by the score
of an optimal alignment between them. The longer the strings are
and the less they differ, the higher is this score. Blast does not
only compute similar regions and scores, but it also estimates a
statistical significance, i.e., it computes the probability for finding
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similar regions of a certain length in two uncorrelated sequences a
and b simply by chance (Karlin and Altschul 1990). If this prob-
ability is very small, then we can conclude that the regions in a
and b are probably correlated and there must be a reason for their
similarity. Since Blast runs very fast, it has turned out to be
an extremely useful tool in practice, and therefore the paper by
Altschul et al. (1990) became one of the most cited publications
in science history. There are several variants (e.g., blastp for Pro-
teins or blastn for DNA) and implementations (e.g., Ncbi-Blast

or Wu-Blast) of the tool.

In short, the algorithm works as follows: Blast first searches for
seeds (Section 8.6.1), which are highly similar regions as for exam-
ple exactly matching substrings of a certain length q (q-grams).
This means that Blast finds only those local alignments that
contain a seed, so it will find more alignments if the seed length
q is reduced, although this will also slow down the search. The
seeds may be found, e.g., by an automaton (Section 12.1) or a
q-gram hash index (Section 11.2). Each seed is extended in both
directions by a X-drop extension (Section 10.2.1). The resulting
local alignment is stored if it exceeds a certain level of quality. In
the end, the best local alignments are printed out.

SeqAn supports data structures and algorithms both for finding
and extending seeds (Sections 8.6.1 and 10.2), as well as functions
for parsing the output of standard Blast tool.

1.2.3 Clustal W: Aligning Multiple Sequences

Among the most important tasks in sequence analysis is the align-
ment of sequences (Section 8.2): The sequences written one below
the other form the rows of a matrix, and blank characters are in-
serted into these rows such that similar parts of the sequences are
grouped together. For similar sequences an alignment algorithm
usually groups matching characters in one column using only a
small number of gaps. For such alignments the score of the align-
ment (Section 8.3.1) is usually high. Alignments may explain a lot
about sequences, since they reveal both the similarities between
them and the small differences within these similarities. If the
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sequences for example originate from different species, then the
optimal alignment can be used to infer their phylogenetic rela-
tionship.
We will show in Section 8.5.1 how to compute an optimal
alignment between two sequences by dynamic programming in
quadratic time. Unfortunately, the runtime grows exponentially
with increasing numbers of sequences, and it was shown that the
alignment problem is NP-hard (Wang and Jiang 1994), so practi-
cal tools for aligning multiple sequences are based on heuristics.
One of the most common tools of this kind is Clustal W, which
applies a progressive approach; see Section 8.5.5. The tool works
in three steps (see also Algorithm 5 on page 126):

(1) The pairwise distances between the sequences are computed,
either by counting common q-grams or by aligning them.
The result is stored in a distance matrix.

(2) From this distance matrix, a hierarchical clustering algo-
rithm like Upgma (e.g., Sneath and Sokal 1973) or neighbor-
joining (Saitou and Nei 1987) computes a rooted binary
guide tree. The leaves of the guide tree correspond to the
sequences that are to be aligned.

(3) The sequences are aligned following the guide tree from the
leaves to the root. At each inner vertex of the tree, the mul-
tiple alignment between all leaves below this vertex is com-
puted by aligning the alignments of the two child vertices,
see Figure 3.

This method is greedy, because once two sequences are aligned,
then this alignment will be retained until the algorithm stops.
A gap that is inserted will never be moved or removed again,
and new gaps always affect the whole column of the alignment,
thus any error that occurs in the early stages of the algorithm
will be propagated to the end of the computation. As a remedy,
Clustal W applies a clustering algorithm to construct the guide
tree, because this way similar sequences are joined earlier than dis-
tant sequences, and similar sequences are more likely to be aligned
correctly.
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10 Biological Sequence Analysis Using the SeqAn C++ Library

Figure 3: Progressive Multiple Sequence Alignment. The sequences on
the left are aligned following a guide tree. Each vertex aligns the align-
ments from its child vertices, so the alignment on root vertex contains all
input sequences.

SeqAn also offers progressive alignment algorithms that follow the
improved T-Coffee tool (Notredame et al. 2000); see Section 8.5.5.

1.3 Software Libraries

One main goal of bioinformatics is to devise algorithms and de-
velop software tools for biological and medical research. In this
section, we will discuss how software libraries may improve the
development of tools for sequence analysis. A software library is
a set of reusable components, i.e., data structures and algorithms
that use and manipulate these data structures. A component is
reusable, if it can be used in different programs and by different
programmers.

This is illustrated in Figure 4 that shows the core components of
four tools for genome alignment: Lagan (Brudno et al. 2003)
Mummer (Kurtz et al. 2004) Mga (Hohl et al. 2002) Mauve
(Darling et al. 2004). All these tools perform the following three
steps: (1) search for seed fragments, (2) compute an optimal chain
from these seeds (Section 8.6), and finally (3) close the gaps be-
tween the seeds. Obviously these tools apply similar building
blocks, like (enhanced) suffix arrays (Section 11.3) for seed find-
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Figure 4: Components of Genome Alignment Tools.

ing, longest increasing subsequence (Section 12.2.2) for chaining,
or the Needleman-Wunsch algorithm (Section 8.5.1) for aligning
the spaces between the chained seeds. In the example it is evident
that the developers of these tools would have profited from having
a software library at hand that provides efficient implementations
of the named algorithmic components.

1.3.1 Benefits from Software Libraries

Software development may benefit from software libraries in several
ways: Their application simplifies the implementation of software,
if a programmer can employ ready-to-use components from the
library instead of re-implementing every part of the program, or
to bother about the implementation details of the actually used
algorithms or data structures. This accelerates the development
process, which allows the program to be earlier on the market or
– in the case of a bioinformatics tool – in the laboratories. These
time savings reduce the costs of software development. Software
libraries may also improve the quality and robustness of the result-
ing code, because the components of a library are widely used and
therefore usually well tested. Moreover, the application of library
components may also improve the program’s performance, since
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12 Biological Sequence Analysis Using the SeqAn C++ Library

libraries are intended to be used many times, so they may offer
advanced but fast algorithms or data structures the implementa-
tion of which would not pay out for a single project. This also
shows that software libraries support algorithm design by provid-
ing benchmarks for well known problems and acting as test en-
vironments in which a new algorithm may prove its correctness
and possibly its superiority to previous approaches. A well de-
signed library invites the user to play around with algorithms and
data structures and thus promotes a fast testing of new algorith-
mic ideas. Finally, the best way for a new algorithm to arrive in
software development is to publish it in a widely used software
library, so libraries may help to close the gap between theory and
practice in algorithmic research.

1.3.2 Software Library Examples

We will now briefly present two software libraries that are good
examples for the usefulness of libraries in software development
and that influenced the design of our library SeqAn.

1.3.2.1 Leda

The Library of Efficient Data Types and Algorithms (Mehlhorn
and Näher 1999) is a C++ library for combinatorial and geometrical
computing. Since it was proposed in 1989 by Mehlhorn and Näher,
Leda grew to an extremely comprehensive software library. The
range of its functions contains basic containers like arrays, lists, or
sets, and it provides number types and graphs as well as algorithms
and data structures for linear algebra, geometry, compression, and
cryptography. Leda was designed from the beginning to advance
the transfer of theoretical algorithmic knowledge to practical tool
programming, and in this respect it became a model for software
libraries like SeqAn.

1.3.2.2 Stl

The Standard Template Library (Stepanov and Lee 1995) is a C++
template library of basic containers and algorithms. With some
changes and extensions, it became a part of the C++ standard li-
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brary (ISO/IEC 1998; Josuttis 1999), so we will call this part of the
C++ standard library the Stl. The Stl was one of the first C++
libraries that applied generic programming (e.g., Austern 1998; see
Section 4.2), and it demonstrates that this programming paradigm
is capable of implementing flexible and performant libraries. The
algorithms of the Stl access and modify the contents of the con-
tainers by iterator objects; further key concepts of the Stl are
functionals, i.e., objects that implement the parenthesis operator
(), and type traits that resemble the metafunctions that we use
in SeqAn (Section 4.5). The library design of SeqAn (Chapter I)
can be regarded as an advancement of the techniques that were
introduced into library design by the Stl.
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Chapter 2

SeqAn

Here we summarize the goals and design of the software library
SeqAn, our generic C++ template library of efficient data types and
algorithms for sequence analysis (see Figure 5). The development
of SeqAn has pursued two main goals, namely:

(1) Enabling the rapid development of efficient tools for sequence
analysis.

(2) Promoting the design, comparison, and testing of algorithms
for sequence analysis.

SeqAn accelerates the development process of tools and algo-
rithms, and improves the quality and performance of sequence
analysis software. In addition, it provides an experimental plat-
form for algorithm engineering and closes the gap between state-
of-the-art algorithmic techniques and the actual algorithmic com-
ponents used in software tools (Section 1.3). SeqAn is the first
software library with this ambition that was actually realized.

2.1 Design of SeqAn

SeqAn was designed to promote (1) high performance of the pro-
vided components, (2) simplicity and usability of the library’s han-
dling, (3) generality of data types and algorithms such that they
are widely applicable, (4) the definition of special refinements of
generic classes or algorithms, (5) the extensibility of the library,
and (6) easy integration with other libraries (Chapter 3).
We decided to implement the library in C++, since C++ provides
language constructs that allow to achieve our design goals (see

15
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Figure 5: The SeqAn Logo.

Section 4.1). The unique library design of SeqAn is based on (1)
the generic programming paradigm, (2) a new technique for defin-
ing type hierarchies called template subclassing, (3) global inter-
faces, and (4) metafunctions, which provide constants and depen-
dent types at compile time (Chapter 4). Our design differs from
common programming practice, in particular SeqAn does not use
object-oriented programming (Section 4.3.2). However, the library
benefits greatly from our approach, and all design goals are met.

2.2 Contents of SeqAn

SeqAn is a comprehensive library that was intended to cover a wide
range of topics of sequence analysis. It offers a variety of practi-
cal state-of-the-art algorithmic components that provide a sound
basis for the development of sequence analysis software. This in-
cludes: (1) data types for storing strings, segments of strings and
string sets, as well as functions for all common string manipula-
tion tasks including file input/output, (2) data types for storing
gapped sequences and alignments, and also algorithms for com-
puting optimal sequence alignments, (3) algorithms for exact and
approximate pattern matching and for searching several patterns
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at once, (4) algorithms for finding common matches and motifs in
sequences, (5) string index data structures, and (6) graph types
for many purposes like automata and alignment graphs, as well as
many algorithms that work on graphs (Part II).
SeqAn offers several alternative implementations for all core data
types like strings, string sets, alignments, graphs, and indices. It
also provides a variety of different algorithms for central tasks like
pattern matching, motif finding, or the alignment of sequences.
The user can therefore select the variant that fits best to the actual
application.
SeqAn was already applied for the development of several state-
of-the-art software, e.g., Schulz et al. (2008), Weese and Schulz
(2008) Rausch et al. (2008), Langmead et al. (2009), and Rausch
et al. (2009). This demonstrates its usability. We will also sub-
stantiate this claim in Part III where we propose several applica-
tions of the library.

2.3 Testing

Each part of SeqAn was exhaustively tested. We used two testing
strategies (see, e.g., Myers et al. 2004):

(1) Unit Testing: For each module of SeqAn exists a program
which tests all data structures and functions that reside in
this module. These are mainly black-box tests, i.e., the pro-
gram does not inspect the actual implementation but only
check the correctness of output generated by the tested li-
brary part. In many cases the input data is predefined within
the test program; some other tests generate repeatedly ran-
dom inputs and compare the outputs of alternative imple-
mentation.

(2) Function Coverage Testing: The extensive use of C++
templates in SeqAn raises a special testing problem: Usu-
ally C++ compilers perform only shallow syntax checks dur-
ing the parsing of template code, so it is possible that a test
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Figure 6: SeqAn Trac. The screen shot shows a list of messages and
issues posted by SeqAn users from around the world.

program compiles correctly even if some templates contain
syntax errors, just because these templates are never instan-
tiated. We therefore apply a white-box testing method that
ensures each template function to be instantiated at least
once in the test. This is done by inserting the preprocessor
macro SEQAN_CHECKPOINT at the beginning of each template
function of the library, and maybe also in some further parts
of the program for which we want to check that they are
reached by the test. If testing is activated, this macro ex-
pands to a short piece of code that protocols the current
source file and line of code. At the end of the test, the
source files are scanned for SEQAN_CHECKPOINT and all oc-
currences that were never reached are reported. If testing
is not activated, then the macro is defined to be empty, so
SEQAN_CHECKPOINT has in this case no impact on the pro-
gram’s efficiency.
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Since even the best testing cannot guarantee the correctness of a
program, we used the open source error tracking system Trac1, so
the library’s users can report their bugs and give suggestions for
improvement; see Figure 6.

2.4 Documentation

The common documentation systems for C++ like Doxygen2 are
designed with regard to object-oriented programming, so we devel-
oped our own documentation system DotDotDoc (Dddoc), which
is especially suited for documenting generic programming software.
The documentation is deposited in C++ comments that are ex-

Figure 7: SeqAn Documentation Using Dddoc. The screen shot shows
a part of the documentation for the class String.

1See trac.edgewall.org
2See www.doxygen.org
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tracted from the library’s source files using a Python (Lutz 2006)
script. The format orientates on the Xml documentation for-
mat3 that is used for Microsoft C#, but it uses a simple human
readable notation style instead of Xml. Dddoc creates a heav-
ily cross-linked and searchable documentation (see Figure 7) that
extensively describes all public classes, specializations, functions
and metafunctions available in SeqAn on Html pages, which can
be viewed in common Html browsers. The SeqAn documenta-
tion also contains several tutorials and example programs. It can
be downloaded from the SeqAn Web site and viewed online on
www.seqan.de/dddoc.

2.5 Distribution

During the development process we took care to keep SeqAn com-
patible with multiple platforms. For that reason, we implemented
a simple but powerful built-system that allows the compilation of
applications and test programs using different compilers and op-
erating systems. Our library now works on all common platforms,
namely Microsoft Windows, Mac OS X, Solaris, and several Linux
clones, and it was tested for Microsoft Visual C++ compilers (ver-
sion 7 or above) and GCC compilers (version 3 or above).
SeqAn is an open source and free software published under the
Gnu Lesser General Public License (LGPL) version 3.4 This li-
cense allows the free use and distribution of the library also for
commercial use. Both the library sources and the documenta-
tion can be viewed and downloaded from the SeqAn Web site
www.seqan.de, which was designed to be the central place for all
news and information about the project; see Figure 8. Besides de-
tailed descriptions of SeqAn and its associated projects, this Web
page also contains a bug tracker system that can be used to return
feedback to the library’s developers; see also Section 2.3.

3see msdn.microsoft.com
4See www.gnu.org/licenses/lgpl.txt
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Figure 8: SeqAn Web site.
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Chapter 3

Library Design

3.1 Design Overview

In this part, we discuss the core library design of SeqAn. We call
it core design, because it answers very basic questions like: What
are the strategies for organizing the functionality in the library?
What is the general form of classes and functions? What language
features are applied, and how are they used? The core design does
not specify what classes and functions should be implemented in
the library. This detailed design will be the topic of Part II, in
which we will give a complete overview of the contents of SeqAn.

Although the core design is not directly connected with the actual
contents of the library, it is influenced by the kind of functionality
the library offers. For example we observe that sequence analysis
relies on rather simple but generic data structures like sequences
(Chapter 7), alignments (Chapter 8), string indices (Chapter 11),
and graphs (Chapter 12) which makes it amenable to the generic
programming paradigm, whereas libraries consisting of less generic
but very complex data structures would probably be better imple-
mented in a more object oriented way.

The decision for an appropriate core design also depends on the
intended application of the library. As we stated in Chapter 2,
SeqAn has the purpose to facilitate the development of new se-
quence analysis tools, and it is an algorithm engineering platform
for comparing and developing efficient data structures and algo-
rithms. Both applications require that the components of the li-
brary run as fast as possible, so performance is one of the most
important objectives during the library design phase. Consider-
ations like this lead us in Section 3.2 to six main goals for the
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core design of SeqAn. In the following Chapter 4, we will discuss
by what programming techniques these goals can be achieved. It
turns out that only a few powerful techniques suffice. The mechan-
ics of the resulting core design is then demonstrated by examples
in Chapter 5.

3.2 Design Goals

3.2.1 Performance

A first – and maybe most important – objective for SeqAn is per-
formance:

The library is designed to produce code

that runs as fast as possible.

Since data structures usually must fit completely into main mem-
ory to be fast, we also aspire to offer data structures with minimal
space consumption.
While performance is of course a desired feature of any software, it
plays a critical role in the competition between software tools. For
example, some applications in bioinformatics involve huge problem
instances which may take running times of several hours or even
days, so a tool’s speed can make the difference between a feasible
and an infeasible experiment if computing resources are limited.
In sequence analysis the amount of data to be analyzed usually for-
bids the application of brute force algorithms even for very basic
tasks like searching a pattern in a string or aligning two sequences.
Hence, one has to resort to efficient data structures and algorithms
that achieve the required speedup. A library can supply very com-
plex algorithmic components, which are hard or costly to imple-
ment for tool designers. Nevertheless, a tool designer has always
the option to solve the problem at hand by its own specialized
code or to resort to ad-hoc solutions, instead of using the compo-
nents in a library. Programming specifically for a given problem
may even yield better results than using standard components,
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depending on the effort involved, hence it is crucial for the library
components to be competitive in speed to specialized code.
Optimal performance is also crucial for algorithm engineering:
No algorithm designer would be happy to sacrifice hard-earned
speedups obtained from a clever algorithmic advance due to sub-
optimal implementations. A comparison between competing al-
gorithms would always be influenced by varying implementation
qualities, so the best way to make it fair is to compare implemen-
tations that are as effective as possible and are based on the same
algorithmic components.
The need for performance is also our main reason to choose C++
as programming language (Stroustrup 2000; ISO/IEC 1998), since
carefully designed C++ code has best chances to outperform most
alternative programming language (see Section 4.1).
Achieving a good performance affects the library in many respects.
If there is a trade-off between speed or coding convenience, then
performance is usually favored. For example, we omit time con-
suming parameter checks in the release build of the library.

3.2.2 Simplicity

The second main goal for the library design of SeqAn is simplic-
ity. Software libraries should facilitate the development of soft-
ware, and hence they need a clear organization of their functional-
ity. Plain interfaces improve a library’s usability and accessibility,
make it easier for a potential user to evaluate the usefulness of the
library, and reduce the training needed to use it. In addition the
internal mechanisms of a library should never get too complex,
since this would slow down the development process of the library,
complicate its maintenance, and it could be a source of hidden
errors. A user of the library will become a victim of exotic com-
piler behavior, unreadable error messages, or inconsistencies in the
language standard to the same extent the library uses elaborated
language features.
Our goal is therefore:

All parts of the library are constructed and applicable

as simply as possible.
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We feel confident that the application of SeqAn is in fact simple,
although this is always in the eye of the beholder, and in this book
we will demonstrate the ease of use in a multitude of short code
examples.

3.2.3 Generality

The next goal of SeqAn is generality: Library designers cannot
completely anticipate all applications a library will actually be
used for, so it is advisable to keep it as general as possible. A
library that is useful in many circumstances has better chances to
be used. Also, the more probable it is that a library can be re-used
in future occasions, the more it pays for a user to get accustomed
to it. Hence our goal is:

All parts of the library are applicable

in as many circumstances as possible.

General components are more intuitive to describe and easier to
understand than data structures and algorithms that are only us-
able for a few individual cases, so generality also supports the
simplicity (Section 3.2.2) of the library. A good starting point
for finding general components is to identify common elements in
different tools, as described in Section 1.3.

Generality also means that we try to avoid redundancy in the
library: If, for example, one algorithm can work on different types
of classes, then it should not be re-implemented for each class, but
only once for all classes, in a single piece of code. This makes the
library more compact and easier to maintain.

We will explain in Section 4.2 how generic programming enables
us to create data structures and algorithms that work on a vari-
ety of types, for example how to implement strings of arbitrary
alphabets, or algorithms that work an any kind of string.

3.2.4 Ease of Refinement

A good strategy for augmenting performance (Section 3.2.1) is
to implement specializations: Sometimes the implementation of a

© 2010 by Taylor and Francis Group, LLC



Library Design 27

function can be significantly improved, if we rely on a special con-
text or the presence of some constraints. For example, searching
an array is much faster if the values are sorted, thus it is advisable
to define both a general but relatively slow linear search algorithm
for unsorted arrays, and additionally a fast binary search algorithm
for sorted arrays. A specialization overloads the general solutions
(Section 3.2.3) for a special case, and the specialization can also
be overloaded for an even more special case, so in the end we get
a hierarchy of refinements.
The ideal library concept therefore fulfills the following rule:

Whenever a specialization is reasonable,

it is possible to integrate it easily into the library.

To integrate means that the new specialization works seamlessly
together with the rest of the library, and that it can be applied in
the same way as already existing alternatives. Our design there-
fore supports polymorphism, i.e., that the same interface may be
realized by several implementations. This also promotes the sim-
plicity (Section 3.2.2) of the library.
We will see in Section 4.3, how template subclassing enables us to
implement specializations in a way that the C++ compiler always
uses the most appropriate – i.e., the most special – variant.

3.2.5 Extensibility

A classical slogan of good programming is the so-called open-closed
principle, which states that a program should be open for extension
but closed for modifications. We call this feature extensibility:

The library can always be extended

without changing already existing code.

Extending the library means to overwrite default behavior by defin-
ing new specializations (Section 3.2.4), or to add completely new
functionality to the library. Extensibility is important both dur-
ing the implementation of the library, because it simplifies its con-
struction, and also for a user who wants to adapt the library to
his needs.
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3.2.6 Integration

It is often reasonable to use several libraries at once. This means
that the libraries must be able to collaborate with each other:

The library is able to work together with

other libraries and built-in types.

This includes that SeqAn obeys some rules of coexistence, for ex-
ample, to use its own namespaces seqan in order not to contam-
inate the global namespace, or not to define preprocessor macros
that could conflict with code of other libraries. Moreover, we aim
at providing means for a direct integration of external libraries:
For example, string classes are provided not only by SeqAn (see
Section 7.3) but also by many other libraries like the STL (Plauger,
Lee, Musser, and Stepanov 2000) or Leda (Mehlhorn and Näher
1999), and strings can also be stored in char arrays, so-called C-
style strings. It would be of great advantage, if we could implement
algorithms that work on all these kinds of string.
We will explain in Section 4.4 how the SeqAn library design sup-
ports this kind of integration by using small global functions or
metafunctions – so-called shims – to adapt external interfaces to
the needs of SeqAn.
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Chapter 4

Programming Techniques

In this chapter, we discuss the main techniques used in SeqAn
to achieve the design goals that we described in Section 3.2,
namely generic programming (Section 4.2), template subclassing
(Section 4.3), global interfaces (Section 4.4), and metafunctions
(Section 4.5). The combination of these four techniques forms
the core design of SeqAn. In Section 4.6 we will propose further
programming techniques that we apply in SeqAn. We start with
discussing the reasons for using the programming language C++.

4.1 The C++ Programming Language

The programming language C++ was proposed by Bjarne Strous-
trup in 1983 (see Stroustrup 2000) as an extension of the proce-
dural and imperative programming language C (Kernighan and
Ritchie 1988). SeqAn relies on ISO/IEC standard conform C++
(ISO/IEC 1998) that is supported by several compilers like the
GNU C++ compiler (Griffith 2002) or the Visual C++ compiler
(Visual C++ 2002).
The programming language C was designed as “a relatively low
level language” so that “the data types and control structures pro-
vided by C are supported directly by most computers.1” Although
C was designed to be independent from a particular architecture,
it is in effect rather machine-oriented, which means that C pro-
grams match the capabilities of present computer architectures
and have therefore best chances to run fast. During the compi-

1See (Kernighan and Ritchie 1988), pages 5–6.
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lation of C source code, the compiler may also apply optimiza-
tions to achieve further speed-ups. C++ enhances C by concepts
like object-oriented programming and generic programming (Sec-
tion 4.2), and though some of these new features (e.g., virtual func-
tions) entail pitfalls to slow down the resulting programs, carefully
employed C++ achieves in general the same performance as C. Due
to the prevalence of C/C++ in the last decades, the co-evolution
of computers and compilers made these languages probably the
best choice for high-performance applications. We decided to im-
plement SeqAn in C++, because performance is among our main
goals (Section 3.2.1) and the extended features of C++, namely
templates (ISO/IEC 1998, section 14), are well suited to attain an
excellent library design.
There are prominent examples of C++ software libraries in the
area of algorithm engineering like Leda (Mehlhorn and Näher
1999) and Cgal (Fabri et al. 2000), many common software tools
for sequence analysis like NCBI Blast (Altschul et al. 1990) are
implemented in C++.

4.2 Generic Programming

SeqAn adopts generic programming, a paradigm that was proven
to be an efficient design strategy in the C++ standard (ISO/IEC
1998). The standard template library (STL) (Plauger et al. 2000)
as part of the C++ standard is a prototypical example for generic
programming. Generic programming designs algorithms and data
structures in a way that they work on all types that meet a minimal
set of requirements. An example for a generic data structure in
the STL is the class vector: It is a container for storing objects of
a type T that are assignable (ISO/IEC 1998, section 23.1), which
means that we can assign one instance s of T to another instance
t of T, i.e., the code T t = s is valid. This kind of requirement to
the interface of a type T is called a concept, and we say that a type
T implements a concept, if it fulfills all requirements stated by that
concept; for example the concept assignable is implemented by all
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built-in types and every class that has both a copy assignment
operator and a copy constructor. Generic programming has two
implications: (1) Data structures and algorithms work on all types
T that implement the relevant concept, i.e., relevant is not the type
T itself but its interface, and (2) this concept is minimal in the
sense that it contains only those requirements that are essential
for the data structure or algorithm to work on T. This way data
structures and algorithms can be applied to as many types as
possible, and hence generic programming promotes the generality
of the library (see Section 3.2.3).
Generic data types and algorithms can be implemented in C++
using templates (ISO/IEC 1998, section 14). A class template pa-
rameterizes a class with a list of types or constants. For example,
a declaration for the class vector could be:

template <typename T> class vector;

where T stands for the value type, i.e., the type of the values that
will be stored in vector. The template is generic, it can be applied
to any type T. For example, a vector for storing int values is
instantiated by:

vector<int> my_vector;

That is we use int as template argument for T, and the result
of the instantiation is an object my_vector of the complete type
vector<int>. The compiler employs the same template, i.e., the
same piece of code, for different template argument types. The
compilation succeeds if the applied template argument type sup-
ports all uses of the parameter T within the template code, so the
C++ template instantiation process implies the minimality of the
concepts.
Listing 1 shows an example for a generic algorithm. The function
template max can be applied for two objects a and b of any type T

that is assignable and can be compared using the < operator. The
compiler may implicitly derive the type T from the given function
arguments, for example max(2, 7) calls the instantiation of max
for T = int.
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template <typename T>

T max(T a, T b)

{

if (a < b) return b;

else return a;

}

Listing 1: Example of a Generic Algorithm. The function template max

returns the maximum of two values a and b, where a and b could be from
any suitable type T.

4.3 Template Subclassing

A generic algorithm that is applicable to a type T needs not to
be optimal for that type. The algorithm find in the standard
library (ISO/IEC 1998, section 25.3.1.1) for example performs a
sequential linear time search and is therefore capable of finding
a given value in any standard compliant container. However, the
container map was designed to support a faster logarithmic time
search, so the algorithm find – though applicable – is not optimal
for searching in map. This shows that sometimes a special algo-
rithm could be faster than a generic algorithm. Hence, in order to
achieve better performance (Section 3.2.1), we require our library
(see Section 3.2.4) to support refinements of algorithms. A special
version is only useful if it really allows a speedup in some cases,
and only in this case it will actually be implemented. Therefore
we assume that for a given case always the most special applicable
variant is the best, where we have to assure that there is always a
definite most special candidate according to the C++ function over-
load resolution rules (ISO/IEC 1998, sections 13.3 and 14.5.8).

Since one of our goals is simplicity (Section 3.2.2), and since it
could be rather demanding for the user to find out the best al-
gorithm out of various alternatives, we decide to apply polymor-
phism, that is, all alternative implementations of an algorithm
support the same interface. So we can write find(obj) for any
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template <typename TValue, typename TSpec> class Container

{

// generic container

};

struct Map;

template <typename TValue> class Container<TValue, Map>

{

// special map container

};

template <typename T> void find(T &)

{

// most general: works for all types

}

template <typename TValue, typename TSp>

void find(Container<TValue, TSp> &)

{

// more special: works for all containers

}

template <typename TValue> void find(Container<TValue, Map> &)

{

// even more special:works only for maps

}

Listing 2: Template Subclassing Example. Note that SeqAn does not
implement a class Container.
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container type obj, and this invokes the most suitable implemen-
tation of find depending on the type of obj. Listing 2 gives an
example of this idea: The map is implemented in the specializa-
tion Container<Map> of the generic class Container. Since the
subclass is specified by choosing a template argument, we call this
approach template subclassing.
In the lower part of Listing 2, we see different levels of specificity
for find algorithms: The first is applicable for any type – therefore
we call it the most general function – the second for instances of
Container, and the third only for Container<Map> objects. The
rules of C++ function overload resolution (ISO/IEC 1998, section
13.3) assures that the correct variant is called.
We need not to end the specialization on the level of
Container<Map>. Suppose that we define Map as a class template
with a template parameter TSpec, then we can also implement spe-
cial variants of maps, for example Container<Map<Hashing> >.
This way, we can define specialization hierarchies of unlimited
ramification.
Note that we make no demands on template argument types like
Map that are used for TSpec, in fact any type that is merely declared
can be used as template argument, so its only important aspect is
to act as a switch between different specializations of Container.
We call a class that is intended merely to serve as switch a tag
class. Tag classes can also be used to switch between different
modes of a function (see Section 4.6.2).

4.3.1 Template Subclassing Technique

The technique of template subclassing may be summarized as fol-
lows:

• The data types are realized as default implementation or
specialization of class templates, e.g., Class, which have at
least one template parameter TSpec.

• Refinements of Class are specified by using in TSpec a tag
class, e.g., Subclass, that means they are implemented as
class template specializations Class<Subclass>.
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• Whenever further refinements may be possible, we declare
the tag classes as class templates with at least one template
parameter TSpec, in which more tag classes can be used.
For example we may implement a class template specializa-
tion Class<Subgroup<Subsubgroup<...> > >. This way,
we can reach arbitrary levels of specialization.

• Algorithms can be implemented for each level of specializa-
tion. If multiple implementations for different levels of spe-
cialization exist, then the C++ function overload resolution
selects the most special from all applicable variants.

Note that we only need to define a class template specialization
Class<Subclass> explicitely, if the members of the new refinement
differ from the members of its parent class Class. We will see in
Sections 4.4 and 4.5 that member functions and member types play
a minor role in SeqAn, so in many cases an actual specialization
of the class template is not needed.

4.3.2 Comparison to Object-Oriented Programming

Template subclassing resembles class derivation in standard
object-oriented programming. In the spirit of the object-oriented
terminology we can say that the class Container<Map> was de-
rived from the general class Container, since all algorithms that
are defined for Container also work for Container<Map> and are
therefore inherited. Let us compare this to object-oriented pro-
gramming: The method find is inherited from the base class
Container to all derived classes, but it was overloaded for the
class Map which defines its own find method.

This approach has two drawbacks: The first disadvantage is that
the method find is not a generic algorithm according to the def-
inition in Section 4.2 but a member function. Its usage has the
form obj.find(), which differs completely from the application
of the generic algorithm that would be called by find(obj). If we
try to achieve the refinement goal (Section 3.2.4) this way, and if
we therefore define both global functions and member functions,
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Figure 9: Object-Oriented Example.

then the handling of the library gets more complicated, so we lose
simplicity.

Object-oriented programming has another drawback, see Figure 9.
Suppose that we want to define a function insert that adds a
new value to a container, and that insert calls find in order to
check whether the container already holds the given value. Since
insert can be applied for all containers, we implement it as a
member function of Container, so it is inherited also by Map. If
we call insert to insert a value into a Map object, then insert

should use the correct find function, i.e., the special logarithmic
search that was defined in Map rather than the general linear search
defined in Container. Therefore find has to be declared virtual
(ISO/IEC 1998, section 10.3), which means that each call of find
costs an additional overhead. Virtual function calls are indirect via
the lookup in a table of function pointers, and they are therefore
more complicated than ordinary function calls; in contrast non-
virtual functions have the advantage that C++ compilers may use
function inlining to completely save the overhead for calling them.
The application of virtual functions in this case therefore reduces
the performance.

We conclude that template subclassing better fits our design goals
than object-oriented programming. With template subclassing
we can implement polymorphic generic algorithms, which means
that the refinements of algorithms have the same interface as their
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generic counterparts. Template subclassing also needs no virtual
functions but relies completely on static function binding, that is
the compiler determines during compile time which function is
called and can therefore apply optimizations to improve perfor-
mance.

4.4 Global Function Interfaces

A global function in C++ is a function that was declared in names-
pace scope (ISO/IEC 1998, section 3.3.5). In contrast to that,
member functions are defined in the scope of a class. Object-
oriented programming prefers member functions, because they
work as methods which can be inherited and overloaded during
the class derivation. Generic programming on the other hand also
applies global function templates for implementing generic algo-
rithms (see Section 4.2). In Section 4.3 we saw how we can use
global function templates to implement algorithms for different
levels of specialization. SeqAn relies on global functions anyway,
and therefore the following design decision seems rather natural:
SeqAn abstains from accessing objects via member functions as
far as possible, that is, all functionality in SeqAn is accessed via
global functions, with the exception of functions that must be
members due to language restrictions, like constructors, destruc-
tors, assignment operators, bracket and parenthesis operators, and
conversion functions. Since global functions substitute those mem-
ber functions that would otherwise form the interface of a class,
we call all functions that accept instances of a class as arguments
the global function interface of this class. For example, to deter-
mine the length of a string str in SeqAn, we call a global function
length(str) instead of a member function str.length(). Using
global interfaces is a main feature of SeqAn, and we will see in
Section 4.5 that SeqAn also applies a global interface for accessing
types.
Obviously the most direct way to achieve global function interfaces
is simply to implement the functionality in global functions. This
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is also a prerequisite for using template subclassing, so most im-
plementations in SeqAn actually reside in generic global functions,
especially as far as this concerns the classes defined in the library.
Alternatively, one can implement the functionality in a member
function, and then call it via a shim (Wilson (2004), ch. 20), i.e.,
a small global function that acts as a wrapper for the member
function. Shims are a good way to create new global interfaces for
already existing data structures or for built-in types. For exam-
ple, SeqAn contains several global functions length that work on
the basic_string class from the C++ standard library or on zero
terminated char arrays (so-called C-style strings). So for deter-
mining the length of string str we can always call length(str)
regardless of whether str is an instance of the SeqAn class String
(Section 7.1), or a basic_string, or an array of char. See Sec-
tion 5.1 for more details about this example.

4.4.1 Advantages of Global Interfaces

Overall there are some good technical reasons to favor global func-
tions over member functions (see also Czarnecki and Eisenecker
2000, 6.10.2):

• Global functions greatly support the open-closed principle,
i.e., they favor the extensibility (Section 3.2.5): New func-
tions can be added to the library at any time without chang-
ing the library’s code. This holds true for new specializations
of already existing functions, as well as for completely new
functionality. Moreover, it is possible to encapsulate the
declarations of global functions in different header files and
include them only if they are needed.

• The shim technique allows us to adapt arbitrary types to
uniform interfaces, so using global functions is a good way
to attain integration (Section 3.2.6) of the library with other
libraries and built-in types.

• The difference between global algorithms and non-global
member functions, as they are used for example in the stan-
dard template library, can be somewhat confusing, especially
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if there exist algorithms and member functions with the same
name. Therefore, adapting global functions simplifies the li-
brary (Section 3.2.2). Moreover, global functions do not as-
sume that one special function parameter acts as the owner
of the function, so they may sometimes be more intuitive,
e.g., when modeling symmetric operations like a matrix mul-
tiplication, which has no preference to be a member of the
first or the second matrix.

• As we saw in Section 4.4, the obvious way to implement
generic algorithms in C++ is to use global function templates,
so global functions help to achieve a maximal generality (Sec-
tion 3.2.3) of the library.

4.4.2 Discussion

Many programmers will probably at first be skeptical about our
preference of global functions, since our approach contradicts com-
mon rules of object-oriented programming, so we now discuss some
possible objections.

Missing Protection

Global functions lack a protection model: They cannot be pri-
vate or protected, and they cannot access private and protected
members of a class.

We addressed this problem by establishing rules of good coding
practice. The main reason for a protection model is to prevent
the programmer from accessing functions or data members that
are intended for internal use only. A simple substitution for this
feature is to establish clean naming conventions: We state that a
‘_’-character within an identifier indicates that it is for internal
use only. Global functions can access private members of a class C
if they are declared to be friends of C, but our experience showed
that this approach is too inconvenient in practice, so we instead
decided to declare data members to be public, but only functions
that belong to the core implementation of C are allowed to access
them by convention.
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Possible Ambiguities

One could argue that we risk ambiguities when we define func-
tions for several classes with the same name. Suppose that
a class String and another class Tree should both support
a function length. Then we simply implement two functions
length(String & str) and length(Tree & str), and this will
work since both functions have different argument lists. A prob-
lem may only arise if multiple functions could be applied for the
given arguments, in this case, we have to take care that there is
always a best alternative according to the C++ rules for function
overload resolution (ISO/IEC 1998, sections 13.3 and 14.5.8).

Handling of Namespaces

To avoid conflicts with other libraries, SeqAn defines all data
types and functions for public use in the special namespace seqan.
Nevertheless we need not to specify this namespace whenever we
call a global function, because C++ specifies a rule for argument-
dependent name lookup, also known as koenig lookup (ISO/IEC
1998, section 3.4.2), which means that if the compiler looks for
the actual function length that is called by length(str), then it
also searches the namespace in which the type of the argument str
was defined, so if str is an instance of the class String, then the
matching function length is found, since both the function and
the class are defined in the same namespace seqan; see Listing 3.
A function that gets arguments from different namespaces may
cause ambiguities, so we decided not to use several namespaces in
SeqAn.

Inheritance and Dynamic Binding

One may think that global functions are not inherited during class
derivation, but in fact they are. Suppose that we have two classes
Base and Derived and the second is derived from the first, then
all functions that work for Base will also work for Derived. Nev-
ertheless we do not make use of this observation in SeqAn, because
we apply template subclassing instead; see Section 4.3.

Admittedly, global function cannot be virtual, but we will see that
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namespace seqan

{

class String { ... };

size_t length(String &) { ... }

}

seqan::String str;

length(str); //no namespace qualification needed

Listing 3: Koenig Lookup Example. We do not need to specify the names-
pace seqan when calling the function length from outside the namespace,
because it is found by argument-dependent name lookup: The compiler
searches in the namespace seqan for length, since the argument str was
defined there.

template subclassing (Section 4.3) can substitute object-oriented
polymorphism in many cases, and since we use static binding in-
stead of dynamic binding, our approach is much more efficient. If
dynamic binding is indispensable, one can still use virtual func-
tions and call them via global functions.

Performance Overhead

In general, the overhead for calling global functions and (non-
virtual) member functions is the same. Shims are very small func-
tions and will usually be inlined, so we do not need to expect
that shims affect the performance of a program if we apply an
optimizing compiler.

4.5 Metafunctions

Generic algorithms usually have to know certain types that cor-
respond to their arguments: An algorithm on containers may
need to know which type of values are stored in the string, or
what kind of iterator we need to access it. The usual way in
the STL (Austern 1998) is to define the value type of a class like
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vector as a member typedef of this class, so it can be retrieved
by vector::value_type. Unfortunately member typedef decla-
rations have the same disadvantages as any members: Since they
are specified by the class definition, they cannot be changed or
added to the class without changing the code of the class, and it is
not possible in C++ to define members for built-in types. What we
need therefore is a mechanism that returns an output type (e.g.,
the value type) given an input type (e.g., the string) and that
thereby does not rely on members of the input type, but instead
uses some kind of global interface. Such task can be performed by
metafunctions, also known as type traits (Vandevoorde and Josut-
tis 2002, chapter 15). A metafunction is a construct to map some
types or constants to other entities like types, constants, functions,
or objects at compile time.

We use class templates to implement metafunctions in C++. List-
ing 4 shows an example for the definition and application of a
metafunction Value for determining the value type of containers.
The code defines Value for the Container class from Listing 2
and for C++ arrays. The returned type is defined as Type, so
Value<T>::Type is the value type of a container class T. The
generic algorithm swapvalues can be applied for both kinds of
data type for swapping the first two values stored in a container.

The metafunctions we propose here constitute a global interface
for accessing types, so they also share most of the advantages listed
in Section 4.4.1.

Metafunctions can also be used to define additional dependent
types that are not specified via template arguments. For example,
SeqAn offers the metafunction Size which specifies the appropri-
ate type for specifying memory amounts (e.g., for storing lengths
of containers). This type is by default size_t, and it is hardly
ever changed by the user, so it is not worth to specify it in an-
other template argument. Nevertheless it is possible to overwrite
the default with a new type, like a 64-bit integer (__int64) for
those container classes that provide extra large storage by defin-
ing a new specialization of the metafunction Size.

Our naming convention states that the return type of a metafunc-
tion is called Value. Another application of metafunctions is to
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template <typename T> class Value;

template <typename TValue, typename TSpec>

class Value < Container<TValue, TSpec> >

{

typedef TValue Type;

};

template <typename T, size_t I>

class Value < T[I] >

{

typedef T Type;

};

template <typename T>

void swapvalues(T & container)

{

typedef typename Value<T>::Type TValue;

TValue help = container[0];

container[0] = container[1];

container[1] = help;

}

Listing 4: Meta Functions Example. The example class Container was
defined in Listing 2; it is not part of SeqAn.
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define constants that depend on types. If a metafunction returns
a constant, then this is called VALUE. For example, the metafunc-
tion ValueSize in SeqAn specifies for alphabet types the number
of different values in the alphabet, so for Dna the metafunction call
ValueSize<Dna>::VALUE returns 4.

4.6 Further Techniques

4.6.1 Metaprogramming

The name metafunctions (Section 4.5) stems from the fact that
one can consider them as functions of a metaprogramming lan-
guage that is interpreted by the compiler during the compilation
process in order to produce the actual C++ code that is to be
compiled afterwards. A metaprogram is processed during compile
time and therefore does not burden the run time. One can do many
things with metaprogramming (e.g., see Gurtovoy and Abrahams
2002), but since this technique is rather complicated and hard to
maintain, we decided to use it only in limited circumstances. For
example, SeqAn supports the metafunction Log2 to calculate the
integer logarithm of given constants; see Listing 5. This function
is very helpful for example to compute the number of bits needed
to store a value of a given alphabet type.

4.6.2 Tag Dispatching

Tag dispatching is a programming technique that uses the types of
additional function arguments, called tag arguments, for control-
ling the overload resolution, which is the process of determining
the function that is actually executed for a given function call
(ISO/IEC 1998, sections 13.3 and 14.5.8). Since only the types
but not the actual instances of the function arguments are rele-
vant for overload resolution, a tag argument need not to have any
members. Those classes are called tag classes, and we showed in
Section 4.3.1 how tag classes are used in template subclassing to
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template < int numerus >

struct Log2

{

enum { VALUE = Log2<(numerus+1)/2 >::VALUE + 1 };

};

template <> struct Log2<1> { enum { VALUE = 0 }; };

template <> struct Log2<0> { enum { VALUE = 0 }; };

Listing 5: Metaprogram Example. This metaprogram computes the
rounded up logarithm to base 2. Call Log2<c>::VALUE to compute
⌈log2(c)⌉ for a constant value c.

select a data structure out of several alternatives.
Listing 6 shows how we can use tag classes to switch between
different implementation alternatives of algorithms. The third ar-
gument of globalAlignment acts as tag argument that specifies
the algorithm for computing a global alignment. In this example
two algorithms are available: NeedlemanWunsch and Hirschberg.
More tags of this kind supported by SeqAn are listed in Table 15
on page 116.

4.6.3 Defaults and Shortcuts

There are several ways to further simplify the use of SeqAn.
One possibility is to define default arguments for template pa-
rameters. For example, one can write String<char> instead of
String<char, Alloc<void> > in SeqAn, since the specialization
Alloc is the default; see Section 7.1.
Moreover, SeqAn defines several shortcuts for frequently used
classes. For example, we defined the type DnaString as a
shortcut for String<Dna> and DnaIterator for the iterator
Iterator<DnaString>::Type of DnaString. This way it is possi-
ble to program basic tasks in SeqAn even without explicitly defin-
ing any template arguments.
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struct NeedlemanWunsch;

struct Hirschberg;

template <typename TAlignment, typename TScoring>

void globalAlignment(TAlignment & ali,

TScoring const & scoring,

NeedlemanWunsch)

{

//Needleman-Wunsch algorithm

}

template <typename TAlignment, typename TScoring>

void globalAlignment(TAlignment & ali,

TScoring const & scoring,

Hirschberg)

{

//Hirschberg’s algorithm

}

Listing 6: Tag Dispatching Example.
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Chapter 5

The Design in Examples

The examples in this chapter will demonstrate the interplay of the
programming techniques that we described in Chapter 4.

5.1 Example 1: Value Counting

In this example, we want to implement a generic algorithm that
counts for each value in the alphabet how often it occurs in a
given string. Algorithm 1 shows the general idea of this algorithm.
The implementation should at least support the following kinds of

¤ CountValues (a1 . . . am)
counter [c] ← 0 for each c ∈ Σ1

for i ← 1 to m do2
counter [ai] ← counter [ai] + 13

report counter4

Algorithm 1: Algorithm for Counting String Values. The algorithm
counts for each value c of the alphabet Σ the number of occurrences of c

in the string a1 . . . am.

string for arbitrary value types:

• Instances of SeqAn string classes String.

• C++ standard strings basic_string.

• Zero-terminated char arrays (C-style strings).

47
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We will need the following functions and metafunctions: The
metafunctions Value and ValueSize to determine the value type
and the number of different values this type can get, the func-
tion length that returns the length of the string, and the function
value for accessing the string at a given position. Note that all
these functions and metafunctions are already defined in SeqAn;
we will discuss how.

5.1.1 The Metafunction Value

The metafunction Value determines the value type of a container.
For SeqAn strings, the value type is the first template argument,
so we define:

template <typename T> struct Value;

template <typename TValue, typename TSpec>

struct Value < String<TValue, TSpec> >

{

typedef TValue Type;

};

The class basic_string of the C++ standard library has
three template arguments, and it defines the member template
value_type, so we define a shim for accessing its value type as
follows:

template <typename TChar, typename TTraits, typename TAlloc>

struct Value < basic_string<TChar, TTraits, TAlloc> >

{

typedef basic_string<TChar, TTraits, TAlloc> TString;

typedef typename TString::value_type Type;

};

A metafunction Value for arrays was already described in Listing 4
at page 43. We define specializations both for arrays and pointers:
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template <typename T, size_t I>

struct Value < T [I] >

{

typedef T Type;

};

template <typename T>

struct Value < T * >

{

typedef T Type;

};

Moreover, to implement Value also for the const versions of these
types, we specify the following rule that delegates the metafunction
call to the non-const version:

template <typename T>

struct Value < T const >

{

typedef typename Value<T>::Type const Type;

};

5.1.2 The Metafunction ValueSize

The metafunction ValueSize returns the number of different val-
ues a variable of a given type T can get. The default implemen-
tation uses the number of bits that are needed to store a value of
type T: A type that takes n bits may store at most 2n different
values.

template <typename T>

struct ValueSize

{

enum { VALUE = 1 << (sizeof(T) * 8) };

};

Here we use an enum declaration; alternatively we could also de-
fine a static member constant. Note that this implementation
works on 32-bit machines only for types T with sizeof(T)< 4;
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however, this is no serious restriction in our case, since the algo-
rithm CountValues would not be appropriate anyway for larger
alphabets.

For some alphabets which do not use all the bits for representing
their values, SeqAn overloads ValueSize to define sharper bounds,
e.g., for the nucleotide alphabet Dna:

template <>

struct ValueSize < Dna >

{

enum { VALUE = 4 };

};

5.1.3 The Functions length

The implementation of length for SeqAn strings depends on the
actual specialization of String; see Section 7.3. The length of the
general purpose specialization Alloc for example results from the
difference between the begin and the end of the string, which are
both stored as data members in the object, so we may define:

template <typename TValue, typename TSpec> inline

typename Size< String< TValue, Alloc<TSpec> > const>::Type

length(String< TValue, Alloc<TSpec> > const & str)

{

return end(str) - begin(str);

}

Note that the return value of length is determined by the meta-
function Size. The default size type is size_t, which is suffi-
cient for most applications. For standard strings we need again
a shim function that wraps the member function length of
basic_string:
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template <typename TChar, typename TTraits, typename TAlloc>

inline

typename Size< basic_string<TChar, TTraits, TAlloc> >::Type

length(basic_string<TChar, TTraits, TAlloc> const & str)

{

return str.length();

}

The length of C-style string is determined by searching its zero-
termination:

template <typename T>

inline typename Size<T *>::Type

length(T * str)

{

if (!str) return 0;

T * it = str;

T zero = T();

while ( *it != zero) ++it;

return it - str;

}

A zero is created by calling the default constructor of T. The
length of a null pointer is defined to be 0.

5.1.4 The Functions value

Since all kinds of string that we consider here support the subscript
operator [ ] for accessing their values, we get by with a single
default implementation of value:

template <typename TString, typename TPosition>

inline typename Value<TString>::Type

value(TString * str,

TPosition pos)

{

return str[pos];

}
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Note that a class that supports the subscript operator always im-
plements a member function operator [ ], so in order to avoid
the application of member functions (see Section 4.4), generic al-
gorithms should always use the global function value instead of
square brackets.

5.1.5 The Generic Algorithm countValues

Now we have all the building blocks to implement CountValues.
The result is the generic algorithm shown in Listing 7. Here we
used the function ordValue that transforms a value of type TValue
into unsigned int according to the ord function in Section 6.4,
which maps the letters in the alphabet to numbers between 0 and
the size of the alphabet −1.

template <typename TString>

void countValues(TString const & str)

{

typedef typename Value<TString>::Type TValue;

unsigned int const alphabet_size = ValueSize<TValue>::VALUE;

unsigned int counter[alphabet_size];

for (unsigned int i = 0; i < alphabet_size; ++i)

{

counter[i] = 0;

}

for (unsigned int i = 0; i < length(str); ++i)

{

TValue c = value(str, i);

counter[ordValue(c)] += 1;

}

/* report counter */

}

Listing 7: Generic Algorithm for Counting String Values.

The function countValues can be used for all strings that support
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Value, length, and value, and for all value types that support
ValueSize. These functions and metafunctions may be defined
for all kinds of strings and all reasonable value types, so count-

Values has potentially a very large area of application, and it is
applicable to string types of different libraries, like SeqAn and the
C++ standard library, as well as to built-in C-style strings. Thus
we call this kind of programming library-spanning programming.

5.2 Example 2: Locality-Sensitive Hashing

In Section 11.2.1 we will propose the class Shape for storing a
(gapped) shape, which is an ordered set s = 〈s1, . . . , sq〉 of integers
s1 = 1 < s2 < · · · < sq. The subsequence ai+s1

ai+s2
. . . ai+sq

of a
string a = a1 . . . an is called the (gapped) q-gram of a at position
0 ≤ i ≤ n − sq. For a q-gram b1 . . . bq, we define the hash value

hash(b1 . . . bq) =

q∑

i=1

ord(bi)|Σ|q−i

(see Figure 10), where ord returns for each value of the alphabet
Σ a unique integer ∈ {0, . . . , |Σ| − 1}; see Section 6.4.
A typical task in Bioinformatics is to compute the hash values
for all q-grams of a given string, e.g., for building up a (gapped)
q-gram index (Section 11.2), or to apply locality-sensitive hash-
ing (Indyk and Motwani 1998) for motif finding (Section 10.3.1).
Listing 8 shows a generic algorithm that iterates through str and
computes at each position the hash value by calling the function
hash.
There are several ways for storing shapes of different kinds; see
Table 28 on page 188. We will now discuss how these shape classes
could be implemented in SeqAn.

5.2.1 The Base Class Shape

We decide to implement all shapes in SeqAn as refinements of the
class Shape. Each shape has to know the alphabet Σ, so we specify
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Figure 10: Locality-Sensitive Hashing. The example shows the application
of the gapped shape s = 〈1, 2, 4, 7, 8, 9〉. The hash value of "CAGAGT" is
1179.

template <typename TShape, typename TString>

void hashAll(TShape & shape,

TString & str)

{

typedef typename Iterator<TString>::Type TIterator;

TIterator it = begin(str);

TIterator it_end = end(str) - span(shape);

while (it != it_end)

{

unsigned int hash_value = hash(shape, it);

/* do some things with the hash value */

++it;

}

}

Listing 8: Generic Algorithm for Computing all q-Gram Hash Values.
The function span applied to the shape s = 〈s1, . . . , sq〉 returns sq − 1.
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this value type in the first template parameter of Shape. The actual
specialization is selected in the second template parameter TSpec:

template <typename TValue, typename TSpec = SimpleShape>

class Shape;

The default specialization is SimpleShape. We will define it in
Section 5.2.3. Note that there is no default implementation of
Shape, i.e., all shapes classes are defined as specializations.

5.2.2 Generic Gapped Shapes

The most straightforward implementation of a generic shape s =
〈s1, . . . , sq〉 stores this sequence in a data member. We use the
specialization GappedShape of Shape for this variant.

template <typename TSpec = void>

struct GappedShape;

template <typename TValue, typename TSpec>

class Shape< TValue, GappedShape<TSpec> >

{

public:

unsigned span;

String<unsigned int> diffs;

};

As a shortcut for this specialization we define:

typedef GappedShape<> GenericShape;

Since it always holds that s1 = 1, we need to store only q − 1
differences di = si+1 − si in the container diffs. Moreover, we
store sq − 1 in the member variable span, which can be retrieved
by calling the function of the same name:
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template <typename TValue, typename TSpec>

inline unsigned int

span(Shape< TValue, TSpec > const & shape)

{

return shape.span;

};

Note that we define span in a way that it is also applicable for other
specializations of Shape. The function hash can be implemented
as follows:

template <typename TValue, typename TSpec, typename TIterator>

inline unsigned int

hash(Shape< TValue, GappedShape<TSpec> > const & shape,

TIterator it)

{

unsigned int val = *it;

for (unsigned int i = 0; i < length(shape.diffs); ++i)

{

it += shape.diffs[i];

val = val * ValueSize<TValue>::VALUE + *it;

}

return val;

};

5.2.3 Ungapped Shapes

The most frequently used shapes are ungapped, i.e., shapes s =
〈1, 2, . . . , q〉. Ungapped shapes can be stored much simpler than
gapped shapes:

template <typename TValue>

class Shape< TValue, SimpleShape >

{

public:

unsigned int span;

};

That means we need not to store values si or di but only the length
q of the shape. If we know q at compile time, then we can specify
it in a template parameter and define span as a static member:
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template <unsigned int q = 0>

struct UngappedShape<q>;

template <typename TValue, unsigned int q>

class Shape< TValue, UngappedShape<q> >

{

public:

static unsigned int const span = q;

};

We call this a fixed shape, since for these shapes the span q cannot
be changed at run time. Since both variants of ungapped shapes
are very similar (and we do not need shapes for q = 0) we de-
fine SimpleShape to be a sub-specialization of UngappedShape as
follows:

typedef UngappedShape<0> SimpleShape;

This allows us to define functions for both kinds of ungapped
shapes at once.

Ungapped shapes have the advantage that the hash value of the
i-th q-gram can also be computed incrementally in constant type
from the hash value of the i−1-th q-gram according to the formula:

hash(ai+1 . . . ai+q) = hash(ai . . . ai+q−1)q − ai|Σ|q + ai+q

So we define a function hashNext that computes the next hash
value, given the previous hash value prev:1

1Note that hashNext in SeqAn does not get prev as function argument, since
the previous hash value is stored in the shape.

© 2010 by Taylor and Francis Group, LLC



58 Biological Sequence Analysis Using the SeqAn C++ Library

template <typename TValue, unsigned int q, typename TIterator>

inline unsigned int

hashNext(Shape< TValue, UngappedShape<q> > const & shape,

TIterator it,

unsigned int prev)

{

unsigned int val = prev * ValueSize<TValue>::VALUE

- *it * shape.fac

+ *(it + shape.span);

return val;

};

In the above code we store the value |Σ|q in the member variable
fac. In the case of fixed shapes this member variable could be a
static member constant, so the compiler can apply additional opti-
mizations which makes fixed shapes faster than shapes of variable
length q.
Using hashNext, we can define a specialization of hashAll for
ungapped shapes (Listing 9) that has a higher performance than
the generic version in Listing 8.

5.2.4 Hardwired Shapes

We argued in the last section that fixed shapes can be faster than
variable shapes, because a shape that is already defined at com-
pile time is better optimized. Therefore we define a specialization
HardwiredShape of GappedShape which encodes a (gapped) shape
within template parameters:

template <int d1, int d2, int d3, int d4, ...>

struct HardwiredShape;

For this shape type the function hash can be computed by recur-
sive C++ templates, which in effect cause a loop unrolling during
the compilation. In practice, a hardwired shape achieves a much
better performance than the generic gapped shape class from Sec-
tion 5.2.2.

© 2010 by Taylor and Francis Group, LLC



The Design in Examples 59

template <typename TValue, unsigned int q, typename TString>

void hashAll(Shape< TValue, UngappedShape<q> > & shape,

TString & str)

{

typedef typename Iterator<TString>::Type TIterator;

TIterator it = begin(str);

TIterator it_end = end(str) - span(shape);

unsigned int hash_value = hash(shape, it);

/* do some things with the hash value */

while (++it != it_end)

{

unsigned int hash_value = hashNext(shape, it, hash_value);

/* do some things with the hash value */

}

}

Listing 9: Special Algorithm for Computing all Hash Values of Un-
gapped q-Grams. The first hash value is computed by hash, and the
rest incrementally from the previous value by hashNext.
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5.2.5 Conclusion

Figure 11 shows the hierarchy of specializations for
Shape. The left branch Shape ← Shape<GappedShape>

← Shape<GappedShape<Hardwiredshape> > gives an exam-
ple for the progressive specialization that we described in
Section 4.3.1, where the derived class determines the TSpec

slot of its base class. In the right branch, the derivation
Shape<UngappedShape> ← Shape<SimpleShape> demonstrates
that template subclassing is also capable of other kinds of class
derivation: The shape class Shape<SimpleShape> is created by
defining a template specialization of Shape<UngappedShape<q> >

for q = 0.

Figure 11: Specialization Hierarchy of Shape. The dotted pointer shows
that hashAll calls the hash functions from descendant specializations.
This is done without the need of virtual since template subclassing relies
on static function binding, i.e., it is known at compile time which function
is actually called.

Each specialization of Shape has its own purpose: If we
want to define the actual shape at run time, then we need
GenericShape or SimpleShape instead of their faster fixed vari-
ants HardwiredShape and UngappedShape; see Figure 12. For
ungapped shapes, we better use the specializations SimpleShape

or UngappedShape instead of the much slower alternatives
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GenericShape or HardwiredShape.

Figure 12: Runtimes for q-gram Hashing. Average runtimes for
computing a hash value of an ungapped q-gram, where SimpleShape

and UngappedShape use the function hashNext, and GenericShape and
HardwiredShape the function hash. Alphabet size |Σ| = 4. The compiler
optimized fixed versions UngappedShape and HardwiredShape take only
about 80% and 40% of the time of their generic counterparts SimpleShape
and GenericShape, respectively.
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Part II

Library Contents

Part II gives a detailed overview of the main contents of SeqAn
from the algorithmic point of view. Chapter 6 explains basic func-
tionality of the library. Sequence data structures like strings, seg-
ments or string sets are discussed in Chapter 7, gapped sequences
and sequence alignments in Chapter 8, algorithms for searching
patterns or finding motifs in sequences are proposed in Chapters 9
and 10. The topic of Chapter 11 is string indices, and finally,
Chapter 12 proposes the graph data structures and algorithms
available in SeqAn. The string indices (Chapter 11) are in large
part the work of David Weese, the graph library (Chapter 12) was
implemented mainly by Tobias Rausch.
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Chapter 6

Basics

In this chapter we describe basic functionality provided by SeqAn
and we introduce some fundamental concepts that we will need in
the following chapters. We start with the concept of containers
of values in Section 6.1. The next Section 6.2 concerns memory
allocation, and in Section 6.3 we explain the idea of move op-
erations. The alphabet types provided by SeqAn are introduced
in Section 6.4, and iterators in Section 6.5. Section 6.6 is about
the conversion of types, and finally Section 7.11 describes the file
input/output functionality in SeqAn.

6.1 Containers and Values

A container is a data structure that has the purpose to store values,
i.e., objects of another data type. For example, a data structure
String that stores the string "ACME" would contain the values
‘A’, ‘C’, ‘M’, and ‘E’. Typically, all values stored in a container
have the same type, we call it the value type of the container.
The metafunction Value determines the value type for a given
container type.

A pseudo container is a data structure that in fact does not store
instances of the value type, but merely offers the same interface
as a real container. Saving memory is the main reason for using
pseudo containers: For example a pseudo container vector<bool>
could store the information about its content in a bit field instead
of storing individual bool objects in a vector. By doing this, the
container will take only one bit per value instead of one byte per
value and thus save memory.

65
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The interface of containers does not depend on the way they store
the information about their values. This, however, raises questions
concerning the value access. A very intuitive way of accessing the
values within a container is a function that returns references. A
reference behaves like the object it refers to but has a different
type. This holds in particular for C++ reference types (C++ Stan-
dard 8.3.2), e.g., int& that is a data type for storing references to
int variables. It is also possible to design proxy classes that serve
as references. Proxy classes are necessary if an access function is
applied to a pseudo container, because pseudo containers do not
store actual value objects, hence access functions cannot return
C++ references, so the references must be emulated by a proxy
class. Unfortunately, it is not possible in C++ to define proxy
classes that behave correctly as references in all circumstances.
For example, proxy objects usually do not fit into the same tem-
plate subclassing hierarchy (Section 4.3) as the types they refer
to, so different function overloads may be called if we use proxy
objects instead of the values themselves as function arguments.
An alternative way to access values within a container are get-
functions like getValue that either return a C++ reference to
the value or, in case of a pseudo container, a temporary copy
of the value. The type returned by a getValue can be deter-
mined by the metafunction GetValue, and the reference type
by Reference. For example, GetValue<vector<bool> > returns
bool and Reference<vector<bool> > a proxy class instead of
bool& because vector<bool> is a pseudo container.

6.2 Memory Allocation

Controlling memory allocation is one of the big advantages of C++
compared to other programming languages as for example Java.
Depending on the size of objects and the pattern they are allo-
cated during the program execution, certain memory allocation
strategies have advantages compared to others. SeqAn supports a
variety of memory allocation strategies.
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The two functions allocate and deallocate are used in SeqAn
to allocate and deallocate dynamic memory (C++ Standard 3.7.3).
Both functions take an allocator as an argument. An allocator is an
object that is thought to be responsible for allocated memory. The
default implementations of allocate and deallocate completely
ignore the allocator but simply call the basic C++ operators new

and delete. Although in principle every kind of object can be
used as allocator, typically the object that stores the pointer to
the allocated memory is used as allocator. For example, if memory
is allocated for an alloc string (see Section 7.3.1), this string itself
acts as allocator. A memory block should be deallocated using the
same allocator object as it was allocated for.

SimpleAlloc General purpose allocator.

SinglePool Allocator that pools memory blocks of specific size. Blocks

of different sizes are not pooled.

ClassPool Allocator that pools memory blocks for a specific

class. The underlying functionality is the same as for

SinglePool.

MultiPool Allocator that pools memory blocks. Only blocks up to a

certain size are pooled. The user can specify the size limit

in a template argument.

ChunkPool Allocator that pools one or more consecutive memory

blocks of a specific size.

Table 1: Allocators. These specializations of Allocator support the clear

function.

The function allocate has an optional argument to specify the
intended allocator usage for the requested memory. The user can
thereby specialize allocate for different allocator applications.
For example, the tag TagAllocateTemp specifies that the memory
will only be used temporarily, whereas TagAllocateStorage in-
dicates that the memory will be used in the long run for storing
values of a container.
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Figure 13: Pool Allocator. The SinglePool allocator optimizes the allo-
cation of memory blocks of a certain size B that can be specified in a
template argument. A host allocator – by default a SimpleAlloc alloca-
tor – is used to allocate the pools and requested memory blocks of size
different than B. Unused memory blocks are displayed in gray. Released
blocks are stored in a linked list starting with the pointer Recycle. If a
new memory block is requested from the pool, then it is taken from the
beginning of this list or, if the list is empty, the block at the end position
is used.
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SeqAn also offers more complex allocators which support the func-
tion clear. This function deallocates at once all memory blocks
that were previously allocated (see for example Listing 10). The
library predefines some allocator specializations for different uses
(see Table 1). Most of these allocators are pool allocators. A pool
allocator implements its own memory management: It reserves
storage for multiple memory blocks at a time and recycles deallo-
cated blocks; see Figure 13. This reduces the number of expensive
new and delete calls and speeds up the allocation and dealloca-
tion; see Figure 14 for timings.

Allocator<MultiPool< > > mpa;

char * buf;

allocate(mpa, buf, 1000, TagAllocateTemp());

//now buf points to a char array

clear(mpa);

//all memory was deallocated

Listing 10: Allocation Example. Note that instead of clear we could also
use deallocate(mpa, buf, 100) to deallocate the buffer manually.

Note that the C++ standard concept allocator (C++ Standard
20.1.5) differs from the SeqAn allocator concept. For example,
the C++ standard requires that allocators implement several mem-
ber functions, whereas the SeqAn library design avoids mem-
ber functions; see Section 4.4. SeqAn offers the adaptor class
ToStdAllocator that fulfills the allocator requirements as defined
in the C++ standard and wraps the member functions allocate

and deallocate to their global counterparts. One purpose of
ToStdAllocator is to make standard containers use the SeqAn
allocators for retrieving memory.
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Figure 14: Allocator Run Times. The average time for allocating memory
blocks of different sizes using (1) SimpleAlloc (2) SinglePool<100> (3)
MultiPool and (4) ChunkPool<100>. The time for getting memory from
SimpleAlloc reflects the expense for requesting it directly from the heap
manager. Blocks of size 100 (in case of SinglePool<100>) or multiples
of 100 (in case of ChunkPool<100>) are taken from the pool; MultiPool
pools blocks of size ≤ 256. All other blocks are requested from the heap
manager. The figure shows that getting a memory block from a pool
takes approximately 8% of the time needed to allocate the same amount
of memory from the heap manager.
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6.3 Move Operations

There is often an opportunity to speed up copy operations, if the
source is not needed any more after copying. Therefore, we intro-
duce move operations, i.e., assignments that allow the destruction
of the source. For example, if a container stores its values in a
dynamically allocated memory block, a move operation may sim-
ply pass the memory block of the source object to the target. The
source container will be empty after the move operation. Move
operations like moveValue are alternatives for regular assignment
functions like assignValue.

String<char> str1 = "ACGT";

String<char> str2(str1, Move());

cout << str2; //output: "ACGT"

cout << length(str1); //output: 0

Listing 11: Move Constructor Example.

In many cases, SeqAn also offers special constructors that apply
move operations. The move constructor differs from the regular
copy constructor in an additional tag argument Move (see List-
ing 11).

6.4 Alphabets

A value type that can take only a limited number of values is
called a (finite) alphabet Σ. We can retrieve the number of different
values of an alphabet |Σ|, the alphabet size, by the metafunction
ValueSize. Another useful metafunction called BitsPerValue

can be used to determine the number of bits needed to store a
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value of a given alphabet. Table 2 lists some alphabets predefined
in SeqAn. Let Σ = {σ0, . . . , σ|Σ|−1} be an alphabet, then we denote
ord(σi) = i. This number can be retrieved by calling the function
ordValue. All predefined alphabets in SeqAn store their values
in enumerated integers {0, . . . ,ValueSize−1}, so ordValue is for
those value types a trivial function.

Dna Alphabet for storing nucleotides of deoxyribonucleic acid, i.e.,

‘A’, ‘C’, ‘G’, and ‘T’.

Dna5 Like Dna, but with an additional value ‘N’ for unknown

nucleotide.

Rna Alphabet for storing nucleotides of ribonucleic acid, i.e., ‘A’,

‘C’, ‘G’, and ‘U’.

Rna5 Like Rna, but with an additional value ‘N’ for unknown

nucleotide.

Iupac Iupac code for storing nucleotides of DNA/RNA. The Iupac

codes are enumerated in this order: ‘U’= 0, ‘T’, ‘A’, ‘W’,

‘C’, ‘Y’, ‘M’, ‘H’, ‘G’, ‘K’, ‘R’, ‘D’, ‘S’, ‘B’, ‘V’, ‘N’=

15

AminoAcid Alphabet for storing amino acids.

Table 2: Alphabets in SeqAn. The listed characters are the result when a
value is converted into char.

6.4.1 Simple Types

Containers in SeqAn are usually designed as generic data struc-
tures that can be instantiated for arbitrary value types. The value
type can therefore be any user-defined class as well as a simple
type. A simple type is a type that does not need a constructor to
be created, a destructor to be destroyed, and neither a constructor
nor an assignment operator to be copied.
Simple objects have the advantage that they can be moved within
the computer’s main memory using fast memory manipulation
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functions. In many cases, containers that work on simple types
can therefore be implemented much faster than generic containers
that must copy values one after another using the correct assign-
ment operator or copy constructor.

POD (plain old data) types (C++ Standard 3.9) are simple, for
example built-in types like char or wchar_t. A C++ class can also
be simple even if it defines constructors, destructors or assignment
operators, as long as these functions are not necessary for correctly
creating, destroying, or copying instances of this class. All value
types listed in Table 2 are simple.

The metafunction IsSimple can be used to distinguish between
simple and non-simple types in metaprogramming.

6.4.2 Array Operations

In SeqAn a set of array operations serve as an abstraction layer
to apply divergent handling between simple types and other kinds
of types; see Table 3. For example, the general version of the
function arrayCopy uses a loop to copy a range of objects into a
target range, whereas a specialized version of arrayCopy for sim-
ple types applies the fast memory manipulation function memmove

(C++ Standard 20.4.6).

6.4.3 Alphabet Modifiers

A modifier is a class that adapts types in a way that the
adapted type is still of the same kind but shows some dif-
ferences compared to the unmodified type. The alphabet ex-
pansion modifier ModExpand for example transforms an alpha-
bet into another alphabet that contains an additional char-
acter, i.e., the value size is increased by one. For example
ModifiedAlphabet<TValue, ModExpand<’-’> > expands the al-
phabet TValue by a gap character ‘-’. This alphabet is used in
the context of gapped sequences and alignments; see Chapter 8. It
is returned by the metafunction GappedValueType for value types
that do not already contain a gap value.

SeqAn also offers string modifiers; see Section 7.6.
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arrayClearSpace Destroys a part of an array starting from the be-

ginning and keeps the rest.

arrayConstruct Construct objects in a given memory buffer.

arrayConstructCopy Copy constructs an array of objects into a given

memory buffer.

arrayConstructMove Move constructs an array of objects into a given

memory buffer.

arrayCopy Copies a range of objects into another range of

objects.

arrayCopyBackward Copies a range of objects into another range of

objects starting from the last element.

arrayCopyForward Copies a range of objects into another range of

objects starting from the first element.

arrayDestruct Destroys an array of objects.

arrayFill Assigns one object to each element of a range.

arrayMove Moves a range of objects into another range of

objects.

arrayMoveBackward Moves a range of objects into another range of

objects starting from the last element.

arrayMoveForward Moves a range of objects into another range of

objects starting from the first element.

Table 3: Array Operations.
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6.5 Iterators

An iterator is an object that is used to browse through the values of
a container. The metafunction Iterator can be used to determine
an appropriate iterator type given a container. Figure 15 shows
some examples. Some containers offer several kinds of iterators,
which can be selected by an optional argument of Iterator. For
example, the tag Standard can be used to get an iterator type
that resembles the C++ standard random access iterator (see C++
Standard 24.1.5). The more elaborated rooted iterator, i.e., an
iterator that knows its container, can be selected by specifying the
Rooted tag.

Figure 15: Iterators for Alloc Strings. See Section 7.3.1. The standard
iterator is just a pointer to a value in the string. The rooted iterator also
stores a pointer to the string itself. The stable iterator stored the position
instead of a pointer to a value since pointers could be invalid when the
alloc string is resized.

Rooted iterators offer some convenience for the user: They offer
additional functions like container for determining the container
on which the iterator works, and they simplify the interface for
other functions like atEnd; see Listing 12. Moreover, rooted iter-
ators may change the container’s length or capacity, which makes
it possible to implement a more intuitive variant of a remove al-
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gorithm (see C++ Standard 25.2.7). On the other hand, standard
iterators can often be implemented simply as pointers, and in prac-
tice they are faster than rooted iterators, which typically suffer
from an abstraction penalty; see Section 4.2. Hence, the default
iterator is set to Standard for most containers. This default is
defined by the metafunction DefaultIteratorSpec.

String<char> str = "ACME";

Iterator<String<char>, Rooted> it; //a rooted iterator

for (it = begin(str); !atEnd(it); ++it)

{

cout << *it;

}

Listing 12: Rooted Iterator Example. Since it is a rooted iterator, it
supports the unary function atEnd that returns true if and only if the
iterator points behind the end of its container. A standard iterator that
does not know its container could not support this function.

While rooted iterators can usually be converted into standard iter-
ators, it is not always possible to convert standard iterators back
into rooted iterators, since standard iterators may lack the in-
formation about the container they work on. Therefore, many
functions that return iterators like begin or end return rooted it-
erators instead of standard iterators; this way, they can be used to
set both rooted and standard iterator variables. Alternatively it is
possible to specify the returned iterator type explicitly by passing
the iterator kind as a tag argument (see Listing 13). An iterator is
stable if it stays valid even if its container is expanded, otherwise
it is unstable. For example, the standard iterator of alloc strings
(Section 7.3.1) – which is a simple pointer to a value in the string –
is unstable, since during the expansion of an alloc string, all values
are moved to new memory addresses. A typical implementation of
stable iterators for strings stores the position instead of a pointer
to the current value. The Iterator metafunction called with the
Stable tag returns a type for stable iterators.
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String<char> str = "ACME";

Iterator<String<char> > it1 = begin(str);

//a standard iterator

Iterator<String<char>, Standard> it2 = begin(str);

//same as above

Iterator<String<char>, Rooted> it3 = begin(str);

//a rooted iterator

Iterator<String<char>, Rooted> it4 = begin(str, Rooted());

//same as above

Listing 13: Examples for Creating Iterators. If no iterator kind is speci-
fied, the metafunction Iterator assumes Standard and the function begin

assumes Rooted. Both it1 and it2 are standard iterators, whereas it3

and it4 are rooted iterators.

6.6 Conversions

The function convert transforms objects from one type TSource

into another type TTarget (see Listing 14). There are two possi-
bilities for doing that: If the object can simply be reinterpreted as
an object of type TTarget, convert returns a TTarget& referring
to the original object. Otherwise, convert returns a temporary
(C++ Standard 12.2) object of type TTarget. The actual return
type can be determined by the metafunction Convert.

TSource obj;

Convert<TTarget, TSource>::Type obj2 = convert<TTarget>(obj);

Listing 14: Value Conversion. The program converts an
object of type TSource into an object of type TTarget.
Convert<TTarget, TSource>::Type is either TTarget& or TTarget,
according to whether obj can be reinterpreted as TTarget object or not.
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Chapter 7

Sequences

7.1 Strings

A sequence is a container that stores an ordered list of values, like
nucleotides, amino acids or char values. Examples for sequences
are "hello world" or "ACGT". The number of these values is
called the length of the sequence. The values in a sequence are
ordered. We define i − 1 to be the position of the i-th value in a
sequence, i.e., the first value in the sequence stands at position 0
and the last at position length−1, as it is standard in C. We call 0
the begin position and the length of the sequence the end position.
Note that the end position is not the position of the last value in
the sequence but the position after the last value.

SeqAn implements several string types as specializations of the
class String. These specializations are described in Section 7.3.
There is another class StringSet that offers an implementation
of strings of strings, i.e., strings that use again strings as value
types. StringSet will be described in Section 7.9.

All string classes in SeqAn (with the exception of the external
string; see Section 7.3.5) are designed as generic data structures
that can be instantiated for all kinds of value, i.e., for both simple
and non-simple value types (Section 6.4.1). Typically, the value
type is qualified as the first template argument in angled brackets:

String<AminoAcid> myProteine;

SeqAn predefines shortcuts for some usual value types, so we can
also write:

79
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Peptide myProteine; //same as above

The user can specify the specialization of string (Table 6 on
page 85) that should be used in the optional second template ar-
gument of String, for example:

String<char, Array<100> > myArrayString;

//string with maximum length 100

String<Dna, Packed<> > myPackedString;

//string that takes only 2 bits per nucleotide

A sequence is contiguous if it stores its values consecutively in
a single memory block. Examples for contiguous strings are the
standard library basic_string (see C++ Standard 21.3) and sim-
ple char arrays. Applied to a sequence type T, the metafunction
IsContiguous returns True if T is contiguous, otherwise False.
SeqAn offers many functions and operators for initializing, con-
verting, manipulating, and printing strings; see Table 4. An ex-
ample for string manipulation is given in Listing 15.

7.2 Overflow Strategies

Some sequence types reserve space of storing values in advance.
The number of values for which a sequence has reserved space is
called the capacity of this sequence. The capacity is therefore an
upper bound for the length of a sequence. A sequence is called
expandable, if its capacity can be changed. All string classes in
SeqAn– except of the array string (see Section 7.3.2) – are expand-
able. Changing the capacity can take much time, e.g., expanding
an alloc string (see Section 7.3.1) necessitates to copy all values of
this string into a new memory block.
There are numerous functions in SeqAn that can change the
length of a sequence. If the current capacity of a sequence is
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Metafunctions

Value The value type of the sequence.

Iterator The type of iterators for browsing the sequence (see Sec-

tion 6.5).

Size The type for storing the length or capacity of a sequence. This

is size_t in most cases.

Position An unsigned integral type to store the position of a value within

the sequence.

Infix A segment type that can represent an infix of the sequence.

Prefix A segment type that can represent a prefix of the sequence.

Suffix A segment type that can represent a suffix of the sequence.

Functions

assign Copies a sequence to another sequence. The same as the as-

signment operator =.

append Appends a sequence to another sequence. The same as the

operator +=.

replace Replaces a part of the sequence with another sequence.

value Returns a reference to a value in the sequence at a given posi-

tion. The same as the subscription operator [ ].

begin Returns an iterator to the begin of the sequence.

end Returns an iterator to the end of the sequence.

length The number of values stored in the sequence.

empty Returns true if the sequence is empty, i.e., its length is 0,

otherwise false.

clear Sets the length of the sequence to 0.

capacity The maximal length of the sequence. Can be changed using

reserve.

reserve Changes the capacity of the sequence.

Table 4: Common Functions and Metafunctions for Sequences.
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#include <iostream>

#include <seqan/sequence.h>

#include <seqan/file.h>

using namespace seqan;

using namespace std;

int main()

{

String<AminoAcid> prot = "anypeptide";

cout << length(prot) << endl;

//output: 10

prot += "anewend";

cout << prot << endl;

//ouput: "ANYPEPTIDEANEWEND"

return 0;

}

Listing 15: Example Program for Strings.

Exact Expand the sequence exactly as far as needed. The capacity

is only changed if the current capacity is not large enough.

Generous Whenever the capacity is exceeded, the new capacity is chosen

somewhat larger than currently needed. This way, the num-

ber of capacity changes is limited in a way that resizing the

sequence only takes amortized constant time.

Limit Instead of changing the capacity, the contents are limited to

current capacity. All values that exceed the capacity are lost.

Insist No capacity check is performed, so the user has to ensure that

the container’s capacity is large enough.

Table 5: Overflow Strategies.
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exceeded by changing the length, we say that the sequence over-
flows. The overflow strategy (see Table 5) determines the behav-
ior of a sequence in the case of an overflow. The user can specify
the overflow strategy by applying a switch argument. Otherwise
the overflow strategy is determined depending on the sequence
class: For functions that are used to explicitly change a sequence’s
length (like resize or fill) or capacity (reserve), the meta-
function DefaultOverflowExplicit specifies the default overflow
strategy. Functions like appendValue or replace that primar-
ily serve other needs than changing lengths or capacities may also
cause an overflow implicitly. For these functions, the metafunction
DefaultOverflowImplicit is used to determine the default over-
flow strategy. For example, the alloc string uses Exact as explicit
and Generous as implicit default expansion strategy. Listing 16
gives an example of the effect of overflow strategies. The overflow

String<char> str;

//default expansion strategy Exact:

resize(str, 5);

//now the capacity of str is 5

//use expansion strategy Limit:

assign(str, "abcdefghi", Limit());

//only "abcde" was assigned to str.

//default expansion strategy Generous:

append(str, "ABCDEFG");

//now str == "abcdeABCDEFG"

Listing 16: Overflow Strategies Example.

strategy Generous is used to achieve amortized constant costs for
appending single values to a string, e.g., the alloc string. When
the string is expanded, the function computeGenerousCapacity

is called to compute a new capacity for this string. The default
implementation – which can be overwritten by the user – reserves
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50% extra space for storing values. This additional memory is
used to store values that are appended afterwards. One can easily
show that the number of expansions of a string is logarithmic in
the number of value appends, and that each value in the string is
moved at most three times on average.

7.3 String Specializations

We will now describe the different specializations of the class
String (see Table 6 for an overview and Figure 16 for timings).

7.3.1 Alloc Strings

SeqAn offers two contiguous string specializations: Alloc and
Array. Alloc strings use dynamic memory (C++ Standard 3.7.3)
for storing values. Expanding the string means therefore that we
need to move all values into a new allocated larger memory block.
That in turn makes most iterators unstable (see Section 6.5). The
amortized costs for appending a value (e.g., using appendValue)
is constant if the overflow strategy Generous is used (see Section
7.2).

Since alloc strings are a good choice for most applications, Alloc is
the default string specialization. See Figure 17 for an illustration.

7.3.2 Array Strings

Array strings store values in an array data member. This array
has a fixed size, which is specified by a template argument. The
advantage of array strings is that no expenses are incurred for
allocating dynamic memory if the string is created with static or
automatic storage duration (C++ Standard 3.7.2), i.e., the string
is stored on the call stack at compile time. This can also speed up
the value access, since the call stack is a frequently used part of the
memory and has therefore a good chance to stay in the cache. On
the other hand, the finite size of the call stack limits the capacity of
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Alloc The default string implementation that can be used for general

purposes. The values are stored in a contiguous memory block

on the heap. Changing the capacity can be very costly since

all values must be copied into a new memory block.

Array A fast but non-expandable string that stores its values in a

member variable and that is therefore best suited for holding

small temporary sequences.

Block A string that stores its content in blocks, so that the capacity

of the string can quickly be increased without copying exist-

ing values. Though iteration and random access to values are

slightly slower than for alloc strings, block strings are a good

choice for growing strings and stacks.

Packed A string that stores as many values in one machine word as

possible and that is therefore suitable for storing very large

strings in memory. Since each value access takes some bit

operations, packed strings are in general slower than other in-

memory strings.

External A string that stores the values in secondary memory (e.g.,

a hard disk). Only parts of the string are loaded into main

memory whenever needed. This way, the total string length is

not limited by the machine’s physical memory.

Table 6: String Specializations.
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Figure 16: String Value Accessing Run Times. Left: Run times for
copying a random value into a random place depending on the length of
the strings. Right: Run times for iterating a string and moving the whole
string one value further.

Figure 17: Contiguous String. The figure shows an alloc string. The values
are stored in a single contiguous piece of memory. The string also stores
the capacity of the storage and the begin and end of the currently used
part.
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the string. A typical application for the array strings is to provide
quickly limited storage for sequences.

7.3.3 Block Strings

A Block string stores values in a set of fixed-size memory blocks.
The location of these blocks is stored in a directory. Block strings
are expanded by adding new memory blocks. The advantage –
compared to contiguous strings – is that this can be done without
moving values in memory. Block string iterators are therefore
always stable (see Section 6.5), and it is uncritical to store pointers
to values that are stored in a block string. Random access to a
value at a given position in the block string is done in four steps:
(1) Determine the number of the block the value is stored, (2)
look up in the directory the location of the block, (3) determine
the offset at which the value is stored within the block, (4) access
the value. If the block size is set to a power of two, step (1) take
only one shift- and step (3) one and-operation. Nevertheless,
random accesses to values in block strings are up to three times
slower than random accesses to values in contiguous strings, and
iterating over a block string takes about two times longer than
iterating over a contiguous string (see Figure 16).

Figure 18: Block String. The values are stored in a set of blocks, each of
the same size that is a power of two. A directory sequence stores pointers
to these blocks. All blocks except the last one are completely filled.
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The block string is optimized for appending and removing single
values at the end of the string. It supports the functions push –
a synonym for appendValue – and pop, and it is therefore best
suited to be used as stack.

Figure 19: Append Value Times. The average time needed to append a
single value to a string depending on the string length. Appending a single
value to a contiguous string could be very expensive, if this causes an
expansion of the string buffer, which means that the complete string must
be copied. The two displayed corridors give the upper and lower bound
for appending (1) a simple type value or (2) a non-simple type value to
a contiguous string, where the sizeof of a single value is 1. The upper
bound is reached, if the string was expanded during the last appending,
and the lower bound, if the next appending would cause a buffer expansion.
Block strings need no buffer expansions, so the time for appending a value
is less dependent from the kind of object stored in it.

7.3.4 Packed Strings

Objects in C++ have at least a size of one byte (C++ Standard
1.7), hence each value takes at least eight bits. But this is more
than actually needed for some value types. For example, the al-
phabet Dna has only four letters ‘A’, ‘C’, ‘G’, and ‘T’, so that
a Dna value can be encoded in only two bits. The metafunction
BitsPerValue returns the number of bits needed to store a value.
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The Packed string stores the values packed, i.e., each value takes
only the minimal number of bytes. For example, the packed string
compresses a Dna sequence down to a quarter of its unpacked size.

Figure 20: Packed String. The string stores as many values per machine
word as possible. In this example, each value takes six bits. The packed
string stores five instead of four values per 32-bit machine word, only two
bits per machine word are wasted.

However, the handling of packed strings is slower than for all other
in-memory string types in SeqAn. In practice, random accesses in
packed strings are up to two orders of magnitude slower than ran-
dom accesses in contiguous strings (see Figure 16). This difference
has three reasons: (1) Accessing a value in a packed string is much
more complicated than accessing a value in a contiguous string,
because each access takes multiple operations to filter out the rele-
vant bits, (2) the high complexity of access operations obstruct an
efficient optimization by the compiler, and (3) since packed strings
are suitable to handle very long sequences, SeqAn packed string
uses 64-bit position types, but this slows down random accesses
on 32-bit machines by a factor of about two. The packed string’s
iterator was optimized to speed up accesses, but an iteration still
takes eight times longer than iterating an unpacked contiguous
string (see Figure 16). For that reason, the application of packed
strings is only advisable if the handled sequences are too long to
be stored in main memory.
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7.3.5 External Strings

The External string stores its values on external memory, i.e., in
a file, with the effect that the main memory size does not limit
the sequence length any more. In particular, external strings can
be larger than 4 GB even on 32-bit machines, where we then need
64-bit words to store a positions of a value within the string. The
file is organized into fixed length blocks, and only some of them
are cached in main memory. Both block length and number of
cached blocks can be specified in template arguments. When the
user accesses a value of an uncached block, the block is loaded into
memory, and in return, the least recently used block in the cache is
written back to the file. During an iteration, the external string’s
iterator prefetches asynchronously the next-in-line memory block.
This trick speeds up the sequential iteration, but random accesses
to values in external strings are very slow; see Figure 16.

7.4 Sequence Adaptors

SeqAn also implements complete string interface adaptors – both
functions and metafunctions – for data types that are not part of
SeqAn. This way, these data types can be accessed in the same
way as SeqAn sequences, i.e., string algorithms in SeqAn can be
applied to these data types. There are three adaptions:

(1) For zero terminated char arrays, also known as C-style
strings, the classical way for storing strings in the program-
ming language C. For example, the length function for C-
style strings calls the standard library function strlen. The
interface applies to arrays of char or char_t and to char *

and wchar_t * pointers:

char str[] = "this is a char array";

cout << length(str); //output: 20
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Unfortunately, it is not possible to distinguish between C-
style strings and char pointers, which could also be iterators
for C-style strings or other string classes, so if the user calls
for example append to attach a char * to a string str, then
we could either append a sequence of char or a single char *.
Note that it is not possible to decide this just regarding the
value type of str, since this could be any type into which
either char or char * can be converted.

Another limitation of C-style strings is that we cannot define
all common operators like operator = for built-in types like
char *.

(2) For the standard library class basic_string, that is widely
used in C++ programs. For example, the length function
for basic_string string calls the member function length:

std::basic_string str = "a standard library string";

cout << length(str); //output: 25

(3) Finally, there is also a generic sequence interface that applies
to any data type (if there is no further implementation) in
a way, that an arbitrary object is regarded as a sequence of
these objects of length 1:

MyClass obj;

cout << length(obj); //output: 1

7.5 Iterating Sequences

Iterators are objects that are used to scan through containers like
strings or segments (Section 6.5). Listing 17 shows an example. An
iterator always points to one value in the container. The function
value (which does the same as the operator *) can be used to
access this value. Functions like goNext or goPrevious (which
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do the same as ++ and --, respectively) can be used to move the
iterator to other values within the container.

String<char> str = "acgt";

typedef Iterator<String<char> >::Type TIterator;

for (TIterator it = begin(str); it != end(str); ++it)

{

cout << value(it);

}

//output: "start_overwrite_end";

Listing 17: Iterating a String.

The functions begin and end applied to a container return it-
erators to the begin and the end of the container. Note that,
similar to C++ standard library iterators, the iterator returned
by end does not point to the last value of the container but to
the value that would come next. So if a string s is empty, then
end(s) == begin(s).

7.6 Sequence Modifiers

SeqAn supports several modifiers (see Section 6.4.3) for strings
that allow a different view to a given string; see Table 7. Mod-
ifiers for strings are implemented in specializations of the class
ModifierString. The required space of a modifier is constant,
i.e., it does not depend on the length of the sequence. Each mod-
ifier exports a complete string interface, including an appropriate
iterator and segment data types (Section 7.7).

One specialization of ModifiedString is the ModView modifier:
Assume we need all characters of myString to be in uppercase
without copying myString. We first create a functor, i.e., an Stl

unary function, which converts a character to uppercase:
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ModReverse The reverse an . . . a1 of the string a1 . . . an.

ModView Transforms the values of a string a1 . . . an using a custom
functional. The type of the functional is specified as tem-
plate argument of ModView. SeqAn offers the following pre-
defined functionals:

ModView<FunctorConvert>: Converts the value type.

ModView<FunctorLowcase>: Converts to lowercase charac-
ters, e.g., ‘A’ is converted to ‘a’.

ModView<FunctorUpcase>: Converts to uppercase charac-
ters, e.g., ‘b’ is converted to ‘B’.

ModView<FunctorComplement>: Converts nucleotide value

Dna or Dna5 to their complement, e.g., ‘A’ is converted to

‘T’, ‘C’ to ‘G’, and vice versa.

Table 7: String Modifiers.

struct FunctorUpcase: unary_function<char, char>

{

inline char operator()(char x) const

{

if ((’a’ <= x) && (x <= ’z’)) return (x + (’A’ - ’a’));

else return x;

}

};

This functor FunctorUpcase is already part of SeqAn, together
with some other predefined functors. We create a ModifiedString
specialized with ModView<FunctorUpcase> as follows:

String<char> str = "A man, a plan, a canal";

typedef ModifiedString<

String<char>,

ModView< FunctorUpcase<char> > > TMod;

TMod str_upper(str);

cout << str_upper << endl; //output: "A MAN, A PLAN, A CANAL"
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Modifiers can also be nested, for example the following program
shows how to get the reverse complement of a given Dna string by
applying two modifiers on it:

String<Dna> myString = "attacgag";

typedef ModifiedString<String<Dna>, ModComplementDna> TConv;

typedef ModifiedString<TConv, ModReverse> TRevConv;

TRevConv myReverseComplement(myString);

std::cout << myReverseComplement << endl; //prints "CTCGTAAT"

Since accessing a string through a modifier causes a certain over-
head, it could be advisable to convert the string itself – though
this has the disadvantage that the original string gets lost. SeqAn
therefore offers in-place modifier functions reverseInPlace and
convertInPlace. The following example program converts a Dna

string to its reverse complement:

String<Dna> myString = "attacgag";

convertInPlace(myString, FunctorComplement<Dna>());

reverseInPlace(myString);

std::cout << myString << endl; //prints "CTCGTAAT"

7.7 Segments

A segment is a contiguous part of a sequence. The sequence is
called the host of the segment. SeqAn implements segment data
types for infixes, prefixes, and suffixes: A prefix is a segment that
starts with the first value of the host, a suffix is a segment that
ends with the last value of the host, and an infix is an arbitrary
segment.
The segment data structures in SeqAn are pseudo-containers:
They do not store values themselves but a link to their host and
the begin and end borders of the segment; see Figure 21. These
borders can be set either during the construction of the segment
or by functions like setBegin or setEnd. Changing the content of
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a segment means to change the content of its host; see Listing 18.

Figure 21: Segment. The infix segment stores a pointer to the host and the
begin and end position of the subsequence.

String<char> str = "start_middle_end";

Infix<String<char> > inf = infix(str, 6, 12);

cout << inf; //output: "middle"

inf = "overwrite";

cout << str; //output: "start_overwrite_end";

prefix(str, 5) = "XYZ";

cout << str; //output: "XYZ_overwrite_end";

Listing 18: Segment Example. This program demonstrates how the content
of a string str can be changed by assigning new values to segments. If
this effect is undesirable, one has to explicitly make a copy of the string.

The metafunctions Infix, Prefix, and Suffix, respectively, re-
turn for a given sequence an appropriate data type for storing the
segment. The functions infix, prefix, and suffix create tempo-
rary segments that can directly be used to manipulate their host
sequence. It is also possible to create segments of segments, but
this does not introduce new types: A segment A of a segment B

of a sequence S is again a segment of S. Note that changing the
borders of B does not affect the borders of A.
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7.8 Comparators

Two sequences can be lexicographically compared using usual op-
erators like < or >=, for example:

String<char> a = "beta";

String<char> b = "alpha";

bool a_not_equals_b = (a != b); //true

bool a_less_b = (a < b); //false

Each comparison involves a scan of the two sequences for searching
the first mismatch between the strings. This could be expensive if
the two sequences share a long common prefix. Suppose for exam-
ple that we want to branch in a program depending on whether
A < B, A == B, or A > B, for example:

if (A < B) { /* code for case "A < B" */ }

else if (A > B) { /* code for case "A > B" */ }

else { /* code for case "A == B" */ }

In this case, although only one scan would be enough to decide
what case is to be applied, each operator > and < performs a
new comparison. SeqAn offers lexicals to avoid such unnecessary
sequence scans. A lexical is an object that stores the result of a
comparison. Applying a lexical to the example above leads to the
following code:

Lexical<> comp(A, B);

if (isLess(comp)) { /* code for case "A < B" */ }

else if (isGreater(comp)) { /* code for case "A > B" */ }

else { /* code for case "A == B" */ }

The two sequences A and B are compared during the construction of
the lexical comp. The result is stored in the lexical and is accessed
via the functions isLess and isGreater.
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7.9 String Sets

A set of sequences can either be stored in a sequence of sequences,
for example in a String< String<char> >, or in StringSet. One
advantage of using StringSet is that it supports the function
concat that returns a concatenator of all sequences in the string
set. A concatenator is an object that represents the concatenation
of a set of strings. This way it is possible to build up index data
structures for multiple sequences by using the same construction
methods as for single sequences (see Chapter 11). The special-
ization Owner<ConcatDirect> already stores the sequences in a
concatenation. The concatenators for all other specializations of
StringSet are virtual sequences, that means their interface sim-
ulates a concatenation of the sequences, but they do not literally
concatenate the sequences into a single sequence. Hence in any
case the sequences need not to be copied when a concatenator is
created.
There are two kinds of StringSet specializations in SeqAn: Owner
and Dependent; see Table 8. Owner string sets actually store the
sequences, whereas Dependent string set just refer to sequences
that are stored outside of the string set.
One string can be an element of several Dependent string sets.
Typical tasks are therefore to find a specific string in a stringset,
or to test whether the strings in two string sets are the same.
Therefore a mechanism to identify the strings in the string set is
needed, and, for performance reasons, this identification should
not involve string comparisons. We solved this problem by in-
troducing ids, which are by default unsigned int values. There
are two ways for accessing the sequences in a string set: (1) the
function value returns a reference to the sequence at a specific
position within the sequence of sequences, and (2) valueById ac-
cesses a sequence given its id. In the case of Owner string sets, id
and position of a string are always the same, but for Dependent

string sets, the ids can differ from the positions. For example, if
a Dependent string set is used to represent subsets of strings that
are stored in Owner string sets, one can use the position of the
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Owner The default specialization of StringSet. The se-

quences in this string set are stored in a string of

string data structure. concat returns a special

concatenator object that simulates the concate-

nation of all these strings.

Owner<ConcatDirect> The sequences are stored as parts of a long string.

Since the sequences are already concatenated,

concat just needs to return this string. The

string set also stores lengths and starting posi-

tions of the strings. Inserting new strings into

the set or removing strings from the set is more

expensive than for the default Owner specializa-

tion, since this involves moving all subsequent

sequences in memory.

Dependent<Tight> This specialization stores sequence pointers con-

secutively in an array. Another array stores an

id value for each sequence. That means that ac-

cessing given an id needs a search through the id

array.

Dependent<Generous> The sequence pointers are stored in an array at

the position of their ids. If a specific id is not

present, the array stores a zero at this position.

The advantage of this specialization is that ac-

cessing the sequence given its id is very fast. On

the other hand, accessing a sequence given its

position i can be expensive, since this means we

have to find the i-th non-zero value in the array of

sequence pointers. The space requirements of a

string set object depends on the largest id rather

than the number of sequences stored in the set.

This could be inefficient for string sets that store

a small subset out of a large number of sequences.

Table 8: StringSet Specializations.
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string within the Owner string set as id of the strings.

7.10 Sequence Conversion

A sequence of one value type can be converted into a sequence of
another value type, if the two value types are convertible. SeqAn
offers three different ways for sequence conversion:

(1) Copy conversion. The source sequence is copied into the
target sequence, e.g., during construction, by assignment
(operator =), or using the function assign.

String<Dna> source = "acgtgcat";

String<char> target;

assign(target, source); //copy conversion

(2) Move conversion. In some cases, the function move can
perform an in-place conversion. For example, if source and
target sequence are Alloc strings (see Section 7.3.1) and if
the two value types have the same size, then move transfers
the value storage of the source to the target string. After
that, all values are converted to the new value type.

String<Dna> source = "acgtgcat";

String<char> target;

move(target, source); //in-place move conversion

(3) Modifier conversion. A modifier can emulate a sequence
with a different value type instead of creating an actual tar-
get sequence; see Section 7.6.

String<Dna> source = "acgtgcat";

typedef Modifier<String<Dna>,

ModView<FunctorConvert<Dna, char> > > TModifier;

TModifier target(source); //char sequence "acgtgcat"

Value<TModifier>::Type c; //a variable of type char
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Raw The default file format. Raw applied to sequences means that

the file content is directly interpreted as a sequence. Raw

applied for writing an alignment generates a pretty print.

Fasta A common file format for storing sequences or alignments

(Pearson and Lipman 1988). Each record consists of a single

line starting with ‘>’ that contains metadata, followed by

the sequence data.

Embl The EMBL/Swissprot file format (Stoehr and Cameron

1991) for storing sequences and complex metadata. Each

metadata entry starts with a two-letter code (see EMBL

User Manual 2008).

Genbank The GenBank file format (Benson et al. 2008); an alterna-

tive notation of EMBL/Swissprot file format for sequence

data.

DotDrawing File format for graphs (see Chapter 12), write only.

Table 9: Some File Formats.

7.11 File Input/Output

SeqAn supports several ways for reading and writing sequences and
alignments in different file formats. Table 9 shows some supported
file formats. There are two ways for accessing a file in SeqAn: (1)
file access functions and (2) file reader stings.

7.11.1 File Access Functions

The function read loads data from a file and write saves data to
a file. Both C-style FILE handles or C++ stream objects can be
used as files. Note that the files should always be opened in binary
mode. The simplest file format is Raw that is used to load a file as
is into a string or vice versa, e.g.,:
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//loading

fstream fstrm;

fstrm.open("input.txt", ios_base::in | ios_base::binary);

CharString str;

read(fstrm, str, Raw());

fstrm.close();

//saving

FILE * cstrm = fopen("output.txt", "w");

write(cstrm, str, Raw());

fclose(fstrm);

In this example, the tag Raw() can also be omitted, since Raw is
the default file format. Instead of using the functions read and
write to access raw data, one can also use the operators << and
>>.

Many file formats like Fasta or Embl are designed to store multiple
records. For loading all records, one can call the function read

repeatedly:

fstream fstrm;

fstrm.open("ests.fa", ios_base::in | ios_base::binary);

String<Dna> est;

while (! strm.eof())

{

read(fstrm, est, Fasta()); //use sequence data in est

}

The function goNext skips the current record and proceeds to the
next record. Each record contains a piece of data (i.e., a sequence
or an alignment) and some optional, additional metadata. One
can load these metadata before (not after) loading the actual data
using readMeta:
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FILE * cstrm = fopen("genomic_data.embl", "r");

goNext(cstrm, Embl());

//skip first data record

String<Dna> dna_sequence;

read(cstrm, dna_sequence, Embl()); //reads second record

String<char> meta_data;

readMeta(cstrm, meta_data, Embl()); //reads third meta data

read(cstrm, dna_sequence, Embl()); //reads third record

fclose(cstrm);

The function write is used to write a record into a file. Depending
on the file format, a suitable metadata string must also be passed
to write. The following example program:

FILE * cstrm = fopen("genomic_data.fa", "w");

write(cstrm, "acgt", "the metadata", Fasta());

fclose(cstrm);

creates the following file "genomic_data.fa":

>the metadata

ACGT

7.11.2 File Reader Strings

The most simple way of reading a file that contains sequence data
is to use a file reader string that emulates a constant string on a
given file. It is implemented in the specialization FileReader of
String:

String<Dna, FileReader<Fasta> > fr("ests.fa");

//opens "ests.fa" for reading

cout << length(fr);

//prints length of the sequence
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File reader strings support almost the complete string interface,
including iteration. A file reader string should nevertheless be read
sequentially, because random accesses can be very time consuming.
Note that the contents of a file reader string cannot be changed.
The constructor of the file reader string can also take a file from
which the sequences will be loaded. For example, the following
code will read the second sequence in the file:

FILE * cstrm = fopen("genomic_data.embl", "r");

goNext(cstrm, Embl());

String<char> meta_data;

readMeta(cstrm, meta_data, Embl());

//reads meta data of second record

String<Dna, FileReader<Embl> > fr(cstrm);

//reads sequence data of second record

fclose(cstrm);
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Chapter 8

Alignments

An alignment (see Section 1.2.3) is a compact notation for the
similarities and the differences between two or more sequences.
To get the similar regions together, the alignment process allows
the insertion of gaps into the sequences, so we will first discuss in
Section 8.1 which data structures for storing gapped sequences are
provided in SeqAn, before we propose the alignment data struc-
tures in Section 8.2. Algorithms for computing (global) alignments
are explained in Sections 8.4 to 8.6.

8.1 Gaps Data Structures

In alignments obviously arises the need to store gapped sequences,
i.e., sequences that contain gaps between the values. The simplest
way to store a gapped sequence is to store it as a usual sequence
using a value type that is extended by an extra blank value ‘-’.
The gaps in the sequence are then represented by the regions in
the sequences that contain blank values. On the other hand, it
could be advantageous to store the ungapped sequence and the
position of the gaps separately for at least three reasons: (1) this
way, we can extend arbitrary sequence data structures to gapped
sequences without copying the sequence, (2) one sequence – or
parts of it – can participate in several alignments, and (3) storing
gaps as sequences of blank values could be very expensive for long
gaps or for repeated manipulation of the gaps.

The class Gaps implements in SeqAn data structures for storing
the positions of gaps or, more precisely spoken, gap patterns. A
gap pattern of a sequence a = a1a2 . . . an is a strictly monotonically

105
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Figure 22: Gaps Data Structure. This is an example for a gap pattern
function: p(1) = 4, p(2) = 5, p(3) = 7, . . .

increasing function p that maps the values {1, 2, . . . , n} to values
in N (see Figure 22). The sequence a is in general a segment of a
larger host sequence s, which is called the source of p. The source
position of ai is its position within the source sequence s, e.g., if
a = s, then the source position of ai is i − 1.
For p(i) = j, we call j−1 the view position of ai. A j that is not a
view position of any value in a is called a blank. A maximal run of
blanks is called a gap. For example the L blanks j+1, j+2, . . . , j+
L between p(i) = j and p(i+1) = j +1+L are a gap of length L.
Given a sequence a and a gap pattern p, the corresponding gapped
sequence b = b1b2 . . . bm of length m = p(n) is defined by:

bj =

{
ai if there is an i such that p(i) = j
‘-’ (i.e., a blank character) otherwise

The gapped sequence is also called the view of the gap pattern. If
there are blanks 0, 1, . . . , p(1) − 1 at the beginning of b, they are
called the leading gap of b. We call p(1)−1 the begin view position
and p(n) the end view position of p, i.e., they are the begin and
end position of the gapped sequence without the leading gap. The
gapped sequence b can also be thought to be followed by an endless
number of trailing blanks bm+1 = bm+2 = . . . = ‘-’. We call these
trailing blanks the trailing gap. A run of values without blanks
between two gaps is called a non-gap.
SeqAn offers three different specializations for Gaps, each of
which has certain advantages: (1) SequenceGapsGaps, (2)
ArrayGapsGaps, and (3) SumlistGapsGaps (see Table 10). All
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SequenceGaps A sequence of values including blank signs ‘-’.

ArrayGaps The lengths of gaps and non-gaps are stored in an array.

SumlistGaps The gap pattern is stored in a two-dimensional sum list.

Table 10: Gaps Specializations Overview.

implementations of gaps data structures offer functions for insert-
ing and deleting gaps, for changing a gap’s size, and for converting
view positions to source positions and vice versa, which is neces-
sary for example for random access of the values in the gapped se-
quence given a view position. Table 11 lists some common funcions
and metafunction applicable to gapped sequences. The differences
between the three specializations will be described now.

8.1.1 SequenceGaps Specialization

The SequenceGaps specialization of Gaps is the most obvious im-
plementation of a gaps data structure: It stores a gapped sequence
simply as a sequence including ‘-’ blank values. Each gap of
size L takes therefore L blank values, except for the leading and
the trailing gaps that are known because SequenceGaps explicitly
saves the begin view position and the length of the sequence in
member variables. This special treatment of leading gaps makes
sense because the leading and trailing gaps could be very long,
especially if the Gaps data structure is used to store a line in a
multiple sequence alignment as described in Section 8.2. Since
SequenceGaps stores the source together with the gaps, it cannot
refer to an external source sequence. If the ungapped source is ac-
cessed by calling the function source, a temporary source string
is created and returned by value.

The specialization SequenceGaps stores the view of the gapped
sequence directly, so both iterating and random accessing its val-
ues are very fast. However, inserting and deleting blanks could be
very expensive, because for each such operation the whole part
of the view behind the modified position must be moved. A
conversion between view and source position is also rather time
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Metafunctions

Source Type of the underlying ungapped sequence, which can be

accessed by the function source and set by setSource or

assignSource.

Functions

source Returns the source of the gapped sequence, i.e., the un-

derlying ungapped sequence.

assignSource Assigns the source of the gapped sequence. The source

sequence is copied into the gapped sequence.

setSource Sets the source sequence; makes the gapped sequence de-

pendent from this source sequence.

sourceBegin The source begin position.

sourceEnd The source end position.

insertGaps Insert one or more blanks into the gapped sequence at a

given position.

removeGaps Removes blanks from the gapped sequence at a given

position.

clearGaps Removes all gaps from gapped sequence.

countGaps Returns the number of gaps.

isGap Determines whether there is a blank at given position.

Table 11: Common Functions and Metafunctions for Gapped Se-
quences. Gapped sequences also support the functions and metafunctions
for ungapped sequences; see Table 4.
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consuming, because it involves a linear scan through the gapped
sequence. Although SequenceGaps is rather space efficient for
gapped sequences that only contain short gaps, SequenceGaps be-
comes wasteful for very large gaps, because the space needed to
store a gap is linear to its size.

8.1.2 ArrayGaps Specialization

The ArrayGaps specialization of Gaps stores the sizes of gaps and
gap free parts. For example, for the gapped sequence in Figure 22,
it stores the array {3, 2, 1, 1, 2, 3, 1, 1}. Every second number in
this array corresponds to a non-gap’s size, the rest corresponds to
the lengths of the gaps. The first number in the array is the size of
the leading gap. The source sequence can either be stored within
the Gaps object or separately.

The advantage of ArrayGaps is to store the gaps more space effi-
cient than SequenceGaps even for very large gaps.

8.1.3 SumlistGaps Specialization

The SumlistGaps specialization of Gaps stores a sequence of pairs,
one pair for each non-gap in the gapped sequence. Each pair
stores (1) the size of the non-gap and (2) the size of the non-
gap plus the size of the preceding gap. For example, for the
gapped sequence in Figure 22, it stores the following sequence
of pairs: {(2, 5), (1, 2), (3, 5), (1, 2)}. These pairs are saved in a
two-dimensional sum list. Given a sum S and a dimension d, the
sum list pair1, pair2, . . . , pairt allows a fast search for the first
pair pairi in the list, for which holds: The d-th dimension of
sumi := pair1 + pair2 + . . . + pairi is greater or equal to S. The
search returns both pairi and sumi. Note that sumi is a pair
of source position sumi[0] and view position sumi[1] for the first
blank behind the i-th non-gap. The conversion between view po-
sition and source position works as follows:

(1) source =⇒ view:
Given a source position S, search the first dimension of the
sum list for S and find pairi. The view position V that
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corresponds to S is given by:

V = sumi[1] − (sumi[0] − S)

(2) view =⇒ source:
Given a view position V , search the second dimension of the
sum list for V and find pairj. The source position S that
corresponds to V is given by:

S =

{
sumj[0] − pairj[0] if V is the position of a blank,

sumj[0] − (sumj[1] − V ) otherwise

All operations on a sum list that are relevant for the implementa-
tion of SumlistGaps – like searching, inserting a pair, removing a
pair, and changing a value of a pair – take O(log t) time, where t
is the number of pairs in the list. This affects the runtime of oper-
ations on SumlistGaps gapped sequences: Inserting or removing
gaps, changing a gap’s size, conversion between view position and
source position, and accessing the value at a given view position
take time logarithmic to the number of gaps; see Table 12 and
Figure 23.

8.2 Alignment Data Structures

Let us write a set of gap patterns {p1, p2, . . . , pk} for k ≥ 2 se-
quences a1, a2, . . . , ak in a matrix, i.e., the rows are the gap pat-
terns and the columns the view positions; see Figure 24.
A position j is called a gap column, if it is a blank in all gap pat-
terns. Moreover, if j is a part of the leading gaps of all pi, then j is
a leading gap column, and if j is a part of the trailing gaps of all pi,
then j is a trailing gap column. The set {p1, p2, . . . , pk} is called
an alignment A of the sequences a1, a2, . . . , ak, if it contains no
gaps columns but, potentially, leading and trailing gap columns.
We say that values are aligned, if they belong to the same col-
umn. We can transform an arbitrary set of gap patterns into an
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Figure 23: Gaps Data Structure Run Times. Left: Run times for con-
verting source to view position of the last value depending on the total
number of gaps in the gapped sequence. Right: Run times for inserting
a gap at the front of a gapped sequence. In both cases, we used a gapped
sequence of minimal length, which is best-case for SequenceGaps.

SequenceGaps ArrayGaps SumlistGaps

Inserting a new gap O(n) O(g) O(log(g))
Removing a gap O(n) O(g) O(log(g))
Changing a gap’s size O(n) O(1) O(log(g))
Conversion view to source O(n) O(g) O(log(g))
Conversion source to view O(n) O(g) O(log(g))
Accessing the value at a given view position O(1) O(g) O(log(g))
Accessing the value of an iterator O(1) O(1) O(1)
Moving an iterator to the next position O(1) O(1) O(1)
Moving an iterator to a given view position O(1) O(g) O(log(g))

Table 12: Time Consumption of Operations on Gapped Sequences.
n is length of the gapped sequence, g is the number of gaps in the gapped
sequence.

Figure 24: Example of an Alignment. An alignment of three sequences
a1, a2, and a3. (Note that the gap column has to be removed in order to
get a proper alignment.)
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alignment by removing all gap columns. For each proper subset
M ⊂ {1, 2, . . . , k}, a projection AM of the alignment A is defined
as the set {pi| i ∈ M} after removing all gap columns. There
are two ways for storing alignments in SeqAn: (1) the Align data
structures, and (2) alignment graphs (see Section 12.2).

Metafunctions

Row The type of an alignment row, typically a gapped se-

quence (Section 8.1).

Col The type of an alignment column.

Functions

rows Returns the sequence of alignment rows.

cols Returns the sequence of alignment columns.

setStrings Uses the strings in a StringSet as rows of the

alignment.

globalAlignment Applies a global alignment algorithm (Section 8.5).

globalAlignment Applies a local alignment algorithm (Section 10.1).

Table 13: Common Functions and Metafunctions for Alignments.

The data structure Align is implemented as a sequence of Gaps
objects that store the rows of the alignment and are accessible via
the function rows. Some typical functions and metafunctions for
Align are listed in Table 13. An alignment can also be considered
as sequence of columns, which can be retrieved using the function
cols. The smallest position that is not a gap column is called the
begin position, and the position of the first trailing gap column is
called the end position of the columns sequence. The iterator of the
column sequence is implemented as a set of k iterators, one iterator
for each row. This means that iterating the column sequence of
an alignment could be costly for alignments that contain many
sequences.

Note that Align objects support gap columns, so it is the user’s
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responsibility to remove them if necessary.

8.3 Alignment Scoring

8.3.1 Scoring Schemes

A scoring scheme for alignments is a function that maps align-
ments to numerical scores like int or double values. SeqAn sup-
ports alignment scoring schemes that are defined (1) by a function
α that scores pairs of aligned values and (2) a function γ for scoring
gaps. A gap of size l scores:

γ = gopen + gextend ∗ (l − 1), (8.1)

i.e., the first blank in the gap scores gopen, and gextend is added to
γ for each further blank in the gap. Usually, we demand gopen ≤
gextend ≤ 0, so γ is a convex function and larger gaps get a discount.
If gopen = gextend, then we call γ linear, otherwise γ is affine.

Simple Defines the function α by two values amatch and amismatch

as follows: α(x, y) = amatch, if x = y, otherwise α(x, y) =

amismatch. If no other values are specified, this scoring

scheme implements the edit distance (Equation 8.4).

ScoreMatrix Stores the function α in a matrix, which can be loaded from

a file. Some common scoring matrices for AminoAcid values

by Henikoff and Henikoff (1992) are predefined: Blosum30,

Blosum62, and Blosum80. The matrix can be loaded by

the function read from a file and stored by the function

write to a file; see Section 7.11.

Pam This is series of common scoring schemes for AminoAcid

values by Dayhoff, Schwartz, and Orcutt (1978). A variant

by Jones, Taylor, and Thornton (1992) is also available.

Table 14: Alignment Scoring Schemes. Specializations for Score.
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The class Score implements some scoring schemes; see Table 14.
If A is an alignment of two sequences a1 and a2, then we define
the score of A by:

score(A) :=
∑

aligned values (x, y) in A

α(x, y) +
∑

gaps g in A

γ(g) (8.2)

For alignments A of more than two sequences, we define the sum
of pairs score to be the sum of the scores of all pairwise sub-
alignments:

score(A) :=
∑

i6=j

score(A{i,j}) (8.3)

8.3.2 Sequence Similarity and Sequence Distance

Based on alignment scoring, we define a similarity measure for
sequences as follows: The sequence similarity sim(a1, a2) between
two sequences a1 and a2 with respect to a given scoring scheme
score is the maximum score alignments between a1 and a2 can get,
i.e.,:

sim(a1, a2) := max
(
score(A) where A aligns a1 and a2

)

An alignment of a1 and a2 with score sim(a1, a2) is called an opti-
mal alignment of a1 and a2. We will describe some algorithms for
computing optimal alignments in the next sections.
Note that all scoring schemes in SeqAn are meant to be “the higher,
the better,” that is alignment algorithms always try to maximize
scores. However, we can also apply these algorithms for mini-
mizing scores simply by maximizing their negative values: Let A∗

be an alignment that scores minimal with respect to a scoring
scheme score, then it is easy to prove that A∗ also scores maxi-
mal with respect to the scoring scheme score′ that is defined by:
score′(A) := −score(A) for each alignment A.
A minimal alignment score score′(A∗) can be seen as a distance be-
tween two sequences, so we define the sequence distance dist(a1, a2)
of two sequences a1 and a2 to be the negative value of their simi-
larity:

dist(a1, a2) := − sim(a1, a2)
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A well-known example of a sequence distance metric called edit
distance or Levenshtein distance (Levenshtein 1965) is defined by
the following scoring scheme:

α(x, y) =

{
0, if x = y

−1, otherwise
gopen = gextend = −1. (8.4)

8.4 Alignment Problems Overview

The alignment problem means to find an alignment with optimal
score in the space of all possible alignments between two or more
sequences. There are some variants of alignment problems:

(1) Global Alignment Problem. Alignments between com-
plete sequences are global alignments. One way of solving the
global alignment problem is dynamic programming, which is
discussed in the next Section 8.5.

(2) Maximum Weight Trace Problem. Finding an optimal
subgraph of a given alignment graph that is compatible with
some optimal alignment (i.e., a trace) is called the maximum
weight trace problem. We will discuss this in Section 12.2.2.

(3) Local Alignment Problem. A local alignment between
two sequences a and b is a global alignment between a sub-
string of a and substring of b, and the local alignment problem
is to find an optimal local alignment. Local aligning is there-
fore a kind of motif finding; we will discuss it in Section 10.1.

(4) Semi-Global Alignment. A mix between global and local
aligning is the so-called semi-global alignment problem that
means globally aligning two sequences where some start or
end gaps are free. One example for semi-global alignment
is overlap alignments, that is finding the best possible align-
ment between a suffix of one sequence and a prefix of the
other sequence. We will show in Section 8.5.4 how the user
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can decide in SeqAn what start gap or end gap should be
free when aligning two sequences.

8.5 Global Alignments

The global alignment problem is defined as follows: For a given set
of sequences a1, a2, . . . , ak, find an alignment A∗ of these sequences
that scores optimal with respect to a given scoring scheme. Find-
ing an optimal alignment of multiple sequences using sum-of-pair
scoring (Section 8.3.1) is known to be NP-hard (Wang and Jiang
1994), but for a fixed number k of sequences, the alignment prob-
lem can be solved in time O(nk), where n is the length of the
sequences.

NeedlemanWunsch A dynamic programming algorithm by Needleman

and Wunsch (1970) for linear gap costs. It aligns two

sequences in quadratic time and space.

Gotoh An extension of the Needleman-Wunsch algorithm

that can deal with affine gap costs. (Gotoh 1982)

Hirschberg A linear space dynamic programming algo-

rithm. (Hirschberg 1975)

MyersHirschberg A combination of the bit parallel algorithm by My-

ers (1999) and Hirschberg’s algorithm. It aligns two

sequences in linear space using edit distance.

Table 15: Global Alignment Algorithms. These algorithms are based on
dynamic programming.

Algorithms for finding good global alignments in SeqAn can be
accessed by calling the globalAlignment function. This function
has as arguments (1) an Align object, alignment graph object or
stream that will be used to store or display the found alignment,
(2) a string set that contains the strings to align, if the strings are
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not already defined by the first argument, (3) a scoring scheme,
and (4) a tag that specifies the algorithms that will be used for
aligning; see Table 15. The function returns the score of the com-
puted alignment.

linear gap costs affine gap costs
time (s) space (MB) time (s) space (MB)

SeqAn
Needleman-Wunsch 3.3 236 6.3 236
Hirschberg 14.7 4
Myers-Hirschberg 0.2 3

NCBI C++ toolkit
Needleman-Wunsch 4.0 245
Hirschberg 6.6 14

Bio++ 13.4 2100 28.0 ≈6000

BTL 96162 933

BioJava 76 2000 93 ≈6000

Table 16: Runtimes and Internal Space Requirements for Comput-
ing Sequence Alignments. The table shows average time and space
requirements for aligning the genomes of two human influenza viruses,
each of length about 15.6 kbp, using alignment functions in SeqAn, the
NCBI C++ toolkit (Vakatov et al. 2003), Bio++ (Dutheil et al. 2006),
BTL (Pitt et al. 2001), and BioJava (Holland et al. 2008). Runtimes
printed in boldface show for each library the time of the fastest algorithm
for computing an alignment using edit distance.

8.5.1 Needleman-Wunsch Algorithm

In 1970, Needleman and Wunsch introduced an algorithm based
on dynamic programming (Bellman 1957) to solve the global align-
ment problem with linear gap costs for two sequences a = a1 . . . an

and b = b1 . . . bm. This algorithm is based on the following
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observation: Let Ai,j be an optimal alignment of the prefixes
a1 . . . ai and b1 . . . bj for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, and
Mi,j = score(Ai,j). Then the alignment A′

i,j that we get after
deleting the last column C from Ai,j is an optimal alignment, and

score(Ai,j) = score(A′
i,j) + score(C). (8.5)

There are three cases: (1) C aligns ai and bj, then score(A′
i,j) =

Mi−1,j−1, or (2) C aligns ai to a blank, then score(A′
i,j) = Mi−1,j,

or (3) C aligns bj to a blank, then score(A′
i,j) = Mi,j−1. Therefore

we can compute Mi,j according to the recursion:

Mi,j ← max






Mi−1,j−1 + α(ai, bj)

Mi−1,j + g

Mi,j−1 + g

(8.6)

where α(ai, bj) is the score for aligning ai and bj, g is the score for
a blank, and Mi,0 = i∗p, and M0,j = j∗p. Algorithm 2 enumerates
all pairs (i, j) for 1 ≤ i ≤ n and 1 ≤ j ≤ m in increasing order for
i and j, so Mi−1,j−1, Mi−1,j, and Mi,j−1 are already known before
Mi,j is computed. FillMatrix also protocols in Ti,j which of the
three cases was applied to compute Mi,j. This information is used
in TraceBack to construct an optimal alignment. The overall
time consumption is O(n×m), and since TraceBack requires a
complete score matrix T , the space requirements are also O(n×m).
An example of the dynamic programming matrix M is shown in
Figure 25.

There is no need to store the complete matrix M during the execu-
tion of FillMatrix, because at any time at most m+1 cells of M
are needed for proceeding: After computing Mi,j, only the values
in Mi,j−1, . . . ,Mn,j−1,M1,j, . . . Mi,j play a role for the rest of the
computation. We can therefore adapt FillMatrix to compute
the optimal score Mn,m in linear space.

Note that it is possible to generalize the Needleman-Wunsch algo-
rithm in a way that it can compute optimal alignments for arbi-
trary gap costs in time O(n3), but this algorithm is quite slow and
hence rarely applied in practice, so it is not provided by SeqAn.
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Figure 25: Needleman-Wunsch Algorithm. The dynamic programming
matrix for aligning a ="AATCTAGCGT" and b ="GTACATTTGACG". The val-
ues of M for edit distance scoring, and T is visualized by pointers to the
best predecessors. The optimal alignment on the bottom corresponds to
the black printed path, its score −7 is the value in the lower right cell.
The gray fields are part of back traces for alternative optimal alignments.
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¤ NeedlemanWunsch(a1 . . . an, b1 . . . bm)
(M,T ) ← FillMatrix(a1 . . . an, b1 . . . bm)1
return TraceBack(a1 . . . an, b1 . . . bm, T )2

¤ FillMatrix(a1 . . . an, b1 . . . bm)
M0,0 ← 01
Mi,0 ← i ∗ g for i ∈ {1, . . . , n}2
M0,j ← j ∗ g for j ∈ {1, . . . ,m}3





initiali-
zation

for i ← 1 to n do4

for j ← 1 to m do5

Mi,j ← max






Mi−1,j−1 + α(ai, bj) = casediag

Mi−1,j + g = caseup

Mi,j−1 + g = case left

6

Ti,j ← argmaxk casek7
return (M,T )8

¤ TraceBack(a1 . . . ai, b1 . . . bj , T )

case i = j = 0:1

return

[ ]
2






break
condi-
tion

case Ti,j = up or j = 0:3

return

[
TraceBack(a1 . . . ai−1, b1 . . . bj , T )

∣∣∣∣
ai

−

]
4

case Ti,j = left or i = 0:5

return

[
TraceBack(a1 . . . ai, b1 . . . bj−1, T )

∣∣∣∣
−
bj

]
6

case Ti,j = diag :7

return

[
TraceBack(a1 . . . ai−1, b1 . . . bj−1, T )

∣∣∣∣
ai

bj

]
8






recursion

Algorithm 2: Needleman-Wunsch Algorithm. α(ai, bj) is the score for
aligning ai and bj , g is the score for a blank.
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8.5.2 Gotoh’s Algorithm

The algorithm by Needleman and Wunsch (Section 8.5.1) does
not work for affine gap costs, i.e., if gaps of length l score gopen +
gextend ∗ (l − 1) with gopen 6= gextend. Let C be the last column
of an alignment Ai,j = A′

i,jC. If C extends a gap of A′
i,j, then

score(Ai,j) = score(A′
i,j) + gextend 6= score(A′

i,j) + gopen, hence
Equation 8.5 does not hold anymore.

To deal with affine gap costs, Gotoh adapted the algorithm in 1982
such that it computes for each i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}
the following three scores of alignments between a1 . . . ai and
b1 . . . bm: (1) the optimal alignment score Mi,j, (2) the best score
Ia
i,j of alignments that align ai to a blank, and (3) the best score Ib

i,j

of alignments that align bj to a blank. This can be done by modi-
fying FillMatrix as it is shown in Algorithm 3. The asymptotic
time and space requirements are the same as for the algorithm
by Needleman and Wunsch (O(n × m)) but with larger constant
factors, since the algorithm by Gotoh must store and fill three
matrices instead of one.

If α(ai, bj) ≥ gopen + gextend for any ai and bj, then the algorithm
can also be implemented by only two matrices M and I, where
Ii,j stores the best score of alignments a1 . . . ai and b1 . . . bm that
either align ai or bj to a blank. This optimization is currently not
provided by SeqAn.

8.5.3 Hirschberg’s Algorithm

Unlike the Needleman-Wunsch algorithm (Section 8.5.1) or Go-
toh’s algorithm (Section 8.5.2), which both take space O(n × m)
to compute optimal alignments of two sequences a = a1 . . . an and
b = b1 . . . bm, the algorithm by Hirschberg (1975) only needs linear
space. Hirschberg’s algorithm (Algorithm 4) applies a divide-and-
conquer strategy: It splits both a and b into two parts and aligns
them separately.

The algorithm is illustrated in Figure 26. The sequence a is cut at
position i = ⌊n

2
⌋ (for n > 1) into two halves a1 . . . ai and ai+1 . . . an.

The main problem is to find an appropriate cutting position j in
b, such that an optimal alignment between a and b exists that
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¤ FillMatrixGotoh(a1 . . . an, b1 . . . bm)
M0,0 ← 01
Mi,0 ← i ∗ gextend for i ∈ {1, . . . , n}2
M0,j ← j ∗ gextend for j ∈ {1, . . . ,m}3
Ia
0,j ← −∞ for j ∈ {1, . . . ,m}4

Ib
i,0 ← −∞ for i ∈ {1, . . . , n}5






initiali-
zation

for i ← 1 to n do6

for j ← 1 to m do7

Ia
i,j ← max

{
Mi−1,j + gopen

Ia
i−1,j + gextend

8

Ib
i,j ← max

{
Mi,j−1 + gopen

Ib
i,j−1 + gextend

9

Mi,j ← max






Mi−1,j−1 + α(ai, bj) = casediag

Ia
i,j = caseup

Ib
i,j = case left

10

Ti,j ← argmaxk casek11
return (M,T )12

Algorithm 3: The Recursion of Gotoh’s Algorithm.

¤ Hirschberg(a1 . . . an, b1 . . . bm)

if n < 2 then1
A ← NeedlemanWunsch(a1 . . . an, b1 . . . bm)2

else3
i ← ⌊n

2 ⌋4

ML ← FillMatrix(a1 . . . ai, b1 . . . bm)5
MR ← FillMatrix(an . . . ai+1, bm . . . b1)6
t ← argmaxj(M

L
i,j + MR

n−i,m−j)7




find t

L ← Hirschberg(a1 . . . ai, b1 . . . bt)8
R ← Hirschberg(ai+1 . . . an, bt+1 . . . bm)9

}
recursion

A ← LR10
return A11

Algorithm 4: Hirschberg’s Algorithm.
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aligns a1 . . . ai to b1 . . . bj and ai+1 . . . an to bj+1 . . . bm. For any
j ∈ {0, . . . ,m}, let Lj be an optimal alignment of the prefixes
a1 . . . ai and b1 . . . bj, and Rj an optimal alignment of the suffixes
ai+1 . . . an and bj+1 . . . bm. There is a t ∈ {0, . . . ,m} for which the
combination At := LtRt is an optimal alignment of a and b. For
finding a t that maximizes the total score score(Lt) + score(Rt),
we have to compute the scores of all Lj and Rj. A single call

Figure 26: Hirschberg’s Algorithm. This figure illustrates three recur-
sion steps when aligning a ="AATCTAGCGT" and b ="GTACATTTGACG". The
black printed path corresponds to the alignment that is about to be com-
puted. The gray cells need not be recomputed during the next recursion
step.

of FillMatrix(a1 . . . ai, b) in line 5 of Hirschberg computes
ML

i,j = score(Lj) for all j. The scores of the Rj are computed
similarly in line 6 by passing the reverses of ai+1 . . . an and b to
FillMatrix: The entry MR

n−i,m−j of the computed matrix MR is
the optimal score for aligning an . . . ai+1 and bm . . . bj+1, which is
the same as the best score for aligning ai+1 . . . an and bj+1 . . . bm.
FillMatrix only takes linear space for computing the scores
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needed. Hence, the total space requirement of Hirschberg is
O(n + m). It is easy to prove by induction that Hirschberg

takes time O(n × m).

The implementation of Hirschberg’s algorithm in SeqAn combines
it with Gotoh’s algorithm (Section 8.5.2) for sequence alignments
using affine gap cost schemes.

The alignment algorithm MyersHirschberg, which is the fastest
algorithm in SeqAn for global sequence alignment (see Table 16),
can be used when aligning two sequences using edit distance scor-
ing. This variant of Hirschberg’s algorithm uses Myers’ bitvector
algorithm (see Section 9.3.2) instead of FillMatrix for comput-
ing the scores for Lj and Rj.

8.5.4 Aligning with Free Start or End Gaps

After some simple modifications, both the Needleman-Wunsch al-
gorithm and Gotoh’s algorithm can also be used to compute align-
ments with free start gaps or end gaps. A start gap contains a blank
that is aligned to a1 or b1, and an end gap contains a blank that
is aligned to an or bm. Gap scores are usually non-positive values,
and we call a gap free, if it scores 0.

Start gaps in a become free when Mi,0 are set to 0 for all i ∈
{1, . . . , n} (FillMatrix, line 2). For free start gaps in b, we set
M0,j = 0 for j ∈ {1, . . . ,m} (FillMatrix, line 3).

Let imax = argmaxi∈{1,...,n}Mi,m and jmax = argmaxj∈{1,...,m}Mn,j.
The algorithm TraceBack(a1 . . . aimax

, b) computes an optimal
alignment Aimax

of a1 . . . aimax
and b. If end gaps in a – but not

in b – are free, then this is also the best alignment of a and
b. For free end gaps in b – but not in a –, the function call
TraceBack(a, b1 . . . bjmax

) returns the optimal alignment Ajmax

of a and b. If end gaps are free both in a and b, then either Aimax

or Ajmax
is optimal, whichever is better.

The class AlignConfig can be used to specify, which start gap or
end gap are free when calling globalAlignment. AlignConfig has
four bool template arguments; true means gap is free. Listing 19
shows an example for using AlignConfig.
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StringSet<CharString> string_set;

appendValue(string_set, a);

appendValue(string_set, b);

Align<CharString> alignment(string_set);

globalAlignment(alignment,

Score<int>(),

AlignConfig<false, false, true, false>(),

NeedlemanWunsch());

Listing 19: Example for Using AlignConfig. The two sequences a and b

are aligned, end gaps for b are free.

8.5.5 Progressive Alignment

SeqAn also offers a progressive heuristic for finding good align-
ments between more than two sequences (Rausch, Emde, Weese,
Döring, Notredame, and Reinert 2008). We already described the
idea of this algorithm in Section 1.2.3 when we discussed the soft-
ware tool Clustal W (Thompson et al. 1994): The sequences
a1, . . . , ad are aligned step by step following a binary guide tree T ,
which is constructed by a hierarchical clustering algorithm (line 2
of ProgressiveAlign; see Algorithm 5), on the basis of the pair-
wise distances between the sequences. SeqAn supports agglomer-
ative clustering (complete linkage, single linkage and Upgma; see
e.g., Sneath and Sokal 1973) and neighbor-joining (Saitou and Nei
1987). FollowGuideTree aligns the sequences following the
guide tree from the leaves to the root. At each vertex v, the align-
ments Al and Ar from both children of v are aligned (line 8),
where we conceive Al and Ar as sequences of columns, so they can
be aligned by any pairwise global sequence alignment algorithm
like Needleman-Wunsch (see Section 8.5.1). The score α(cl, cr)
for aligning two alignment columns cl and cr is defined as the
(weighted) sum of scores α(al, ar), where al ∈ cl and ar ∈ cr (sum
of pairs score). Inserting a gap into Al or Ar means to insert a
gap column, i.e., inserting a gap into all sequences of Al or Ar,
respectively.

The progressive alignment idea was also used in the software tool
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¤ ProgressiveAlign(a1, . . . , ad)
D[i, j] ← dist(ai, aj) for all i, j ∈ {1, . . . , d}1
T ← Clustering(D)2
A ← FollowGuideTree(a1, . . . , ad, T )3
return A4

¤ FollowGuideTree(a1, . . . , ad, T )
v ← root of T1
if v is leaf then2

A ← the sequence ai on v3

else4
T l, T r ← left and right subtrees below v5
Al ← FollowGuideTree(a1, . . . , ad, T l)6
Ar ← FollowGuideTree(a1, . . . , ad, T r)7
A ← align Al and Ar8

return A9

Algorithm 5: Progressive Alignment. We omit the function Clustering

that applies a clustering algorithm to compute the guide tree T for a given
distance matrix D.

T-Coffee by Notredame et al. (2000) that uses a much more elab-
orated scoring function α, which is computed from a given set
C of pairwise local or global alignments between the sequences
a1, . . . , ad. T-Coffee first defines for any pair of characters b and
b′ that stem from different sequences ai and aj an individual score
α(b, b′) that depends on the total score of alignments A ∈ C in
which b and b′ are aligned. In a second step, T-Coffee uses a
method called triplet extension, that applies the following rule: If
two values b and b′ are aligned in A ∈ C, and b′ and b′′ are aligned
in another alignment A′ ∈ C, then we reinforce the score α(b, b′′)
that we get for aligning b and b′′. The triplet extension helps to
find an agreement between the pairwise alignments ∈ C, and this
results in much better multiple alignments.

The implementation of T-Coffee in SeqAn stores these values α as
weights on the edges of an alignment graph (Section 12.2) between
a1, . . . , ad, and the alignment problem can then be defined as a
maximum weight trace problem (Section 12.2.2).
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8.6 Chaining

We saw in Section 8.5 that computing the best alignment between
two sequences using dynamic programming takes quadratic time,
and the alignment of d > 2 sequences even takes exponential time
in d. Fortunately there are faster heuristics for finding good –
but not necessarily optimal – alignments. One way is to search
for highly similar substrings, so-called seeds, and to combine them
in a process called chaining. A chain of seeds then can be used
as a backbone for a banded alignment of the two sequences; see
Section 8.6.4. We demonstrate this principle in all details for the
algorithm Lagan in Chapter 13.

This section concerns chaining seeds to global alignments. Similar
techniques could also be used to get good local alignments, as we
will see in Section 10.2.2. How to find seeds will be discussed in
Chapter 10.

8.6.1 Seeds

Basically, a seed S is a set of non-empty segments s1, . . . , sd of
sequences a1, . . . , ad, where d ≥ 2 is called the dimension of S.
We call left i(S) the begin position of si and right i(S) the end
position of the segment si for i ∈ {1, . . . , d}. According to the
conventions stated in Section 7.1, the position of the value ai in
a sequence a1 . . . am is i − 1, and the begin position of a segment
aleft . . . aright is left −1 and the end position right .

SeqAn offers a class Seed for storing seeds; the specializations
of this class are listed in Table 17. All seed types implement
the functions leftPosition and rightPosition to access the
begin and end positions of their segments, and the functions
setLeftPosition and setRightPosition to set them. Moreover,
each seed S stores the score weight(S) of an optimal alignment be-
tween its segments, which can be retrieved by the function weight

and set by the function setWeight. Chaining only requires infor-
mation about the dimension, borders, and scores of the seeds, i.e.,
we need not to know the complete alignments.
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SimpleSeed A seed of dimension d = 2. This is the preferred seed type

for seed merging, extending, and local chaining algorithms;

see Section 10.2. The default specialization of Seed.

MultiSeed A seed type of arbitrary dimension d ≥ 2 that was designed

for global chaining.

Table 17: Specializations of class Seed.

8.6.2 Generic Chaining

In the following let d be a fixed seed dimension. We say that
Sj can be appended to another seed Sk, if Sj is right of Sk, that
is if right i(Sk) ≤ left i(Sj) for all i ∈ {1, . . . , d}. Given a set of
seeds {S1, . . . ,Sn}, we define the top seed S0 to be the seed with
left i(S0) = right i(S0) = 0 for all i ∈ {1, . . . , d} and weight(S0) = 0.
The bottom seed Sn+1 is defined by left i(Sn+1) = right i(Sn+1) =
maxj{right i(Sj)} and weight(Sn+1) = 0. Note that all seeds can
be appended to S0 and that Sn+1 can be appended to all seeds.
An ordered set C = Sj1 ,Sj2 , . . . ,Sjk

of seeds is called a chain, if
Sji+1

can be appended to Sji
for each i ∈ {1, . . . , k−1}. The score

of a chain is defined by:

score(C) =
k∑

i=1

weight(Sji
) +

k−1∑

i=1

gapscore(Sji
,Sji+1

),

where gapscore(Sji
,Sji+1

) is the (usually non-positive) score for
appending Sji+1

to Sji
.

The global chaining problem is to find a maximal scoring chain
C that starts with S0 and ends with Sn+1. GenericChaining

(Algorithm 6) solves this problem in time O(dn2) by dynamic pro-
gramming. The algorithm computes for each seed Sj the predeces-
sor Sk for which the chain S0, . . . ,Sk,Sj gets the optimal score.
The score of this chain is stored in Mj and the index k of the
predecessor is stored in Tj. The best global chain is reconstructed
in ChainTraceBack by following T starting from Sn+1. The
algorithm applies a sweep line technique (Shamos and Hoey 1976)
by sorting the seeds in line 1 of Algorithm 6. This guarantees that
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¤ GenericChaining(S1, . . . ,Sn)
sort S1, . . . ,Sn in increasing order of right1(Si)1
compute top seed S0 and bottom seed Sn+12

for j ← 1 to n + 1 do3
Mj ← gapscore(S0,Sj) + weight(Sj)4
Tj ← 05

for k ← 1 to j − 1 do6

if right i(Sk) ≤ left i(Sj) for all i ∈ {2, . . . , d}
then

7

score ← Mk +gapscore(Sk,Sj)+weight(Sj)8

if score > Mj then9

Mj ← score10
Tj ← k11






compute
best
prede-
cessor
for Sj

return ChainTraceBack(S0, . . . ,Sn+1, n + 1, T )12

¤ ChainTraceBack(S0, . . . ,Sn+1, j, T )

if j = 0 then1
return S02

else3
return ChainTraceback(S0, . . . ,Sn+1, Tj , T ),Sj4

Algorithm 6: Generic Chaining Algorithm. S1, . . . ,Sn is a set of d-
dimensional seeds, d ≥ 2. The algorithm computes a maximal global
chain; its score is stored in Mn+1.
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the seed Sj can only be appended to seeds Sk with k < j, hence
Mk was already computed before it is used in line 8 to compute
Mj.

The function globalChaining implements chaining algorithms in
SeqAn. The actual algorithm is specified by a tag; see Listing 20
for an example.

String< Seed<int, MultiSeed> > seeds;

...

String< Seed<int, MultiSeed> > chain;

Score<int, Manhattan> scoring;

int score = globalChaining(seeds, chain, scoring);

Listing 20: Global Chaining Example. We omit the process of filling the
container seeds with seeds.

8.6.3 Chaining Using Sparse Dynamic Programming

The algorithm GenericChaining takes quadratic time, because
it has to examine a linear number of predecessor candidates Sk for
each seed Sj. We can improve this for some gapscore functions by
using efficient data structures that allow to determine an optimal
predecessor seed in sublinear time. This technique called sparse
dynamic programming (Eppstein et al. 1992) may speed up chain-
ing as long as the dimension d of the seeds is small compared to
the number n of seeds. Figure 27 shows the gap scoring functions
for which SeqAn implements optimized chaining algorithms. For
example, Algorithm 7 (described in Gusfield 1997, pages 325–329)
solves the chaining problem for d = 2 and gapscore ≡ 0 (i.e., the
scoring scheme Zero) in time O(n log n).

SparseChaining enumerates all positions left1(Sj) and
right1(Sj) in increasing order. If the begin position of a
seed Sj is processed (lines 9 and 10), then the optimal score Mj

of chains ending in Sj is computed, and the algorithm appends
Sj to a seed Sk ∈ D, where D is a set of potentially optimal
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Zero All gaps between seeds score 0, that is gapscore(Sk,Sj) = 0

for all seeds Sk and Sj .

Manhattan The gap score is proportional to the sum of the distances
between the segments in the seed, that is

gapscore(Sk,Sj) = g

d∑

i=1

∆i,

where ∆i = left i(Sj)− right i(Sk) and g < 0 is the score for a

single blank.

ChainSoP This gap scoring scheme was proposed by Myers and Miller
(1995). For d = 2, the segments between Sk and Sj are
aligned as long as possible with mismatches, and the rest is
filled up with blanks, that is:

gapscore(Sk,Sj) = S1,2 =

{
m∆2 + g(∆1 − ∆2), if ∆1 ≥ ∆2

m∆1 + g(∆2 − ∆1), if ∆1 ≤ ∆2

where ∆i = left i(Sj)− right i(Sk) and g,m ≤ 0 are the scores
for a single blank and a single mismatch.
For d > 2, gapscore is the sum-of-pairs score:

gapscore(Sk,Sj) =
∑

1≤i<i′≤d

Si,i′

Figure 27: Gap Scoring Schemes for Chaining. The score of a gap
between a seed Sj and a predecessor Sk; three specialization of class Score
are listed. Note that gapscore(Sk,Sj) is only defined if Sj can be appended
to Sk, i.e., if ∆i = left i(Sj) − right i(Sk) ≥ 0 for all i ∈ {1, . . . , d}.
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predecessors for subsequent seeds. D is updated whenever the
end position of a seed is processed (lines 12 to 15). Let Sj and Sk

be two different seeds with right2(Sj) ≤ right2(Sk) and Mj ≥ Mk.
Then all subsequent seeds Si that can be appended to Sk can also
be appended to Sj without losing score. If Sj ∈ D, then there is
no need to keep Sk ∈ D. We say that Sj dominates Sk. A seed
Sj is added to D in line 15, if and only if it is not dominated
by any other seed in D, and in this case, all seeds Sk that are
dominated by Sj are extracted from D in line 14. If follows that
(1) D contains all seeds that were already processed except some
seeds that are dominated by other seeds in D, and (2) no seed in
D is dominated by another seed in D. Therefore D contains an
optimal predecessor for any seed Sj that is about to be appended,
and this is the seed STj

∈ D found in line 9 because a better
seed Sk ∈ D with right2(Sk) ≤ left2(Sj) and Mk > MTj

would
dominate STj

. Note that the results of the argmax operation in
line 9 is well defined, because there is always a seed Sk ∈ D such
that right2(Sk) = 0.

If we apply a suitable dictionary data structures for storing D like
a skip list that sorts the seeds S according to right2(S), then each
operation for searching, adding, and extracting seeds in D takes
time O(log n). The complete algorithm runs in O(n log n), since
each seed S is added to D and extracted from D only once.

We can apply SparseChaining for the gap scoring scheme
Manhattan, if we modify the condition for Sj dominates Sk:
Suppose that a seed Sl can be appended either to Sj and Sk.
Then Sj would be preferred, if Mj + gapscore(Sj,Sl) > Mk +
gapscore(Sk,Sl). This is equivalent to M ′

j > M ′
k where M ′

∗ =

M∗ +
∑d

i=1 righti(S∗). Note that this is independent from the
appended seed Sl, so we can define that Sj dominates Sk, if
right2(Sj) ≤ right2(Sk) and M ′

j ≥ M ′
k.

SeqAn also implements a sparse dynamic programming algorithm
by Myers and Miller (1995) with some modifications by Abouel-
hoda and Ohlebusch (2003) for ChainSoP scoring and arbitrary
d ≥ 2, see Wöhrle (2006) for more details. Note that both run-
time and space requirements of this algorithm grow exponentially
with respect to the seed dimension d.
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¤ SparseChaining(S1, . . . ,Sn)
compute top seed S0 and bottom seed Sn+11
M0 ← 02
D ← {S0}3
S ← ∅4
for j ← 1 to n + 1 do5

S ← S ∪
{
〈left1(Sj), j〉

}
∪

{
〈right1(Sj), j〉

}
6

for each 〈pos, j〉 ∈ S in increasing order of pos do7

if pos = left1(Sj) then8

Tj ← argmaxk

{
right2(Sk) ≤ left2(Sj)

∣∣ Sk ∈ D
}

9
Mj ← MTj

+ gapscore(Sk,Sj) + weight(Sj)10

}
append
Sj

if pos = right1(Sj) then11

if no seed ∈ D dominates Sk then12

for each Sk ∈ D dominated by Sj do13

D ← D \ {Sk}14
D ← D ∪ {Sj}15






update
D

return ChainTraceBack(S0, . . . ,Sn+1, n + 1, T )16

Algorithm 7: Global Chaining by Sparse Dynamic Programming.
S1, . . . ,Sn is a set of 2-dimensional seeds. The algorithm may be used for
gap scoring functions Zero and Manhattan, where the semantic of domi-

nate depends on the scoring function.
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8.6.4 Banded Alignment

Given a chain C = 〈S1, . . . ,Sn〉 of seeds between two sequences
a = a1 . . . an and b = b1 . . . bm, we can find a good alignment us-
ing banded alignment. Like the alignment algorithms we described
in Section 8.5, this method is based on dynamic programming.
Remember that the Needleman-Wunsch algorithm (Section 8.5.1)
computes n × m score Mi,j of the best alignments between the
prefixes a1 . . . ai and b1 . . . bj. Since C gives us an estimate of
the approximate optimal alignment, we need to compute only
those values Mi,j that lay near to C. This band of width B con-
tains the following pairs of coordinates; see Figure 28: (1) for
any two characters ax and by that are aligned by a seed Sk ∈ C
all pairs 〈i, j〉 with |i − x| + |j − y| ≤ B, and (2) the square
of pairs 〈i, j〉 with right1 (Sk) − B ≤ i < left1 (Sk+1) + B and
right2 (Sk)−B ≤ j < left2 (Sk+1) +B for k ∈ {1, . . . , n}. Comput-
ing only these cells of M speeds up the alignment process. SeqAn
provides the function bandedChainAlignment that computes an
optimal banded alignment following a chain.

Figure 28: Banded Alignment. The white area of matrix M represents the
band of width B = 3 around the chain C = 〈S1,S2〉.
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Chapter 9

Pattern Matching

The pattern matching problem is to find a given needle sequence p
in a haystack sequence t, for example to determine where a string
t contains the string p as a substring. There are several variants
of this problem:

• Exact Matching: Find substrings p in t. See Section 9.1
for single searching needles, and Section 9.2 for searching
multiple needles.

• Approximate Matching: Find substrings s in t with
score(s, p) ≥ k for a given threshold k. See Section 9.3 for
alignment scoring schemes score.

• Complex Pattern Searching: p is an expression that en-
codes a set of strings to be found in t. See for example in
Section 9.4.2 how to search for regular expressions.

In SeqAn, the function find finds an occurrence of a needle in a
haystack; it can repeatedly be called to find all occurrences. find
needs the following information to work: the haystack, the needle,
what kind of algorithm to be used, the current state of the search
(e.g., the last found position), and possibly – depending on the
algorithm – some preprocessing data. This information is divided
into two objects: (1) the finder that holds all information related
to the haystack, and (2) the pattern that holds information related
to the needle; see Figure 29.
The last found match position is stored in the finder and can be
retrieved by the function position. This is for most searching
algorithms the position of the first value of the match, except for
approximate searching algorithms; since finding the begin posi-
tion of an approximate match needs some additional overhead,

135
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Figure 29: Online Searching and Index Searching. Top: Calling find

for online searching. The search algorithm is determined by the type of the
pattern, which contains all relevant preprocessing data. Bottom: Calling
find for index searching (see Chapter 11). The search algorithm depends
on the finder type. The needle sequence acts directly as a pattern.
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the function position returns the position of the last character
of the match (see Section 9.3). SeqAn also offers the functions
beginPosition and endPosition for determining the begin and
end position of matches explicitly, where endPosition is imme-
diately available after calling find, and beginPosition requires
in the case of approximate string matching a previous call of the
function findBegin in order to find the beginning of the match.
The position of a finder can also be set by the user via the function
setPosition. If searching is started or resumed at a specific posi-
tion pos , then only occurrences on positions ≥ pos will be found.
Moreover, all algorithms in SeqAn guarantee that the occurrences
found by calling find are emitted in order of increasing positions.

In this chapter, we will focus on online searching algorithms, which
solve the pattern matching problems by preprocessing the needle,
not the haystack. Most online searching algorithms implemented
in SeqAn are also described in (Navarro and Raffinot 2002).

9.1 Exact Searching

The exact searching problem is to find for a given needle p1 . . . pm

and haystack t1 . . . tn all positions j for which p1 . . . pm =
tj . . . tj+m−1. Table 18 shows some online searching algorithms for
exact searching provided by SeqAn. Listing 21 shows how to use
these algorithms. The performance of online algorithm depends
(besides other things) on the alphabet size Σ and the needle length
m; see Figure 31.

9.1.1 Brute-Force Exact Searching

The most simple way for searching a needle p = p1 . . . pm in a
haystack t = t1 . . . tn is to compare p with tpos +1 . . . tpos +m for
each position pos ∈ {0, . . . , n − m} (Algorithm 8). This method
takes time O(n × m), and it is rather slow compared to other
algorithms. SimpleSearch has the advantage that it is com-
pletely generic and works for arbitrary value types. All other ex-
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Simple A brute-force but generic searching algorithm that can deal

with sequences of all value types.

Horspool Horspool’s algorithm (Horspool 1980) is a simple yet fast algo-

rithm with in average sublinear searching time that is suitable

for many pattern matching settings.

ShiftOr An algorithm that uses bit parallelism. It should only be used

for patterns that are not longer than a machine word, i.e., 32

or 64 characters. Even for small patterns, it is outperformed

by Horspool for alphabets larger than Dna.

BFAM Backward Factor Automaton Matching is an algorithm that

applies an automaton of the reversed needle’s substrings. It is

a good choice for long patterns.

BndmAlgo The Backward Nondeterministic DAWG (Directed Acyclic

Word Graph) Matching algorithm uses a special automaton

to scan through the haystack. It is an alternative to BFAM for

medium-sized patterns.

Table 18: Exact Pattern Matching Algorithms.

String<char> t = "he_is_the_hero";

String<char> p = "he";

Finder<String<char> > finder(t);

Pattern<String<char>, Horspool> pattern(p);

while (find(finder, pattern))

{

std::cout << position(finder) << ","; //output: 0,7,10

}

Listing 21: Exact Online Searching Example.
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act searching algorithms in SeqAn need some additional space for
storing preprocessed data, and this space could exceed memory
when large alphabets are used; SimpleSearch on the other hand
is not limited this way, since it needs no preprocessing data at all.

¤ SimpleSearch (p1 . . . pm, t1 . . . tn)

for pos ← 0 to n − m do1

if p1 . . . pm = tpos +1 . . . tpos +m then2
report match at position pos + 13

Algorithm 8: Brute-Force Exact Searching.

9.1.2 Horspool’s Algorithm

Horspool’s algorithm (Horspool 1980) (see Algorithm 9) is a
simplification of an algorithm by Boyer and Moore (1977).
The algorithm compares the needle p1 . . . pm with the substring
tpos +1 . . . tpos +m of the haystack, where the search starts at pos =
0. After each comparison, pos is increased by a safe shift width
k, which means that k is small enough that no possible match in
between gets lost. Suppose that pos is increased by i, then tpos +m

will be compared to pm−i during the next comparison step. Hence
if pm−i 6= tpos +m for all 1 ≤ i ≤ k, then k is safe. The maximum
safe shift width for each possible value of tpos +m is stored in a
preprocessed table skip.

The worst case running time of Horspool’s algorithm is O(n2),
but in practice it runs in linear or even sublinear time on average.
This algorithm is a good choice for most exact pattern matching
problems, except (1) if the alphabet (and hence the shift width) is
very small compared to the pattern length, since in this case it is
outperformed by other algorithms, or (2) for very large alphabets,
since storing skip gets inefficient then.

Horspool’s algorithm is applied when the Horspool specialization
of the class Pattern is used as pattern; see Listing 21 for an ex-
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¤ Horspool (p1 . . . pm, t1 . . . tn)

skip[c] ← m for all c ∈ Σ1
for i ← 1 to m − 1 do skip[pi] ← m − i2

}
preprocessing

pos ← 03

while pos ≤ n − m do4
i ← m5
while pi = tpos +i do6

if i = 1 then7
report match at position pos + 18
break9

i ← i − 110
pos ← pos + skip[tpos +m]11






searching

Algorithm 9: Horspool’s Algorithm.

ample.

9.1.3 Shift-Or Algorithm

Shift-Or is a simple online algorithm for exact pattern matching
that benefits from bit-parallelism. For a given needle p = p1 . . . pm

and a haystack t1 . . . tn, we define for each j ∈ {1, . . . , n} a length-
m vector bj of boolean variables

bj
i := “p1 . . . pi does not match to a suffix of t1 . . . tj” ,

i ∈ {1, . . . m}. If not bj
m, then p matches t at a position j −m + 1.

At each time j, ShiftOr stores bj in a bit vector b. When j is
increased, b is updated according to the recursion:

bj
i = bj−1

i−1 or (pi 6= tj).

ShiftOr applies bit-parallelism, hence this takes only one left-
shift operation on b and one bit-wise or operation with a bit vector
mask [tj] (see Algorithm 10, line 5). The bit vectors mask [c] are
preprocessed for each possible value c ∈ Σ; mask [c]i = 0, iff pi = c.

The Shift-Or algorithm is quite fast, as long as b fits into one ma-
chine word, i.e., as long as m <= 32 or 64. For longer patterns,
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¤ ShiftOr (p1 . . . pm, t1 . . . tn)

mask [c] ← 1m for all c ∈ Σ1
for i ← 1 to m do mask [pi]i ← 02

}
preprocessing

b ← 1m3
for j ← 1 to n do4

b ← (b << 1)|mask [tj ]5

if bm = 0 then6
report a match at j − m + 17






searching

Algorithm 10: Shift-Or Algorithm.

multiple machine words must be used, but this diminishes the
positive effect of the bit-parallelism. Moreover, Shift-Or is out-
performed by Horspool’s algorithm (Section 9.1.2) for all but very
small alphabets (see Figure 30 on page 145). Shift-Or is therefore
best for small patterns and small alphabets.

9.1.4 Backward Factor Automaton Matching

Backward Factor Automaton Matching (BFAM) is an exact online
algorithm that applies an automaton, e.g., an oracle automaton as
described by Allauzen, Crochemore, and Raffinot (2001) or a trie.
The principle of BFAM is Backward Factor Searching as presented
in Algorithm 11: BF reads a suffix of t1 . . . tpos +m from back to
front until either a match of p is found, or p does not contain any
substring (factor) that matches to the read suffix. If p does not
contain tpos +k . . . tpos +m, then k is a safe shift, i.e., pos can be
increased by k without losing a match, since any substring of t
that starts at a position between pos +1 to pos +k also contains
tpos +k . . . tpos +m.

The main question in BF is how to check the condition in line 4
whether p contains tpos +k . . . tpos +m. For that purpose, BFAM

(Algorithm 12) applies a factor automaton on the reverse needle
pm . . . p1, i.e., an automaton that accepts all substrings of this
sequence. This automaton is processed on tpos +m . . . tpos +1 until
either a match is found, or an undefined state is reached because
the needle does not contain the string tpos +k . . . tpos +m.
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¤ BF (p = p1 . . . pm, t1 . . . tn)
pos ← 01

while pos ≤ n − m do2
k ← m3
while p contains tpos +k . . . tpos +m

do
4

if k = 1 then5
report match at pos +16
break7

k ← k − 18
pos ← pos +k9

Algorithm 11: Backward Factor Searching Principle.

In SeqAn, the kind of automaton is specified when choosing
the specialization of the class Pattern: The specialization
BFAM<Oracle> is used for applying an oracle automaton (see Sec-
tion 12.1.2) and BFAM<Trie> for a suffix trie (see Section 12.1.1).

Oracle automata may also accept strings other than substrings of
pm . . . p1, and this may lead to shorter shift widths. Fortunately,
the only length-m string accepted by the oracle is pm . . . p1 itself,
so we need no additional verification in line 6 of Algorithm 11, as
it will be necessary for MultiBFAM in line 15 of Algorithm 15.
Oracles are more compact than suffix tries: The oracle of pm . . . p1

has only m + 1 states and at most 2×m transitions, whereas the
number of states and transitions of a suffix trie can be quadratic.
This parsimony benefits the run time, because a smaller automa-
ton has better chances to stay in cache, and because oracles take
less time to be built up. A comparison between the run times of the
two variants (Figure 30 on page 145) reveals that BFAM<Trie>

is slightly faster than BFAM<Oracle> for small alphabets and
needle lengths, whereas for large alphabets or needle lengths the
oracle takes advantage of its space efficiency.

9.1.5 Backward Nondeterministic DAWG Matching

The BNDM algorithm (Backward Nondeterministic Directed
Acyclic Word Graph Matching) is a bit-parallel variant of an al-
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¤ BFAM (p1 . . . pm, t1 . . . tn)
a ←BuildFactorAutomaton(pm . . . p1)1 preprocessing
pos ← 02

while pos ≤ n − m do3

q ← δa(initial state of a, tpos +m)4
k ← m5
while q is defined do6

if k = 1 then7
report match at pos +18
break9

k ← k − 110
q ← δa(q, tpos +k)11

pos ← pos +k12






searching

Algorithm 12: Backward Factor Automaton Searching. δa is the tran-
sition function of a. Note that a is built on the reverse needle pm . . . p1.

gorithm by Crochemore et al. (1994). It applies bit-parallelism
for tracking the substrings of the needle during backward factor
searching (BF, see Algorithm 11, line 4). Let us define for each
k ∈ {1, . . . ,m} a length-m vector bk of boolean variables

bk
i := “tpos +k . . . tpos +m matches a prefix of pi . . . pm” .

BNDM (Algorithm 13) stores bk in a bit vector b, which is updated
when k is decreased according to the recursion:

bk
i = bk+1

i+1 and (pi = tpos +k).

This takes two bit-parallel operations: One right shift in line 14
and one bit-wise and with a preprocessed bit vector mask [tpos+i] in
line 9 of Algorithm 13. The bit vectors mask [c] are preprocessed
for each possible value c ∈ Σ; mask [c]i = 1, iff pi = c.
BNDM improves the safe shift width of BF as follows: If bk

1 = 0,
then tpos +k . . . tpos +m does not match to a prefix of p, hence p does
not match t at position pos +k. Suppose that k is a safe shift, then
k + 1 will also be safe. Hence, we need only to take into account
shift widths k with bk

1 = 1. The variable skip stores the last found
k for which bi = 1 (line 12). skip is then used in line 15 as shift
width.
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¤ BNDM (p1 . . . pm, t1 . . . tn)

mask [c] ← 0m for all c ∈ Σ1
for i ← 1 to m do mask [pi]i ← 12

}
preprocessing

pos ← 03

while pos ≤ n − m do4
k ← m5
skip ← m6
b ← 1m7
while b 6= 0m do8

b ← b ∧ mask [tpos +k]9
k ← k − 110
if b1 = 1 then11

if k > 0 then skip ← k12
else report match at pos +113

b ← b >> 114
pos ← pos + skip15






searching

Algorithm 13: Backward Nondeterministic DAWG Matching.

9.1.6 Results

Figure 30 shows the average run times divided by the length of
the searched haystack for searching needles of length m. The ma-
chine word size was 32, so the run times of the bit parallel al-
gorithm ShiftOr and BndmAlgo are discontinuous at multitudes
of 32. For small alphabets like DNA (|Σ| = 4), the fastest algo-
rithms are ShiftOr for small m, BFAM<Trie> for middle sized m,
and BFAM<Oracle> for large m. For larger alphabets, e.g., when
searching proteins or English texts, either Horspool for small m or
BFAM for larger m is the fastest; see Figure 31. Compared with the
results of Navarro and Raffinot (2002, Fig. 2.22), our implemen-
tation of the BNDM algorithm is outperformed in any parameter
setting.
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Figure 30: Run Times of Exact Pattern Matching Algorithms. The
average run times per haystack value for different exact pattern matching
algorithms depending on the length m of the needle. We searched for
patterns in (1) the genome of Escherichia coli, (2) proteins from the Swiss-
Prot database, and (3) the English Bible.

Figure 31: Fastest Exact Pattern Matching Algorithm. The best algo-
rithm for searching all exact occurrences of length-m patterns in random
haystacks, depending on the size |Σ| of the alphabet. Since the pattern is
a random string, Horspool gains ground compared to Figure 30.
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9.2 Exact Searching of Multiple Needles

In this section, we describe algorithms that search several nee-
dles p1, . . . , pk in a haystack t1 . . . tn at once, which is in general
faster than searching one needle after the other. We search the
pairs (i, j) for which pi matches a prefix of tj . . . tn. Many algo-
rithms proposed in (Navarro and Raffinot 2002) are implemented
in SeqAn; see Table 19. Here, we will only describe two of them in
more details, since these two outperform all others in almost any
case. An comparison of run times can be found in Figure 32 on
page 150.

Listing 22 shows an example of how to use the function find

to search for multiple patterns at once. After each call,
position(pattern) returns the index number of the needle that
was recently found starting at position(finder) in the haystack.

Some algorithms ensure that hits emerge in a certain order. For
example, the hits found by WuManber and MultiBFAM are sorted
in increasing order by position(finder), and two hits at the
same position position(finder) are sorted in increasing order by
position(pattern). The example program therefore finds first
"the" at position 0, then "hero" at position 4, then "theory" at
position 11, and finally "the", also at position 11.

9.2.1 Wu-Manber Algorithm

The algorithm by Wu and Manber (1994) is an extension of Hor-
spool’s algorithm (see Section 9.1.2, page 139) for multiple nee-
dles. WuManber (Algorithm 14) compares the needles p1, . . . , pk

to the haystack t at a position pos , which is then increased by
a safe shift width. For multiple needles, it is not advisable to
select the shift width depending on the occurrences of a single
value tpos +m within the needles, as it is done by Horspool (Al-
gorithm 9, page 140), since this would lead to rather small shift
widths and hence a poor performance, because it is rather prob-
able to find each possible value in the ending region of at least
one of the needles. WuManber uses therefore q ≥ 2 values
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WuManber An extension of Horspool’s algorithm (Horspool

1980) for searching multiple needles. The favored

algorithm in many cases.

MultiBFAM Backward Factor Automaton Matching for Multiple

sequences is an extension of BFAM for searching multi-

ple sequences. It applies an automaton that accepts

the reversed substrings of the needles’ prefixes. This

algorithm is a good choice for long patterns, small

alphabets, or large needle sets.

AhoCorasick An algorithm by Aho and Corasick (1975) that uses

an extended trie automaton to scan through the

haystack sequence. It performs well especially for

small alphabets pattern lengths.

MultipleShiftAnd An extension of the Shift-And algorithm for multiple

patterns. This algorithm is competitive only if the

sum of the needle lengths is smaller than the size of

one machine word.

SetHorspool Another extension of Horspool’s algorithm (Horspool

1980) for multi-pattern searching that applies a trie

of the reverse needles. In practice, it is outperformed

by WuManber.

Table 19: Exact Pattern Matching Algorithms for Searching Multiple
Needles.
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String<char> t = "the_heroes_theory";

String<String<char> > p;

appendValue(p, "theory");

appendValue(p, "hero");

appendValue(p, "the");

Finder<String<char> > finder(t);

Pattern<String<String<char> >, WuManber> pattern(p);

while (find(finder, pattern))

{

std::cout << "found pattern " << position(pattern)

<< "at position " << position(finder)

<< ", ";

}

Listing 22: Multiple Pattern Searching Example.

tpos +m−q+1 . . . tpos +m for determining the shift widths. A prepro-
cessed table shift stores for each q-gram w ∈ Σq a safe shift width.
shift may use hashing if a table size |Σ|q would be too large for
storing a shift width for each q-gram in memory. A second table
verify is used to determine which needles possibly match and are
verified.

The expected shift widths are optimal if q is selected such that the
number |Σ|q of possible q-grams is about the same as the number of
overlapping q-grams occurring in needles. In practice, the optimal
q may be smaller, because the computation of a hash value needed
to access shift and verify takes time O(q), and this dominates the
performance of the main loop (lines 11 to 18).

9.2.2 Multiple BFAM Algorithm

The Multiple Backward Factor Automaton Matching algorithm
extends the BFAM algorithm (see Section 9.1.4, page 141 and
Algorithm 15 on page 151) for searching multiple needles. The
factor automaton, e.g., a factor oracle (Section 12.1.2), is built
for the reverse needles p1, . . . , pk. Since the maximal safe shift
width cannot be larger than the length m of shortest needle, the
automaton considers only the prefixes of the needles that do not
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¤ WuManber
(
P = {p1, . . . , pk}, t1 . . . tn

)

m ← minimum length of pj1
z ← m − q + 12

shift [w] ← z for all w ∈ Σq3

for i ← 1 to z do4

for j ← 1 to k do5

shift [pj
i . . . p

j
i+q−1] ← z − i6





build shift

verify [w] ← {} for all w ∈ Σq7

for j ← 1 to k do8

verify [pj
z . . . pj

m] ← verify [pj
z . . . pj

m] ∪ {j}9




build verify

pos ← 010

while pos ≤ n − m do11
w ← tpos +z . . . tpos +m12

if shift [w] = 0 then13

for each j ∈ verify [w] do14

report if pj matches t at pos +115
pos ← pos +116

else17
pos ← pos + shift [w]18






searching

Algorithm 14: Wu-Manber Searching of Multiple Needles.

© 2010 by Taylor and Francis Group, LLC



150 Biological Sequence Analysis Using the SeqAn C++ Library

Figure 32: Fastest Multiple Pattern Matching Algorithm. Left: The
optimal algorithm for finding k patterns of length m in parts of (1) the
Escherichia coli genome (2) proteins from the Swiss-Prot database, and
(3) the English Bible. If |Σ = 4|, then WuManber is optimal for small m and
MultiBFAM for large m. For larger alphabets, the reverse is true. Right:
Slices through the left figures show the actual run time per searched
haystack value for searching k = 10 (Dna or AminoAcid) or k = 3 (char)
patterns. Both algorithms are sublinear, so for large m the run times may
even fall below 1 CPU cycle per haystack value.

© 2010 by Taylor and Francis Group, LLC



Pattern Matching 151

exceed that length. During the search, the automaton processes
a part tpos +1 . . . tpos +m of the haystack from back to front. If the
whole substring can be processed, MultiBFAM tests all needles
in verify [q], which gives for the current automaton state q the list
of needles with prefix tpos +1 . . . tpos +m.

¤ MultiBFAM
(
P = {p1, . . . , pk}, t1 . . . tn

)

m ← minimum length of pj1

rev j ← pj
m . . . p

j
1 for j ∈ {1, . . . , k}2

a ← BuildFactorAutomaton(rev1, . . . , revk)3

}
build a

verify [q] ← {} for all states q in a4

for j ← 1 to k do5

q ← the state of a after processing rev j6
verify [q] ← verify [q] ∪ {j}7





build verify

pos ← 08

while pos ≤ n − m do9

q ← δa(initial state of a, tpos +m)10
k ← m11
while q is defined do12

if k = 1 then13

for each i ∈ verify [q] do14

report if pi matches t at pos +115
break16

k ← k − 117
q ← δa(q, tpos +k)18

pos ← pos +k19






searching

Algorithm 15: Backward Factor Automaton Matching for Multiple
Needles.

9.3 Approximate Searching

So far, we discussed exact matching, that means a match of the
search is a substring s of the haystack t that equals the pattern
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p. In this section, we will relax this condition, such that a match
s needs not be equal but only sufficiently similar to p. More pre-
cisely spoken, we want to find all substrings s of t for which the
distance dist(s, p) with respect to a certain distance metric dist

does not exceed a certain threshold T . This is called approximate
string matching. In its most general form, dist could be any se-
quence distance measure based on alignment scores as described in
Section 8.3.1, though most approximate search algorithms are spe-
cialized for edit distance. SeqAn also supports approximate search
algorithms that only allow mismatches between s and p but no
inserts or deletes; we will describe them in Section 9.4.1.
When an approximate searching algorithm searches the haystack t
starting from a position pos , then we can either search for match-
ing substrings of tpos . . . tn (infix search), or for matching prefixes
of tpos . . . tn (prefix search). We will focus on infix search in this
section. SeqAn offers two algorithms for prefix search, namely the
algorithms by Sellers and Myers that can be easily adapted for
prefix search.
In SeqAn, finding all infix hits s in t is done in two steps:

(1) The function find looks for a position in t at which a match
ends. The threshold T is either set by calling setScoreLimit
or simply passed to find as a third function argument.

(2) If a match was found, the function findBegin can be used to
search its begin position. The threshold T for that approx-
imate search can be passed as a third argument, otherwise
the function applies the same threshold as during the last
call of find. Subsequent calls of findBegin may be used to
find several begin positions to the same end position.

Technically, findBegin is implemented as a prefix search on the
reverse needle and haystack strings. Listing 23 demonstrates how
to use find and findBegin.
The algorithms for approximate string matching supported by
SeqAn are listed in Table 20. They are also described in the book
of Navarro and Raffinot (2002). Another good survey of approxi-
mate string matching algorithms can be found in (Navarro 2001).
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String<char> t = "babybanana";

String<char> p = "babana";

Finder<String<char> > finder(t);

Pattern<String<char>, Myers<FindInfix> > pattern(p);

while (find(finder, pattern, -2))

{

std::cout << "end: " << endPosition(finder) << std::endl;

while (findBegin(finder, pattern, getScore(pattern)))

{

std::cout << "begin: " << beginPosition(finder)

<< std::endl;

std::cout << infix(finder) << " matches with score "

<< getBeginScore(pattern) << std::endl;

}

}

Listing 23: Approximate String Searching Example. The program finds
six substrings "babyba", "byban", "bybana", "banan", "bybanan", and
"banana" of the haystack "babybanana" that match the needle "babana"

with at least two errors (edit distance). Note that the two matches "banan"
and "bybanan" both end at the same position 9. The third argument of
findBegin is optional; the default is the score limit T of the last call of
find, i.e., −2 in this example. If we use this, six more matches would be
found.

DPSearch An algorithm by Sellers (1980) that is based on the dynamic

programming algorithm for sequence alignment by Needle-

man and Wunsch (1970). It can also be used for prefix search.

Myers A fast searching algorithm for edit distance using bit paral-

lelism by Myers (1999). It can also be used for prefix search.

Pex A filtering technique by Navarro and Baeza-Yates (1999) that

splits the needle into k + 1 pieces and search these pieces

exactly in the haystack.

AbndmAlgo Approximate Backward Nondeterministic DAWG Matching,

an adaption of the BNDM algorithm for approximate string

matching.

Table 20: Approximate Pattern Matching. Specializations of Pattern.
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9.3.1 Sellers’ Algorithm

The algorithm by Sellers (1980) resembles the dynamic program-
ming alignment algorithm (Needleman and Wunsch 1970) with
free start gaps for the haystack t, as it was described in Sec-
tion 8.5.4. Remember that FillMatrix(p1 . . . pm, t1 . . . tn) (see
Algorithm 2 on page 120) uses a matrix M , where Mi,j is the op-
timal score for aligning the two prefixes p1 . . . pi and t1 . . . tj. If we
initialize M0,j ← 0 for all j ∈ {1, . . . , n}, then each Mi,j is filled
with the optimal score of alignments between p1 . . . pi and a suffix
of t1 . . . tj.

The j-th pass of the outer loop in Sellers (Algorithm 16) com-
putes the j-th column C of the matrix M . The inner loop com-
putes in line 7 the value Ci = Mi,j according to Equation 8.6
(page 118). The variable d was previously set to Mi−1,j−1 (case 1),
v to Mi−1,j (case 2), and h to Mi,j−1 (case 3). At the end of the
inner loop (line 10), the value v = Cm = Mm,j is the optimal score
of an alignment between p = p1 . . . pm and a suffix s of t1 . . . tj. If
the sequence distance −v between s and p is ≤ T , then s is an
approximate match and its end position j is reported.

¤ Sellers (p1 . . . pm, t1 . . . tn, T )
Ci ← i × g for each i ∈ {1, . . . ,m}1

for j ← 1 to n do2

v ← 03
d ← 04
for i ← 1 to m do5

h ← Ci6
v ← max {d + α(pi, tj),max{v, h} + g}7
Ci ← v8
d ← h9






Compute in
C the j-th
column of
the matrix
M

if −v ≤ T then report match end position j10

Algorithm 16: Sellers’ Algorithm. α returns the score of aligning two
values; g is the (usual negative) gap score.

Sellers can easily be extended to support affine gap costs fol-
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lowing Gotoh’s idea (Gotoh 1982), which we described in Sec-
tion 8.5.2. SeqAn supports both variants for linear and for non-
linear gap costs, and selects it according to the applied scoring
scheme.

The algorithm can also be adapted for prefix searching, we just
have to change the initialization to make start gaps in the text
non-free. That is, we change lines 3 and 4 in Sellers to v ← i×g
and d ← (i − 1) × g.

Ukkonen’s Trick

Sellers’ algorithm takes time O(nm) for finding the occurrences of
a pattern p1 . . . pm in a text t1 . . . tn. With a slight modification
(Ukkonen 1985), this can be accelerated for edit distance scoring
to O(km) on average, where k = −T is the number of allowed
errors per match. The trick is to compute just the cells Ci for
i ≤ i0, where i0 is minimal such that Ci′ < T for all i′ > i0. At
the beginning of Sellers Ci is initialized to Ci = ig = −i, so we
set i0 ← −T . Suppose that we know an i0 for a given column j;
one can easily prove that for the next column j + 1 holds Ci′ < T
for all i′ > i0 + 1, i.e., the i0 must be increased by at most one.
After computing the values C0, C1, . . . , Ci0 , Ci0+1, we can easily
calculate the actual i0 in (amortized) constant time.

9.3.2 Myers’ Bitvector Algorithm

Myers (1999) uses bit parallelism to speed up Sellers’ algorithm
for edit distance.1 Remember that the edit distance between two
sequences is the negative score of their optimal alignment where
each match scores 0 and each mismatch and gap scores -1 (see
Section 8.3.1). The main idea of this algorithm is to encode the
j-th column of the matrix M of the Needleman-Wunsch algorithm
(Algorithm 2) in five bit vectors, each of length m (the length of

1We present here the variant by Hyyro and Fi (2001).
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the needle):

VP i := (Mi,j = Mi−1,j − 1) VN i := (Mi,j = Mi−1,j + 1)

HP i := (Mi,j = Mi,j−1 − 1) HN i := (Mi,j = Mi,j−1 + 1)

D0 i := (Mi,j = Mi−1,j−1)

where i ∈ {1, . . . ,m}. In each pass of the main loop, Myers (Al-
gorithm 17) computes these five vectors for column j based on of
the vectors for column j−1, which takes 15 bit vector operations.
If the bit vectors do not fit into one machine word, then several
machine words per bit vector must be used to store VP and VN

– all other bit vectors need not be stored completely. Myers also
keeps track of the current score score and reports the position j
whenever it climbs above the (negative) score limit T , i.e., the
number of errors falls below −T .

¤ Myers (p1 . . . pm, t1 . . . tn, T )

mask [c] ← 0m for all c ∈ Σ1
for i ← 1 to m do mask [pi]i ← 12

}
preprocessing

VP ← 1m3
VN ← 0m4
score ← −m5
for j ← 1 to n do6

X ← mask [tj ] ∨ VN7
D0 ← ((VP +(VP ∧X)) ⊕ VP) ∨ X8
HN ← VP ∧D09
HP ← VN ∨¬(VP ∨D0 )10
Y ← HP << 111
VN ← Y ∧ D012
VP ← (HN << 1 ) ∨ ¬(Y ∨ D0 )13
if HPm then score ← score −114
else if HN m then score ← score +115

if score ≥ T then16
report match end position j17






searching

Algorithm 17: Myers’ Bit-vector Algorithm.

Myers would perform a prefix search if we force M0,j = M0,j−1−1,
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i.e., HP0 = 1. This can simply be done by changing line 11 to
Y ← HP << 1|1.

SeqAn contains two implementations of Myers’ algorithm, one for
needle length up to one machine word, and a second for longer
needles. The algorithm is the fastest approximate searching func-
tion in SeqAn for high edit distances (e.g., < 60% identity; see
Figure 33).

We combined Myers’ algorithm with Ukkonen’s Trick (Sec-
tion 9.3.1), so the algorithm will usually compute only the first
machine word of the bit vectors at all positions in the haystack
but those at which it has regions very similar to the pattern. This
makes the average running time roughly independent from the
pattern length m; see Figure 33.

9.3.3 Partition Filtering

In this section, we will discuss an algorithm by Navarro and Baeza-
Yates (1999) that is based on a simple idea proposed by Wu and
Manber (1992): Let T be the threshold for the edit distance score
when searching the needle p in the haystack t, that is we want to
find all occurrences of p in t with ≤ k = −T errors. If we cut
p into k + 1 pieces, then each approximate match of p in t must
contain at least one of these pieces unchanged. So we start with
an exact multi-pattern search for the pieces and then verify each
occurrence of one of these pieces, that is we try to find p in the
neighborhood of the found piece; see Algorithm 18. The following
lemma guarantees that this approach works:

(Pidgeonhole Principle)
Let a1 . . . al = a be a partition of the string a into m substrings,
and let r1, . . . , rl be l positive integer numbers. If a matches to a
string b with less than r1 + r2 + . . . + rl errors, then at least one
ai matches with less than ri errors to a substring of b.

The lemma follows directly from the fact that, for linear gap costs,
the score of an alignment is the sum of the scores of its pieces.
Hence, if each ai matches to its counterpart in b with ≥ ri errors,
then a and b would match only with ≥ r1 + r2 + . . . + rm errors.

In our case, we use the lemma with l = k + 1 and r1 = r2 = . . . =
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rl = 1.

¤ PEX (p = p1 . . . pm, t = t1 . . . tn,−k)
divide p into k + 1 parts p1 . . . pk+11
pieces ←FindExact({p1, . . . , pk+1}, t)2

for each (i, pos) ∈ pieces do3

let pi = pl . . . pl+m4
hits ←FindApprox(p, tpos −l−k . . . tpos +m−k,−k)5
report all matches in hits6





verifi-
cation

Algorithm 18: Partition Filtering Algorithm. FindExact could be
any exact searching algorithm for multiple needles, e.g., WuManber

or MultiBFAM, and FindApprox any other stand-alone approximate
string matching algorithm, e.g., Sellers or Myers.

We call this technique filtering, since all parts of the haystack that
do not contain any piece of the pattern are filtered out and only
the rest is passed to the verification process. This works well for
long patterns and small error rates, since in this case the pieces are
relatively long, so the expected false positive rate of the filtering
is low. A good partitioning strategy is to split the needle p1 . . . pm

into k + 1 pieces of approximately equal length ≥ ⌊m/(k + 1)⌋.
On the other hand, the costs for each verification move up for
large patterns. For that reason, Navarro and Baeza-Yates (1999)
applied an optimization called hierarchical verification: Let T be
a tree with k + 1 leafs that are labeled from p1 to pk+1. We use
a balanced binary tree, but the idea works for any tree topology.
We label each vertex v of T with the concatenated pieces of p on
the leafs of the subtree rooted in v, and we call this label p(v) and
the number of leafs in this subtree r(v). The root of T is therefore
labeled with p. Suppose that we find in the haystack at position
pos an exact match of pi, then we follow the path from the i-th leaf
to the root. At each vertex v of this path, we search p(v) in the
neighborhood of pos with less than r(v) errors. If no occurrence
of p(v) is found, the verification stops, otherwise we proceed with
parent of v in T until the root has been reached and a match of p
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was verified.

It is easy to prove that this kind of verification is correct, i.e.,
no approximate match gets lost: Let v1, . . . , vl be the children of
the root, then r(v1) + . . . + r(vl) = k + 1. Hence, according to
Lemma 9.3.3, any approximate match of p with at most k errors
also contains some p(vi) with less than r(vi) errors. The same ar-
gument can recursively be applied to vi, then to one of its children,
and so forth.

9.4 Other Pattern Matching Problems

There are many more variants of pattern matching problems, and
SeqAn provides algorithms for some of them. In this section, we
will describe two of them: (1) the k-mismatch problem and (2)
searching with wildcards.

9.4.1 k-Mismatch Searching

A mismatch between a sequence a = a1 . . . an and another se-
quence b = b1 . . . bn is a position i ∈ {1, . . . , n} such that ai 6= bi.
The number of mismatches between a and b is called the Ham-
ming distance of the two sequences. Given a needle p1 . . . pm and
a haystack t1 . . . tn, then searching with k mismatches means to
find all substrings tpos +1 . . . tpos +m that have Hamming distance
to p1 . . . pm of ≤ k. This kind of searching resembles approximate
string matching as described in Section 9.3 but without inserts or
deletes, gaps are forbidden. Sellers’ algorithm (Section 9.3.1) can
be used for searching with mismatches if the costs for gaps are
set to +∞; but of course there are also algorithms especially for
the k-mismatch problem. SeqAn for example offers the specializa-
tion HammingHorspool of Pattern, that implements an adaption
of the exact pattern matching algorithm (Section 9.1.2) proposed
by Tarhio and Ukkonen (1990).
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Figure 33: Fastest Approximate Matching Algorithm. Left: The opti-
mal algorithm for finding a pattern of length m with at most k errors (edit
distance) in parts of (1) the Escherichia coli genome (2) proteins from the
Swiss-Prot database, and (3) the English Bible. Right: Slices through
the left figures show the actual run time per searched haystack value for
k = 10.
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9.4.2 Searching with Wildcards

SeqAn provides the algorithm WildShifAnd that is able to search
for regular expressions (e.g., Navarro and Raffinot (2002), Section
4.5.1). Note that this algorithm does not support the complete
functionality of usual regular expressions, e.g., it does not support
alternatives, and quantifiers like *, +, ? and {i, j} can refer only
to single characters or character classes. A pattern for searching
in texts t1 . . . tn of the alphabet Σ is a string c1 . . . cm that is the
concatenation of clauses, where each clause ci has one of the forms
in Table 21. For example, the pattern

[A − Z0 − 9].*

matches all strings that start with a capital letter or a digit.

Clause Description

w a string
. any character

a{i, j} repeat a at least i and at most j
times

a* repeat a for 0, 1, or more times
a+ repeat a for 1 or more times
a? optional a, same as a{0, 1}

[b1 . . . bk] a character in a class: Each bj is
either a set of characters from Σ,
or it has the form a1-a2 which
denotes all characters in Σ be-
tween a1 and a2.

Table 21: Regular Expression Syntax. A regular expression may contain
several clauses. w is a string of values from Σ, and a is either a single
character from Σ or a character class [b1 . . . bk].
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Motif Finding

Motif finding means to find matching substrings of d ≥ 2 given
sequences a1, . . . , ad, where matching can either be meant to be
exact, i.e., the matching substrings must be exactly the same, or
approximate, i.e., differences between the substrings are allowed.
The matching substrings are called motifs. In the following, we
will first concentrate on the pairwise motif finding problem, that is
finding motifs in d = 2 sequences. In contrast to pattern matching
(see Chapter 9), where we search for a complete needle sequence
in a haystack sequence, (pairwise) motif addresses the problem of
finding parts of the needle within the haystack. In most cases, we
are only interested in motifs that fulfill certain criteria of quality,
for example a minimal length, a minimum alignment score or –
in the case of approximate motif finding – a maximum mismatch
count.
SeqAn offers algorithms for solving various kinds of motif finding
problems which are spread over several modules of the library:

• Local Alignments: Algorithms for solving the global align-
ment problem (see Section 8.5), that is to find an optimal
alignment between two complete sequences, can be adapted
for motif finding, that is to find optimal alignments between
substrings of two sequences. This is called local alignment,
and we describe it in Section 10.1. The motifs found by this
search are local alignments stored in alignment data struc-
tures; see Section 8.2.

• Index Iterators: Some index data structures, as for ex-
ample the suffix trees or the enhanced suffix arrays (ESA),
can be used to find exact matches between two or more
sequences. SeqAn offers some special iterators (see Sec-

163
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tion 11.4.2) that can be used to browse through all exact
motifs, which are defined by the begin positions and the
length of the matching substrings.

• Seed Based Motif Search: Algorithms for expanding and
combining small motifs (so-called seeds) to larger motifs are
introduced in the Section 10.2. Seeds are represented essen-
tially by the begin and end positions of the matching sub-
strings, which can be stored in a data structure called Seed;
see Section 8.6.1.

• Multiple Sequence Motifs: Algorithms for finding subtle
motifs of fixed length in multiple sequences are discussed
in Section 10.3. Motifs of this kind are either represented
by a consensus sequence or by a position dependent weight
matrix.

10.1 Local Alignments

10.1.1 Smith-Waterman Algorithm

Smith and Waterman (1981) adapted the Needleman-Wunsch al-
gorithm (Needleman and Wunsch (1970); see Section 8.5.1), for
finding motifs in two sequences a and b: The algorithm finds a
substring a′ of a and a substring b′ of b and an alignment A be-
tween a′ and b′, such that the score of A is at least as good as
the score of any other alignment between a substring of a and a
substring of b. In this case, we call A an optimal local alignment
between a and b.
The Smith-Waterman algorithm works as follows: SmithWater-

man (Algorithm 19) computes – just like NeedlemanWunsch

(Algorithm 2) on page 120 – an m × n matrix M of scores, but
other than the Needleman-Wunsch algorithm that set Mi,j to the
score of the optimal alignment between a1 . . . ai and b1 . . . bj, the
Smith-Waterman algorithm computes instead the optimal score of
any alignment between a suffix of a1 . . . ai and a suffix of b1 . . . bj.
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Let these suffixes be a′ and b′ for a given i and j. Note that a′

or b′ or both could be the empty string ǫ. If both a′ = b′ = ǫ,
then Mi,j = score(ǫ, ǫ) = 0. Otherwise, Mi,j can be computed by
recursion (8.6) on page 118. If either i = 0 or j = 0, then obvi-
ously Mi,j = 0. After filling the complete matrix M , we get an
optimal local alignment by starting a trace back at a cell Mi,j with
a maximal value, which is the score of the optimal local alignment.

Align< String<char> > ali;

appendValue(rows(ali), "aphilologicaltheorem");

appendValue(rows(ali), "bizarreamphibology");

Score<int> scoring(3,-3,-2);

int score = localAlignment(ali, scoring, SmithWaterman());

cout << ali;

Listing 24: Smith-Waterman Algorithm. Finding an optimal local align-
ment by using the Smith-Waterman algorithm.

In SeqAn, this algorithm can be used by calling the function
localAlignment; see Listing 24 for an example.

10.1.2 Waterman-Eggert Algorithm

Sometimes also suboptimal local alignments between two sequences
a1 . . . am and b1 . . . bn are of interest. Waterman and Eggert (1987)
modified the Smith-Waterman algorithm such that it computes
non-intersecting local alignments between two sequences. We say
that two alignments do not intersect, if they have no match or
mismatch in common.

WatermanEggert (Algorithm 20) repeatedly calls Trace-

BackSW on different prefixes a1 . . . ai and b1 . . . bj for decreasing
Mi,j. Each call computes an alignment of score Mi,j, and the al-
gorithm stops as soon as the score falls below a certain limit. To
ensure that the computed local alignments do not intersect, the
algorithm modifies M and T after each call of TraceBackSW:
Suppose that the algorithm just computed a local alignment A
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¤ SmithWaterman(a1 . . . an, b1 . . . bm)
(M,T ) ← FillMatrixSW(a1 . . . an, b1 . . . bm)1
let Mi,j be maximal in M2
return TraceBackSW(a1 . . . ai, b1 . . . bj , T )3

¤ FillMatrixSW(a1 . . . an, b1 . . . bm)
M0,0 ← 01
Mi,0 ← 0 for i ∈ {1, . . . , n}2
M0,j ← 0 for j ∈ {1, . . . ,m}3





initiali-
zation

for i ← 1 to n do4

for j ← 1 to m do5

Mi,j ← max






0 = casestop

Mi−1,j−1 + α(ai, bj) = casediag

Mi−1,j + g = caseup

Mi,j−1 + g = case left

6

Ti,j ← argmaxk casek7
return (M,T )8

¤ TraceBackSW(a1 . . . ai, b1 . . . bj , T )

case Ti,j = stop or i = j = 0:1

return

[ ]
2






break
condi-
tion

case Ti,j = up or j = 0:3

return

[
TraceBackSW(a1 . . . ai−1, b1 . . . bj , T )

∣∣∣∣
ai

−

]
4

case Ti,j = left or i = 0:5

return

[
TraceBackSW(a1 . . . ai, b1 . . . bj−1, T )

∣∣∣∣
−
bj

]
6

case Ti,j = diag :7

return

[
TraceBackSW(a1 . . . ai−1, b1 . . . bj−1, T )

∣∣∣∣
ai

bj

]
8






recur-
sion

Algorithm 19: Smith-Waterman Algorithm. α(ai, bj) is the score for
aligning ai and bj , g is the score for a blank.
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¤ WatermanEggert(a1 . . . an, b1 . . . bm, limit)
(M,T ) ← FillMatrixSW(a1 . . . an, b1 . . . bm)1

repeat2
let Mi,j be the maximal cell in M not jet used3
if Mi,j < limit then break4
A ← TraceBackSW(a1 . . . ai, b1 . . . bj , T )5
Report A6
Recompute M and T following A7

Algorithm 20: Waterman-Eggert Algorithm.

which aligns the two characters ai and bj. Then subsequent local
alignments must not align ai and bj, so we need to recompute Mi,j

and Ti,j such that casediag (see lines 6 and 7 in FillMatrixSW)
is forbidden there. If we change Mi,j, then we possibly also need to
change Mi+1,j, Mi,j+1, or Mi+1,j+1. Waterman and Eggert recalcu-
late only the part of M that need to be updated by enumerating
them from top left to bottom right.
Listing 25 shows how to compute non-intersecting suboptimal
alignments in SeqAn. Each call of function localAlignmentNext

performs one step of the Waterman-Eggert algorithm to compute
the next best local alignment.

10.2 Seed Based Motif Search

Finding exact motifs is relatively easy. For example, we will show
in Section 11.2 how to use index data structures to find all com-
mon q-grams between sequences in linear time. Many efficient
heuristics to find high scoring but inexact local alignments there-
fore start with such small exact (or at least highly similar) motifs,
so-called seeds, and extend or combine them to get larger motifs.
Probably the most prominent tool of this kind is the Basic Local
Alignment Search Tool (Blast) (Altschul et al. 1990), which we
already discussed in Section 1.2.2, but there are many other exam-
ples like FastA (Pearson 1990) or Lagan (Brudno et al. 2003)
(see Chapter 13).
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Align< String<Dna> > ali;

appendValue(rows(ali), "ataagcgtctcg");

appendValue(rows(ali), "tcatagagttgc");

LocalAlignmentFinder<> finder(ali);

Score<int> scoring(2,-1,-2,0);

while (localAlignment(ali, finder, scoring, 2))

{

cout << "Score=" << getScore(finder) << endl;

cout << ali;

}

Listing 25: Waterman-Eggert Algorithm. Applying the Waterman-
Eggert algorithm in SeqAn. The algorithm computes non-overlapping local
alignments with scores better than 2.

SeqAn offers the class Seed for storing seeds; see Section 8.6.1. In
this section, we will primarily use the specialization SimpleSeed

of this class, which is especially designed for finding good mo-
tifs between two sequences (d = 2). Suppose that we store a
seed that corresponds to an alignment A between the two sub-
strings aleft0

. . . aright0
and bleft1

. . . bright1
, then beside the borders

left0, right0, left1, and right1, SimpleSeed also knows two bound-
aries lower and upper for the diagonal j − i of any two aligned
values ai and bj in A, that is lower ≤ j − i ≤ upper . The func-
tion bandedAlignment can be used to retrieve an alignment for a
given seed. It applies a variant of the Needleman-Wunsch algo-
rithm (see Section 8.5.1) on aleft0 . . . aright0 and bleft1 . . . bright1 that
is banded by lower and upper , i.e., it only computes such values of
the matrix Mi,j for which j − i lays within these boundaries.

There are two main tasks when processing seeds: extending seeds
to make them longer, and chaining several seeds together. In Sec-
tion 10.2.1, we will describe how to extend seeds in SeqAn. The
chaining of seeds to longer motifs will be the topic of Section 10.2.2.
More details about seed-based motif search in SeqAn can also be
found in Kemena (2008).
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10.2.1 Extending Seeds

Let S be a seed. Then we call another seed E an extension of S,
if for all i holds lefti(E) ≤ lefti(S) and righti(S) ≤ righti(E). A
good method for extending seeds should compute an extension E
that scores as high as possible for a given seed S. SeqAn supports
several algorithms for seed extension (see Table 22). The function
extendSeed extends a single seed while the function extendSeeds

extends all seeds that are stored in a container. The user can
determine the directions a seed will be extended, i.e., to the left
or to the right or both. We will describe in the following only the
extension to the right; the extension to the left works similarly.

MatchExtend A simple extension algorithm that extends seeds until

the first mismatch occurs.

UngappedXDrop An X-drop extension without gaps. The algorithm ex-

tends the seed until the score falls more than a given

value X.

GappedXDrop An X-drop extension variant of UngappedXDrop that

also allows gaps in the extended seed.

Table 22: Seed Extension Algorithms.

This simple extension method (see Algorithm 21) extends the seed
until the first mismatch occurs. The algorithm does not create
gaps. Listing 26 shows an example.

¤ MatchExtend (a1 . . . am, b1 . . . bn, right0 , right1 )

while (aright0 +1 = bright1 +1) and
(right0 < m) and (right1 < n) do

1

right0 ← right0 +12
right1 ← right1 +13

Algorithm 21: Match Extension.
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String<char> a = "SEEDabXcdXefXXX";

String<char> b = "SEEDabYcdefYYYY";

Seed<> seed(0, 0, 4); //left=0; length=4

extendSeed(seed, a, b, 1, MatchExtend());

cout << rightPosition(seed, 0) << endl; //output: 6

cout << rightPosition(seed, 1) << endl; //output: 6

Listing 26: Match Extension Example. The seed SEED is extended to the
right by ab; then the extension stops since X and Y do not match. The
direction of the extension was selected by setting the fourth argument of
extendSeed to 1.

MatchExtend has the disadvantage that a single mismatch
stops the extension immediately, so that subsequent matches are
lost. Altschul et al. (1990) therefore preferred an extension algo-
rithm called X-drop extension that allows some mismatches. An
X-drop is a part of an alignment that scores ≤ −X for a certain
value X > 0, where X is called the depth of the X-drop. The
X-drop extension stops extending before the alignment ends in
an X-drop. This guarantees that all drops in the extended part
of the alignment have depth < X, thus the complete seed may
contain an X-drop (but no 2X-drop), especially if it was extended
into both directions.

SeqAn supports an ungapped (Algorithm 22) and a gapped (Algo-
rithm 23) variant of this algorithm. Listing 27 shows an example
for ungapped X-drop extension.

For the gapped variant, SeqAn implements an algorithm de-
scribed by Zhang et al. (2000) that applies dynamic programming
similar to the Needleman-Wunsch algorithm (see Section 8.5.1).
GappedXDrop (see Algorithm 23) computes values Mi,j for
i ≥ right0 and j ≥ right1 , where Mi,j is the score of the op-
timal alignment between aright0 +1 . . . ai and bright1 +1 . . . bj. The
values Mi,j are computed in ascending order of their antidiagonal
k = i + j.
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¤ UngappedXDrop (a1 . . . am, b1 . . . bn, right0 , right1 ,X)
score, best ← 01
i ← 12
while (right0 +i < m) and (right1 +i < n) do3

score ← score +α(aright0 +i, bright1 +i)4
if score ≤ best −X then break5

if score > best then6

right0 ← right0 +i7
right1 ← right1 +i8

}extend
the
seed

best ← score9
i ← 110

else11
i ← i + 112

Algorithm 22: Ungapped X-Drop Extension. The function α returns the
score for aligning two values.

String<char> a = "SEEDabXcdXefXXX";

String<char> b = "SEEDabYcdefYYYY";

Seed<> seed(0, 0, 4); //left=0; length=4

Score<> scoring(1, -1, -1);

extendSeed(seed, 2, scoring, a, b, 1, UngappedXDrop());

cout << rightPosition(seed, 0) << endl; //output: 9

cout << rightPosition(seed, 1) << endl; //output: 9

Listing 27: Ungapped X-Drop Extension Example. In this example, we
set X = 2 (this is the second argument of extendSeed). The seed SEED

is extended to the right by abXcd and abYcd.
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¤ GappedXDrop (a1 . . . am, b1 . . . bn, right0 , right1 ,X)

k ← right0 + right11
best , scorek ← 02
L ← right03
U ← right0 +14





initalization

while k < n + m do5
k ← k + 16
L ← max(L, k − n)7
U ← min(U,m)8

for i ← L to U do9
j ← k − i10

Mi,j ← max






Mi−1,j−1 + α(ai, bj)

Mi−1,j + g

Mi,j−1 + g

11

if Mi,j ≤ best −X then12
Mi,j ← −∞13






compute
Mi,j on
antidi-
ago-
nal k

if Mi,j > best then14

right0 ← i15
right1 ← k − i16

}extend
the
seed

scorek ← maxi(Mi,k−i)17
if scorek = scorek−1 = −∞ then break18
best ← max(best , scorek)19
L ← min{i|Mi,k−i > −∞ or Mi−1,k−i > −∞}20
U ← max{i + 1|Mi,k−i > −∞ or Mi,k−i−1 > −∞}21

Algorithm 23: Gapped X-Drop Extension. α(ai, bj) is the score for align-
ing ai and bj , g is the score for a blank. We assume Mi,j = −∞ for all i

and j until Mi,j is set in line 11.
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The highest score found so far is tracked in best . The algorithm
limits the drop depth by setting all those Mi,j to −∞ that fall
below best −X, which means that alignments going through Mi,j

will not be continued. Instead, we only need to compute values
Mi,j with L ≤ i ≤ U , where the bounds L and U are computed
in lines 20 and 21 in a way that all relevant values are computed.
The algorithm stops if either the diagonal n + m was reached, or
all values in the last two antidiagonals k−1 and k were assigned to
−∞, since in this case that all further values would also be −∞.
The seed is then extended to the maximum Mi,j. Listing 28 shows
how to use this algorithm in SeqAn.

...

extendSeed(seed, 2, scoring, a, b, 1, GappedXDrop());

cout << rightPosition(seed, 0) << endl; //output: 12

cout << rightPosition(seed, 1) << endl; //output: 11

Listing 28: Gapped X-Drop Extension Example. The same as in List-
ing 27 but with GappedXDrop.

10.2.2 Combining Seeds

In this section we will show how to combine seeds to larger seeds.
We discussed in Section 8.6 how seeds are threaded to get global
seed chains by appending one seed to another.

Remember that we can append a seed Sj to another Sk, if
right i(Sk) ≤ left i(Sj) for all i ∈ {1, 2}. It may also be that
left i(Sk) ≤ left i(Sj) ≤ right i(Sk) ≤ right i(Sj) for all i ∈
{1, . . . , d}, then we say that Sj overlaps with Sk, and the two
seeds can be merged. SeqAn supports some methods for both, ap-
pending and merging seeds. In both cases, the combination of Sk

and Sj is denoted by Sk ◦ Sj.
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¤ LocalChaining(S1, . . . ,Sn)
sort S1, . . . ,Sn in increasing order of right1(Si)1
D ← {S1}2

for j ← 2 to n do3

S ← Sj4

for each Sk ∈ D within the range of Sj do5

if right1(Sk) < right1(Sj)− limit then6

report motif Sk7
D ← D \ {Sk}8

else if weight(Sk ◦ Sj) > weight(S)
then

9

S ← Sk10






find best
partner

S ∈ D for Sj

if S = Sj then11

D ← D ∪ {Sj}12

else13
D ← D \ {S}14
D ← D ∪ {S ◦ Sj}15

report all motifs ∈ D16

Algorithm 24: Greedy Local Chaining Heuristic. The algorithm com-
bines seeds as long as this benefits the score. Sk ◦ Sj is the seed that
we get by merging Sj and Sk or appending Sj to Sk. The constant limit

determines the maximal distance between to seeds that may be combined.
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Combining seeds is certainly useful only if the score of the resulting
motif exceeds the scores of both individual seeds, so it is sufficient
to consider only neighboring seeds when we are looking for seeds
to combine, because seeds that are too widely separated would
hardly achieve high scores. This is advantageous compared to
global chaining that requires to find a predecessor for each seed,
no matter its distance. LocalChaining (Algorithm 24) instead
considers only seeds Sk that are within a certain range relative to
a given seed Sj. This range is defined by two constants bandwidth

and limit as follows: (1) the diagonal rightdiag(Sk) = right2(Sk)−
right1(Sk) of Sk’s right border must be at most bandwidth away
from the diagonal leftdiag(Sj) = left2(Sj) − left1(Sj) of Sj’s left
border, i.e., | leftdiag(Sj)−rightdiag(Sk)| ≤ bandwidth, and (2) the
distance between the right borders of Sj and Sk is below limit , i.e.,
| left1(Sj)−right1(Sk)| ≤ limit and | left2(Sj)−right2(Sk)| ≤ limit ;
see Figure 34. The class SeedSet in SeqAn implements a suitable

Figure 34: Range of Possible Predecessors. The right end of a predecessor
Sk for Sj must be within the white area, which is: (1) left from Sj , (2)
between the two diagonals in distance bandwidth from the diagonal of the
left end of Sj , and (3) in distance limit from left1(Sj).

data structure D. It stores all processed seeds in a map that allows
fast searching for Sk that meet condition (1). Seeds that violate
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condition (2) are removed from D in line 6.

The application of SeedSet is demonstrated in Section 13.2; see
the listings on page 236. One call of function addSeed implements
the inner loop of Algorithm 24. addSeed offers several modes for
appending or merging seeds; see Table 23. If the desired mode for
adding Sj to the SeedSet is not possible because it contains no
suitable partner seed Sk, then addSeed returns false.

Single The seed is just added to the SeedSet.

Merge The added seed is merged with a seed in the SeedSet if

this benefits the score.

SimpleChain The added seed is appended to a seed in the SeedSet if

this benefits the score.

Chaos The added seed is appended to a seed in the SeedSet if

this benefits the score. Both seeds are expanded in a way

that the resulting alignment contains at most one gap.

The position of this gap is selected such that the score

is maximized.

Blat The added seed is appended to a seed in the SeedSet if

this benefits the score. The gap between the two seeds is

tried to be filled up with smaller matches.

Table 23: Modes for Adding Seeds Using addSeed.

10.3 Multiple Sequence Motifs

So far, we discussed methods for pairwise motif finding. SeqAn
also implements several algorithms to find motifs in d ≥ 2 se-
quences a1, . . . , ad; see Table 24. Since the complexity for searching
approximate motifs grows heavily when we want to find them in
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Projection A heuristic by Buhler and Tompa (2001) that use

local sensitive hashing to get promising input esti-

mates for the EM-algorithm; see Section 10.3.1.

EPatternBranching This heuristic by Davila, Balla, and Rajasekaran

(2006) is an extension of the Pattern Branching

algorithm by Price et al. (2003). It applies lo-

cal search techniques to optimize motif candidates.

The current implementation supports only the mo-

tif models OOPS and OMOPS.

PMS1 An enumerating algorithm by Rajasekaran et al.

(2005).

PMSP A space-saving variant of PMS1 (Davila et al. 2006);

see Section 10.3.2.

Table 24: Motif Finding Algorithms. Specializations of MotifFinder.

more than two sequences, we simplify the problem as follows:1 (1)
the length l of the wanted motif is given in advance, and (2) we al-
low a certain number of mismatches between a motif and its occur-
rences, but no inserts or deletes. An occurrence of m = m1 . . . ml

in a string ai is therefore a substring ai
pos +1 . . . ai

pos +l that differs
from m only in ≤ k values, and the occurrence is exact, if they
differ in exactly k values. Figure 35 shows an example for l = 12
and k = 2.

Figure 35: Motifs Example. Each sequence contains the motif
"GGTGTATAAA" with 2 mismatches.

1Nevertheless, the problem stays NP-hard (Lanctot et al. 1999).
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SeqAn offers several alternatives to define the concept motif, which
differ in the number of required occurrences in the sequences; see
Table 25. We call this the motif model, and together with the deci-
sion of whether exact or non-exact occurrences are to be counted,
the motif model defines the kind of search. The three models OOPS,
ZOOPS, and TCM were introduced by Bailey and Elkan (1995), where
the latter two depend on a parameter 0 < ξ ≤ 1 that is the min-
imum fraction of the d sequences that must contain occurrences
of m. Moreover, we implemented a new variant OMOPS (Lim 2007)
that resembles TCM with ξ = 1.

OOPS one occurrence per sequence: m is an OOPS motif, if each sequence

a1, . . . , ak contains exactly one occurrence of m.

OMOPS one or more occurrence per sequence: m is an OMOPS motif, if each

sequence a1, . . . , ak contains at least one occurrence of m.

ZOOPS zero or one occurrence per sequence: m is a ZOOPS motif, if at

least ξk out of k sequences a1, . . . , ak contain one occurrence of m

(0 < ξ ≤ 1).

TCM two-component mixture: m is a TCM motif, if at least ξk out of k

sequences a1, . . . , ak contain at least one occurrence of m (0 < ξ ≤
1).

occurrences no one more

OOPS 0 k 0

OMOPS 0 k

ZOOPS ≤ (1 − ξ)k ≥ ξk 0

TCM ≤ (1 − ξ)k ≥ ξk

Table 25: Motif Models. The table shows the number of sequences
a1, . . . , ak with no, one, or more occurrence of motif m.

Motif searching in SeqAn can be accessed via findMotif, which
get three arguments: (1) an instance of the class MotifFinder that
specifies the applied algorithm (Table 24) stores all needed tem-
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porary data for processing the search together with all necessary
constants, like the number of allowed errors k, (2) the sequences
a1, . . . , ad, and (3) a tag that specifies the motif model (Table 25).
See Listing 29 for an example.
SeqAn supports two kinds of motif finding algorithms: random-
ized heuristics (Projection, EPatternBranching) and exhaustive
enumeration algorithms (PMS1, PMSP). As an example for the for-
mer, we will sketch in the following Projection as an example,
and PMSP for the latter.

10.3.1 The Randomized Heuristic Projection

Suppose that an unknown l-mer m was planted according to the
current motif model with k or up to k errors at random positions
into d random sequences a1, . . . , ad, then finding m can be for-
mulated as maximum likelihood estimation: Find an estimate for
m for which the chance of observing a1, . . . , ad is maximal. Some
tools like MEME (Bailey and Elkan 1994) and Projection (Buh-
ler and Tompa 2001) apply an expectation-maximization algorithm
to identify estimates for m. The EM-algorithm (Dempster et al.
1977) has the advantage that it can handle incomplete data, e.g.,
in our case, that we do not know the actual positions at which the
motif was planted into the sequences. Let the model parameters
θh,c be estimates of p(“mh = c”), and define the unknown variables
Zi,j as:

Zi,j =

{
1, if m was planted into ai at position j

0, otherwise

The algorithm optimizes θh,c by repeating two steps:

(1) E-step: We compute the expected values for Zi,j given the
current estimates for θh,c, i.e., we get according to Bayes’
theorem:

E(Zi,j|ai, θ) ← p(ai|Zi,j = 1, θ)∑
k p(ai|Zi,k = 1, θ)
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unsigned int const l = 4; //length of motif

unsigned int const k = 1; //number of substitutions

String<DnaString> dataset;

appendValue(dataset, DnaString("TCTCATCC...AATGGGGGG"));

appendValue(dataset, DnaString("TACGAAGC...ACCGATAAA"));

appendValue(dataset, DnaString("ATACAAAC...AGGTAAGTG"));

appendValue(dataset, DnaString("GGCGCCTC...CAACTGTCA"));

appendValue(dataset, DnaString("TCAAATGC...AGAGTCAAC"));

MotifFinder<Dna, PMSP> finder(l, k, true);

findMotif(finder, dataset, OMOPS());

cout << getMotif(finder) << endl; //output: "GGTGTATAAA"

Listing 29: Motif Finding Example. This example uses PMSP for searching
a motif in the sequences displayed in Figure 35. Note that the strings are
shortened for exposition. The motif model is OMOPS (specified by the third
argument of findMotif) with exact occurrences (specified by true in the
third argument of the finder’s constructor.

(2) M-step: We use the values Zi,j from the last E-step to
re-estimate p(“mh = c”) such that the likelihood of getting
a1, . . . , ad is maximized.

Dempster, Laird, and Rubin (1977) showed that the model vari-
ables θ of the EM-algorithm converge to a local maximum for the
likelihood of the observed data. Which local maximum is reached
depends on the estimate θ the algorithm starts.
Projection (Algorithm 25) applies locality-sensitive hashing (In-
dyk and Motwani 1998) to determine promising inputs for the EM-
algorithm. A hashing function f is called locality-sensitive, if the
probability for collisions (i.e., f(a) = f(b)) between two hashed ob-
jects a 6= b is higher for similar objects than for dissimilar objects.
Buhler and Tompa used gapped q-gram shapes (see Section 11.2.1)
as hash functions. The similarity between different occurrences of
the motif m is above the expected similarity between random l-
grams, hence if we apply locality-sensitive hashing to all l-grams
in a1, . . . , ad, then occurrences of m have an above-average proba-
bility to collide with other l-grams, namely with other occurrences
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¤ Projection(a1, . . . , ad, l, R, limit)

repeat for up to R loop cycles1
f ← random locality-sensitive hash function2
bucket [x] ← ∅ for each hash value x3

for each l-mer w in a1, . . . , ad do4
bucket [f(w)] ← bucket [f(w)] ∪ {w}5

for each x with | bucket [x]| ≥ limit do6

generate θ from bucket [x]7
m ← EM-Algorithm(θ)8

if m complies motif model then9
report m10
return11

Algorithm 25: Projection Algorithm for Motif Finding.

of m. In reverse, there is a good chance for l-mers with many col-
lisions to be occurrences of m, thus those l-mers are good input
candidates θ for the EM-algorithm.

10.3.2 The Enumerating Algorithm PMSP

PMSP is an exhaustive motif search algorithm by Davila et al.
(2006). SeqAn implements PMSP for all motif models; Algo-
rithm 26 shows it for OMOPS and exact occurrences. OMOPS means
that a motif occurs somewhere in a1 with k errors, so PMSP enu-
merates all l-grams m with Hamming distance k to a substring
a1

j+1 . . . a1
j+l of a1. If one of these m also occurs in all other se-

quences as for s ∈ {2, . . . , d}, then m is a motif. The distance
between m and an occurrence ws in as is k, thus the distance be-
tween ws and a1

j+1 . . . a1
j+l is ≤ 2k. To determine all l-grams in

as that fulfills this condition, Get2kNeighbors computes their
distances to a1

j+1 . . . a1
j+l (line 3). For j > 0, these distances are

computed incrementally from the distances for j − 1.
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¤ PMSP(a1, . . . , ad, l, k)

for j ← 0 to length(a1) − l do1

for s ← 2 to d do2
Ns ← Get2kNeighbors(a1, as, l, k, j)3

for each l-gram m with δ(m,a1
j+1 . . . a1

j+l) = k do4

if for each s ∈ {2, . . . , d} exists ws ∈ Ns with
δ(m,ws) = k then

5

report motif m6

¤ Get2kNeighbors(a, b, l, k, j)
N ← ∅1

for i ← length(b) − l down to 0 do2

Di ←
{

δ(a1 . . . al, bi+1 . . . bi+l) if j = 0

Di−1 − δ(aj , bi) + δ(aj+l, bi+l) otherwise
3

if Di ≤ 2k then4
N ← N ∪ {bi+1 . . . bi+l}5

return N6

Algorithm 26: PMSP Algorithm for Motif Finding. Motif model is
OMOPS; only exact occurrences are counted. δ(x, y) is the Hamming dis-
tance between two strings x and y.
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Chapter 11

Indices

Indices are data structures that store processed data about a se-
quence or a set of sequences to facilitate searching in them. For
example, indices allow fast exact pattern matching or exact motif
finding. SeqAn implements several index data structures. Table 26
lists the available specializations of the class Index.

Index_QGram A simple hashing table of all (gapped) q-grams of a string

or string set; see Section 11.2.

Index_ESA A suffix array (Manber and Myers 1990) that can be ex-

tended by a set of additional tables to an enhanced suffix

array (Abouelhoda, Kurtz, and Ohlebusch 2002); see Sec-

tion 11.3. The index implements iterators that allow using

the data structure like a suffix tree (Weiner 1973); see Sec-

tion 11.4.2.

Index_Wotd A lazy suffix tree (Giegerich, Kurtz, and Stoye 1999). The

index is deferred, which means that it is built up during

the use.

PizzaChili A wrapper for the index structures from the Pizza & Chili

Corpus (Ferragina and Navarro 2008), e.g., for compressed

text indices.

Table 26: Index Data Structures. Specializations of Index.

Many indices consist of several parts, we say it is a bunch of fibers.
An enhanced suffix array (Index_ESA) for example has at least the
fiber ESA_Text, which is the indexed text and the fiber ESA_SA,
which contains the suffix table. More fibers like the longest com-
mon prefix-table (fiber ESA_LCP) can be created when needed. The

183
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Metafunctions

Fiber The type of a fiber in the index (Tables 29 and 31).

Functions

getFiber Returns a fiber of the index.

indexCreate Creates a fiber in the index.

indexRequire On-demand creation of a fiber.

indexSupplied Determines whether a fiber is present in the index.

find Searches in the index (Section 11.1.2).

Table 27: Common Functions and Metafunctions for Indices.

types of fibers can be determined by the metafunction Fiber, and
the function getFiber is used for accessing the fibers of an index.

String indices in SeqAn are in general capable of working on mul-
tiple sequences a1, . . . , ad at once. This is often done by building
up the index for the concatenated string a1 . . . ad, e.g., by using
the concatenator of a StringSet; see Section 7.9 or the example
at the end of the chapter.

Before we go into the algorithmic details in Section 11.2 we demon-
strate how easily indices are created in SeqAn.

11.1 Working with Indices

11.1.1 Creating an Index

A substring index is a specialization of the generic class Index

which expects 2 arguments (the second is optional). The first
template argument is the type of the data structure the index
should be built on. In the following, we denote this type by TText.
For example, this could be String<char> to create a substring
index on a string of characters:
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Index< String<char> > myIndex;

Alternatively we could use StringSet<String<char> > to create
an index on a set of character strings:

Index< StringSet<String<char> > > myIndex;

The second template argument of the Index class specifies the
concrete implementation. In the following, we denote this type by
TSpec. By default, this is Index_ESA<>, an enhanced suffix array.
So, our first code example could also be written as

Index< String<char>, Index_ESA<> > myIndex;

After we have seen how to instantiate an index object, we need
to know how to assign a sequence to the index. This can be done
with the function indexText which returns a reference to a TText

object stored in the index or directly with the index constructor:

// this ...

Index< String<char> > myIndex;

indexText(myIndex) = "tobeornottobe";

// ... could also be written as

Index< String<char> > myIndex("tobeornottobe")

11.1.2 Pattern Finding

To find all occurrences of a pattern in an indexed String or a
StringSet, SeqAn provides the Finder class, which is also spe-
cialized for indices. The following example shows how to use the
Finder class specialized for our index to search the pattern "be".

Finder< Index<String<char> > > myFinder(myIndex);

while (find(myFinder, "be"))

cout << position(myFinder) << " ";
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The output of the above program is 11 2. The finder object
myFinder was created with a reference to myIndex. The func-
tion find searches the next occurrence of "be" and returns true if
an occurrence was found and false otherwise. The position of an
occurrence in the text is returned by the function position called
with the Finder object. Please note that in contrast to online-
search algorithms, the returned occurrence positions are not as-
cending. As you can see in the code example above, the pattern
"be" was passed directly to the find function. This is a shortcut
for indices and could be also written in a longer way:

Finder< Index<String<char> > > myFinder(myIndex);

Pattern< String<char> > myPattern("be");

while (find(myFinder, myPattern))

cout << position(myFinder) << " ";

To end this example we show how to use Finder class for both,
an enhanced suffix array and a q-gram index.

#include <iostream>

#include <seqan/index.h>

using namespace seqan;

int main ()

{

The following code creates an Index of "tobeornottobe". As
there is no second template parameter given to Index<..>, the
default index based on an enhanced suffix array is used.

Index< String<char> > index_esa("tobeornottobe");

Finder< Index< String<char> > > finder_esa(index_esa);

cout << "hit at ";

while (find(finder_esa, "be"))

cout << position(finder_esa) << " ";

cout << endl;
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Now we explicitly create a q-gram index using an ungapped 2-gram
and do the same. Instead of this fixed-size shape, you can use arbi-
trary shapes and assign them before calling find via indexShape.

typedef Index< String<char>,

Index_QGram< UngappedShape<2> > > TQGramIndex;

TQGramIndex index_2gram("tobeornottobe");

Finder< TQGramIndex > finder_2gram(index_2gram);

cout << "hit at ";

while (find(finder_2gram, "be"))

cout << position(finder_2gram) << " ";

cout << endl;

return 0;

}

Below you see the result of calling the program.

user@computer:~/seqan$ cd demos

user@computer:~/seqan/demos$ make index_find

user@computer:~/seqan/demos$ ./index_find

hit at 11 2

hit at 2 11

user@computer:~/seqan/demos$

Now we will have a more detailed look at q-gram indices and suffix
arrays.

11.2 q-Gram Indices

11.2.1 Shapes

A q-gram (in the narrow sense) is a string of length q, and the
q-grams of a text a = a1 . . . an are the n−q+1 length-q substrings
of this text. We also call this kind of q-gram ungapped since it
consists of q successive values ai+1 . . . ai+q. A gapped q-gram on
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the other hand is a subsequence ai+s1
ai+s2

. . . ai+sq
of a, where s =

〈s1, . . . , sq〉 is an ordered set of positions s1 = 1 < s2 < · · · < sq.
We call s a shape, and we define weight(s) = q and span(s) = sq.
Ungapped q-grams are therefore a special case of gapped q-grams
with the shape s = 〈1, . . . , q〉.

SimpleShape An ungapped shape. The length q can be set at run

time by calling the function resize.

UngappedShape An ungapped shape of fixed length, i.e., the length

is specified at compile time as a template argument

constant.

GappedShape A generic gapped shape that can be changed at run

time. It is defined for example by calling the function

stringToShape that translates a string of characters

‘1’ (relevant position) and ‘0’ (irrelevant gap posi-

tion) into a shape, i.e., the string "11100101" would

be translated into the shape s = 〈1, 2, 3, 6, 8〉.

HardwiredShape This subspecialization of GappedShape stores a gapped

shape that is defined at compile time. The

shape 〈s1, s2, . . . , sq〉 is encoded in a list of the

q − 1 differences s2 − s1, s3 − s2, . . . , sq − sq−1,

which are specified as template argument constants

of the tag class HardwiredShape. For example,

the shape s = 〈1, 2, 3, 6, 8〉 would be encoded as

HardwiredShape<1, 1, 3, 2>.

Table 28: Shape Specializations.

SeqAn offers several alternative data structures for storing gapped
or ungapped shapes; see Table 28 and Figure 11 on page 60. The
main purpose of these shape classes is to compute hash values:
Given a shape s = 〈s1, . . . , sq〉, we define the hash value of a q-
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gram as1
. . . asq

to be1

hash(as1
. . . asq

) =

q∑

i=1

ord(asi
)|Σ|q−i

In other words, hash regards ord(as1
) . . . ord(asq

) as a number of
base |Σ| with q digits. Obviously hash(a1) 6= hash(a2) for two
different q-grams a1 6= a2.
The specializations of Shape differ in the performance of comput-
ing hash values; see Figure 12 on page 61. For example, the
ungapped specializations are faster than their gapped counterparts
if we need to compute the hash values of all q-grams in a text,
since the hash value of the i-th ungapped q-gram can be incre-
mentally computed in constant time from the hash value of the
i − 1-th ungapped q-gram by:

hash(ai+1 . . . ai+q) = hash(ai . . . ai+q−1)q − ai|Σ|q + ai+q

Moreover, fixed variants are faster than their variable counterparts
because the compiler can optimize the code better if the shape is
known at compile time.

11.2.2 q-Gram Index Construction

Let s = 〈s1, . . . , sq〉 be a shape. A q-gram index allows to look
up in constant time all occurrences of a given q-gram b in a
text a = a1 . . . an. The index consists of two tables (see Fig-
ure 36): (1) The position table P that enumerates the start-
ing positions j ∈ {0, . . . , n − sq} of all q-grams in the text or-
dered by hashs(aj+s1

. . . aj+sq
), and (2) the directory table D that

stores for each value k ∈ {0, . . . , |Σ|q} the number of q-grams
b in the text with hashs(b) < k. With these two tables, it
is easy to look up the occurrences of b in a at the positions
P

[
D[hashs(b)]

]
, . . . , P

[
D[hashs(b) + 1] − 1

]
.

Both tables can be built up together in time O(n) using count sort
(Algorithm 27). CountSort sorts the positions p1, . . . , pm by the

1Remember that ord returns for each value ∈ Σ a unique integer ∈
{0, . . . , |Σ| − 1}; see Section 6.4.
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Figure 36: q-gram Index. In this example, the 2-gram index of
"CTCAACTCATCTGGAACTGAG" is searched for all occurrences of "CT". We
first compute hash("CT") = 7, and then we find in the Positions table at
P

[
D[7]

]
, . . . , P

[
D[8]−1

]
the positions 0, 5, 10, and 16. (D is the Directory

table).

keys k1, . . . , km in three steps: (1) For each k ∈ {0, . . . , Z − 1} it
counts in D the number of kj = k, (2) the counts in D are summed
up such that each D[k] contains the number of kj < k − 1, and
(3) the pj are sorted into P guided by D. The sorting is stable: If
ki = kj for i < j, then pi is sorted before pj into D. BuildQGra-

mIndex calls CountSort using the hash values of all q-grams
as keys. This algorithm can be implemented lightweight, i.e., only
the space of D and P is needed, by computing the hash values on
the fly when they are needed in the steps (1) and (3).
SeqAn also supports building up P without D, which is
especially useful if |Σ|q gets too large. The function
createQGramIndexSAOnly applies the sort algorithm from the
standard C++ library. Table 29 describes the different fibers for
q-gram based indices.

11.3 Suffix Arrays

Let a = a1 . . . an be a text and bj = aj+1 . . . an the j-th suffix
of a. The suffix array S of a is a table that stores all positions
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¤ BuildQGramIndex (a1 . . . an, 〈s1, . . . , sq〉)
P ← 〈0, 1, 2 . . . , n − sq〉1 P = positions
hi ← hash(ai+s1

. . . ai+sq
) for i ∈ P2

K ← 〈h0, . . . , hn−sq
〉3 K = keys

return CountSort (P,K, |Σ|q)4

¤ CountSort (〈p1, . . . , pm〉, 〈k1, . . . , km〉, Z)

D[j] ← 0 for j ∈ {0, . . . , Z}1

for j ← 1 to m do2
D[kj + 1] ← D[kj + 1] + 13





count keys
kj

count ← m4
for j ← Z down to 1 do5

count ← count −D[j]6
D[j] ← count7





sum up
counters

for j ← 1 to m do8

P [D[kj + 1]] ← pj9
D[kj + 1] ← D[kj + 1] + 110






sort
positions pj

into P

return 〈P,D〉11

Algorithm 27: Count Sort Algorithm for q-Gram Index Construction.
The shape {s1, . . . , sq} is used for indexing a text a1 . . . an of alphabet Σ.
The algorithm returns both the position table P and the directory table
D. It is assumed that n > sq and |Σ|q ≥ 2.

QGram_Text The indexed text.

QGram_SA The position table that stores the positions P of the q-gram

occurrences.

QGram_Dir The directory table D that allows us to look up where

QGram_SA stores positions of occurrences of a given q-gram.

QGram_Shape The shape of the q-gram that specifies which q values of a

string are used to compute the hash value.

Table 29: q-gram Index Fibers.
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j ∈ {0, . . . , n−1} in the lexicographical order ≤lex of the bj. Con-
sidering that, given the text a, the suffix bj is completely deter-
mined by the position j, we simply say that S contains the suffixes
bj. Figure 37 shows an example. Manber and Myers introduced
this data structure in 1990.

Figure 37: Suffix Array and LCP Table. The suffix array contains the
begin positions of the lexicographically sorted suffixes of "CTCAACTCATC".
The Lcp table stores the length of the longest common prefixes between
two neighboring suffixes; see Section 11.4.1.

11.3.1 Suffix Array Construction

SeqAn implements several algorithms for constructing suffix ar-
rays; see Table 30. Listing 30 shows an example of how
to construct a suffix array in SeqAn by calling the function
createSuffixArray.

In the following, we will discuss Skew (see Algorithms 28, 29), a
linear time algorithm by Kärkkäinen and Sanders (2003, revised
in 2006), which is used in SeqAn as the default method for suffix
array construction, since it is fast, generic, and is also excellent
for building up suffix arrays on external memory (Dementiev et al.
2008). Skew bases on the idea of merge sort: The set of suffixes
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Skew3 A linear time algorithm by Kärkkäinen and Sanders

(2003), which applies a merge sort approach, where

two-thirds of the suffixes are recursively sorted; see

Skew, Algorithm 28, 29.

Skew7 A variant of Skew3 that recursively sorts three-seventh

(instead of two-thirds) of the suffixes (Weese 2006).

This reduces the number of recursive calls, so Skew7

is slightly faster than Skew3.

ManberMyers The algorithm by Manber and Myers (1990) that is

based on prefix doubling. It is quite slow in practice,

although the run time is O(n log n).

LarssonSadakane The algorithm by Larsson and Sadakane (2007).

SAQSort If this tag is specified, the suffixes are sorted using the

function sort of the standard C++ library. This is not

recommended when a repetitive text is indexed.

BWTWalk If this tag is specified, the algorithm described in

Chapter 16 is used.

Table 30: Suffix Array Construction Algorithms.

String<char> text = "hello world!";

String<unsigned int> sa;

resize(sa, length(text));

createSuffixArray(sa, text, Skew7());

Listing 30: Using createSuffixArray to Build Up a Suffix Array. In
this example, the applied algorithm is Skew7.
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is divided into two parts S12 and S0, each part is sorted separately
(by SortS12 and SortS0), and then they are merged together
by Merge.

We define for z ∈ {0, 1, 2} the sets Sz = {j ∈ S|j = z +
3i for integer i}, and S12 = S1 ∪ S2. SortS12 bases on the
following observation: Instead of sorting every third suffix of a,
we can also sort every suffix of a string t, where each character
of t consists of three successive characters of a. SortS12 con-
structs values kj for j ∈ S12 that conserve the order of the first
three characters of the suffixes bj. Since we also want to consider
suffixes with length < 3, we define in line 2 of Algorithm 28 the
values an+1 = an+2 = an+3 = $, where $ is a character not used
in a for which holds ord($) ≤ ord(c) for all c ∈ Σ.2 If all these kj

are different, then sorting the kj already sorts the bi. Otherwise
(lines 6 to 15), SortS12 applies a recursive call of Skew to sort
the suffixes of a string t = t1t2, where t1 and t2 correspond to
the suffixes with positions in S1 and S2, respectively. For min-
imizing the alphabet size of t, SortS12 computes values T (kj)
by enumerating the kj, such that the T (kj) conserve the order of
the kj (lines 6 to 9). Hence the alphabet size of t is bounded by
the length of the input sequence n. Note that appending t2 to
t1 does not affect the mutual order of the suffixes in t1, since the
last character in t1 is unique in t by construction. After that (in
lines 13 to 15), the values in S12 are translated from positions in
t into positions in a.

Sort0 (Algorithm 29) sort the suffixes of a at positions in S0.
Obviously bj1 ≤lex bj2 for two positions j1, j2 ∈ S0, if either aj1+1 <
aj2+1, or aj1+1 = aj2+1 and bj1+1 ≤lex bj2+1. The last condition was
already checked in SortS12, since j1 + 1, j2 + 1 ∈ S1 ⊆ S12.
Therefore Sort0 first sorts the positions j ∈ S0 according to the
occurrences of j + 1 in S12 (lines 1 to 5), and then it uses stable
sorting to sort them again by aj+1 (line 7).

Merge scans both S0 and S12, and in each step it appends either
x = S0[i] or y = S12[j] to S, depending on the lexicographical

2For the implementation of Skew in SeqAn, we modified the algorithm such
that it does not require a special character $ (Weese 2006).
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order between bx and by. If y ∈ S1, then both x + 1 ∈ S12 and
y + 1 ∈ S12. Hence bx+1 <lex by+1 if x + 1 comes before y + 1 in
S12, that is if I(x + 1) < I(y + 1), where I is the inverse suffix
array of S12. Therefore bx <lex by if ax+1 <lex ay+1 or ax+1 = ay+1

and I(x + 1) < I(y + 1). If on the other hand y ∈ S2, then
x + 2, y + 2 ∈ S12, hence bx <lex by if ax+1ax+2 <lex ay+1ay+2 or
ax+1ax+2 = ay+1ay+2 and I(x + 2) < I(y + 2).

¤ Skew (a = a1 . . . an)
if n = 1 then return 〈0〉1

else2
S12 ← SortS12(a)3
S0 ← SortS0(a, S12)4
return Merge(a, S12, S0)5

¤ SortS12 (a)

S12 ← 〈1, 2, 4, 5, . . . , 3i+1, 3i+2, . . .〉 positions ≤ n1
kj ← hash(aj+1aj+2aj+2) for j ∈ S122
K ← 〈k1, k2, k4, k5 . . . , k3i+1, k3i+2, . . .〉3
〈S12,D〉 ← CountSort(S12,K, |Σ|3)4





sort 3-grams

if ki = kj for any two i 6= j then5

k ← 06

for j ← 0 to |Σ|3 − 1 do7

T [j] ← k8
if D[j] 6= D[j + 1] then k ← k + 19






reduce
alphabet
size

t1 ← T [k1] T [k4] T [k7] . . . T [t3i+1] . . .10
t2 ← T [k2] T [k5] T [k8] . . . T [t3i+2] . . .11
S12 ← Skew(t1t2)12




recursion

for j ← 0 to |S12| − 1 do13

if S12[j] < |t1| then S12[j] ← 3S12[j] + 114
else S12[j] ← 3(S12[j] − |t1|) + 215





transform
positions

remove from S12 all entries ≥ n16
return S1217

Algorithm 28: Skew Algorithm for Suffix Array Construction (part
one). In line 2, we define an+1 = an+2 = an+3 = $. SortS0 and Merge

are defined in Algorithm 29, CountSort in Algorithm 27.
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11.3.2 Searching in Suffix Arrays

Let S be the suffix array of a text t = t1 . . . tn, p = p1 . . . pm a
pattern, and sj = tS[j]+1 . . . tn the suffix in S at j ∈ {0, . . . , n−1}.
We define

L = max
{
j

∣∣ si <lex p for all i < j
}

R = max
{
j

∣∣ si ≤lex p for all i < j
}

Obviously L ≤ R, and if L < R, then p occurs in t at positions
S[L], S[L + 1], . . . , S[R − 1], and only there. SearchSA (Algo-
rithm 30) shows how L can be found using binary searches. In
each pass of the main loop, the interval [left , . . . , right ] is cut into
halves at the position mid . If p ≤lex smid , then L ≤ mid and
therefore L ∈ [left , . . . ,mid ], otherwise L ∈ [mid +1, . . . , right ].
The algorithm stops if the interval only contains L = left = right .
For computing R, we need to change the condition at line 11 to

i ≤ n and (j > m or pj <lex ti),

which is equivalent to p <lex smid . If this condition is fulfilled,
then R ∈ [left , . . . ,mid ], otherwise R ∈ [mid +1, . . . , right ].
SearchSA computes two values l and r for which the following
invariants hold: (1) There is an x ≤ left such that p and sx share
the first l − 1 values, and (2) p and sright share the first r − 1
values. Therefore each suffix smid with x ≤ mid ≤ right share
at least the first min(l, r) − 1 values with p, so these values need
no further examination when we want to compare p and smid (see
lines 6 to 10). This speeds up the search, although the worst case
runtime is still Ω(m log n).

11.4 Enhanced Suffix Arrays

The suffix array can be extended to the very powerful data struc-
ture enhanced suffix array by adding further tables; see Table 31.
We will discuss the Lcp table (ESA_LCP) in Section 11.4.1. To-
gether with the suffix table, the LCP table allows a depth-first
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¤ SortS0 (a, S12)
m ← 01

for j ← 0 to |S12| − 1 do2

if S12[j] = 3i + 1 for an integer i then3

S0[m] ← 3i4
m ← m + 15






sort S0 by
S1

kj ← ord(aS0[j]+1) for j ∈ {0, . . . ,m − 1}6
〈S0,D〉 ← CountSort (S0, 〈k0, . . . , km−1〉, |Σ|)7

}
stable resort
S0 by a

return S08

¤ Merge (a, S12, S0)
for j ← 0 to |S12| − 1 do I[S12[j]] ← i1 I = inverse S12

i, j ← 02

while i + j < n do3

if i ≥ |S0| then select ← false4
else if j ≥ |S12| then select ← true5
else select ← Select (S0[i], S12[j], a, I)6






compare
S0[i] and
S12[j]

if select then7

S[i + j] ← S0[i]8
i ← i + 19

}
append S0[i]
to S

else10

S[i + j] ← S12[j]11
j ← j + 112

}
append
S12[j] to S

return S13

¤ Select (x, y, a, I)

if y = 3i + 1 for an integer i then1
return ax+1I[x + 1] <lex ay+1I[y + 1]2

else3
return ax+1ax+2I[x+2] <lex ay+1ay+2I[y+2]

4

Algorithm 29: Skew Algorithm for Suffix Array Construction (part
two). CountSort is defined in Algorithm 27.

© 2010 by Taylor and Francis Group, LLC



198 Biological Sequence Analysis Using the SeqAn C++ Library

¤ SearchSA (p = p1 . . . pm, t = t1 . . . tn, S)
left ← 01
right ← n2
l, r ← 13

while left < right do4

mid ←
⌊

left + right
2

⌋
5

j ← min(l, r)6
i ← S[mid ] + j7

while j ≤ m and i ≤ n and pj = ti do8

j ← j + 19
i ← i + 110






compare
p and smid

if (j > m) or (i ≤ n and pj <lex ti) then11

right ← mid12
r ← j13





p ≤lex smid :
go left

else14
left ← mid +115
l ← j16





p >lex smid :
go right

return left17

Algorithm 30: Searching a Suffix Array. S is the suffix array of the text t,
and p the pattern that is searched in t. The algorithm returns L; it would
compute R if the condition in line 11 is changed to i ≤ n and (j > m or

pj <lex ti). The pattern p occurs in t at positions S[L], S[L+1], . . . , S[R−
1].
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search in the suffix tree of the text, and we will describe applica-
tions for it in Section 11.4.2.

ESA_Text The indexed text.

ESA_SA The suffix array that contains the positions of the lexico-

graphically ordered suffixes of the indexed text ESA_Text;

see Section 11.3.

ESA_LCP A table that contains the lengths of the longest common

substrings between adjacent suffixes in the suffix array

ESA_SA; see Section 11.4.1.

ESA_ChildTab A table that contains all structural information about the

suffix tree that is missing in ESA_SA and ESA_LCP (Abouel-

hoda et al. 2002).

ESA_BWT The Burrows-Wheeler transformation of the indexed text

ESA_Text (Burrows and Wheeler 1994). It contains the

preceding character aj−1 to each suffix aj . . . an in ESA_SA.

Table 31: Enhanced Suffix Array Fibers.

11.4.1 LCP Table

Let S be the suffix array of the text a = a1 . . . an and bj =
aj+1 . . . an the j-th suffix of a. The LCP table L stores in L[k]
the length of the longest common prefix between the suffix bS[k]

and its predecessor bS[k−1] in S, i.e., L[k] = lcp(bS[k−1], bS[k]) for
k ∈ {1, . . . , n − 1}, where

lcp(x1 . . . xk, y1 . . . yl) = max{i | x1 . . . xi = y1 . . . yi}.

The Lcp table can be constructed in linear time (Kasai et al.
2001) due to the following observation: If bi <lex bj and
lcp(bi, bj) = h > 0, then bi+1 <lex bj+1 and lcp(bi+1, bj+1) = h − 1.
Any common prefix between bj+1 and bi+1 is also a prefix of
the predecessor of bj+1 in S, thus the entry in L for bj+1 is
≥ h − 1. BuildLCPTab (Algorithm 31) enumerates the suffixes
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b0, . . . , bn−1 and computes for each bj its entry in L. The inverse
suffix array I of S is used to determine the predecessor bi = bI[j]−1

of bj in S. Suppose that the entry in L for bi is h, then the entry
for bj in L is at least h − 1, so we can save h − 1 comparisons in
line 6. Since h ≤ n − 1, the inner loop is executed at most 2n
times, and the runtime of BuildLCPTab is therefore O(n).
SeqAn implements an in-place variant of this algorithm that does
not need extra space for storing the inverse suffix array I (Weese
2006).

¤ BuildLCPTab (a1 . . . an, S)
for j ← 0 to n − 1 do I

[
S[j]

]
← i1 I = inverse S

h ← 02
for j ← 0 to n − 1 do3

if I[j] 6= 0 then4

i ← S
[
I[j] − 1

]
5

while i + h < n and j + h < n

and ai+h+1 = aj+h+1 do
6

h ← h + 17






compare
sI[j] and sI[j]−1

L
[
I[j]

]
← h8

if h > 0 then h ← h − 19
return L10

Algorithm 31: Construction of the LCP Table. S is the suffix array of
a1 . . . an.

11.4.2 Suffix Trees Iterators

A suffix tree (Weiner 1973) T of a text a = a1 . . . an is the unique
rooted tree with the minimum number of vertices that have the
following characteristics (see Figure 38): Let r = v1, v2, . . . , vk = v
be the path in T from the root vertex r to a vertex v, then all
edges from vi−1 to vi are labeled with non-empty strings si−1,i,
and the concatenated path label s1,2s2,3 . . . sk−1,k is a substring of
a1 . . . an$, where $ is a special end-of-string character that does
not occur anywhere in a. We define s(v) to be the path label of
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v without the a trailing $ character. T has exactly n leaves li,
which are labeled with the numbers i ∈ {0, . . . , n − 1}, such that
s(li) = ai+1 . . . an, i.e., the path labels of the leaves are the suffixes
of the text. For any two leaves li and lj, there is a vertex v on the
paths to li and lj such that s(v) is the longest common prefix of
s(li) and s(lj).

Figure 38: Suffix Tree. The suffix tree of "CTCAACTCATC".

The suffix tree is a versatile index data structure with many ap-
plications; see Gusfield (1997), chapters 5 to 9. SeqAn emulates
suffix trees by the more space efficient, enhanced suffix array. An
enhanced suffix array that consists of the suffix table ESA_SA, the
Lcp table ESA_LCP, and the child table ESA_ChildTab is capable of
replacing the suffix tree in all of its applications (Abouelhoda et al.
2004). Algorithm 32 demonstrates that we only need suffix table S
and Lcp table L to emulate a bottom-up traversal of a suffix tree T ,
that is, to enumerate all vertices in T in a way that the children ap-
pear earlier than their parents. BottomUpTraversal reports
for each vertex v in T the set of its leaves. From the construction
of T follows that the path labels of these leaves are the suffixes that
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share the common prefix s(v), hence the labels of the leaves are
listed consecutively in the suffix array, e.g., in S[l], . . . , S[r−1], and
all entries L[l+1], . . . , L[r−1] ≥ |s(v)|, whereas L[l], L[r] < |s(v)|.
BottomUpTraversal therefore scans L for consecutive runs of
values ≥ m ∈ L, and this way, it finds all inner vertices of T .

¤ BottomUpTraversal (S,L)

for each 〈l, r,m〉 reported by Traverse (S,L, 0, 0) do1

report vertex in T with leaves S[l], . . . , S[r − 1]2

¤ Traverse (S,L, l,m)
r ← l + 11
while r < n do2

if L[r] < m then break3

else if L[r] > m then4

r ← Traverse (S,L, r, L[r])5
else r ← r + 16

report 〈l, r,m〉7
return r8

Algorithm 32: Emulated Bottom-up Traversal of a Suffix Tree. S is
the suffix array and L the Lcp table of a length-n text. A vertex of the
suffix tree is represented by the set of its leaves. The last reported vertex
is the root that covers all leaves of the tree.

SeqAn supports several iterators that emulate a traversal of a suf-
fix tree; see Table 32. We will explain how these iterators work
for the example of the SuperMaxRepeats iterator specialization
that computes all supermaximal repeats of the indexed text a; see
Listing 31 for a code example. A repeat is a substring that occurs
at least twice in the text, and it is supermaximal, if none of its
occurrences is a substring of any other repeat. Let a be a text and
T the suffix tree of a, then there exists a vertex v in T , such that
s(v) = w for each supermaximal repeat w in a. Now let v be any
inner vertex of the suffix tree T of a, and let I ⊆ {0, . . . , n−1} be
the set of occurrences of s(v) in a, that is s(v) = ai+1 . . . ai+|s(v)|

for all i ∈ I. Then |I| ≥ 2, and if for all i, j ∈ I holds (1) ai 6= aj,
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BottomUp Generic bottom-up iterator. It enumerates the ver-

tices of the emulated suffix tree during a post-order

depth-first-search; see Algorithm 32.

MaxRepeats A bottom-up iterator that enumerates all pairs of re-

peat occurrences that cannot be extended to the left

or to the right.

SuperMaxRepeats A bottom-up iterator that enumerates all supermaxi-

mal repeats; see Algorithm 33.

MUMs A bottom-up iterator that enumerates maximal

unique matches (MUMs) between two texts, i.e., all

substrings that occur exactly once in both texts and

that cannot be extended to the left or right.

MultiMEMs Like MUMs, but for more than two texts.

TopDown An iterator that allows to go further to any child of

the current vertex. For this iterator, the child table

ESA_ChildTab is required.

ParentLinks Like TopDown but with the additional option to move

from the current vertex to its parent. The itera-

tor allows therefore any walk up and down through

the emulated suffix tree. It requires the child table

ESA_ChildTab.
.

Table 32: Hierarchy of Suffix Tree Iterators.
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and (2) ai+|s(v)|+1 6= aj+|s(v)|+1, then s(v) is a supermaximal repeat.
This suggests the simple Algorithm 33 for finding all supermaximal
repeats in a (Abouelhoda et al. 2002). SupermaximalRepeats

enumerates all inner vertices v in T and reports each v that ful-
fills both conditions (1) and (2). Note that we can check these
conditions in O(|Σ|).

¤ SupermaximalRepeats (a1 . . . an, S, L)

for each 〈l, r,m〉 reported by Traverse (S,L, 0, 0) do1

if r − l ≥ 2 then2

if for each i, j ∈ {l, . . . , r − 1} holds:
(1) aS[i] 6= aS[j] and
(2) aS[i]+m+1 6= aS[j]+m+1 then

3

report supermaximal repeat aS[l]+1 . . . aS[l]+m4

Algorithm 33: Finding All Supermaximal Repeats in a Text. S is the
suffix array and L the Lcp table of the length-n text a. In line 3, we define
a0 6= c and an+1 6= c for each value c ∈ Σ.

The code in Listing 31 shows how the iterator is used in SeqAn.
The suffix tree iterators in Table 32 differ in the way the tree nodes
are traversed. After having explained the iterator for supermax-
imal repeats in depth, we give some examples of how to use the
other iterators. For a lot of sequence algorithms it is necessary to
do a full depth-first search (dfs) over all suffix tree nodes beginning
either in the root (preorder dfs) or in a leaf node (postorder dfs).
A preorder traversal halts in a node when visiting it for the first
time, whereas a postorder traversal halts when visiting a node for
the last time.
A postorder traversal, also known as bottom-up traversal, can be
realized with the BottomUp iterator. This iterator starts in the left-
most (lexicographically smallest) leaf and provides the functions
goNext, atEnd, and goBegin to proceed with the next node in
postorder, to test for having been visiting all nodes, and to go
back to the first node of the traversal. The BottomUp iterator
can be obtained by the Iterator meta-function called with an
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String<char> text = "How many wood would a woodchuck chuck.";

typedef Index< String<char> > TIndex;

TIndex idx(text);

Iterator<TMyIndex, SuperMaxRepeats>::Type it(idx, 3);

while (!atEnd(it))

{

for (unsigned int i=0; i < countOccurrences(it); ++i)

{

cout << getOccurrences(it)[i] << ",";

}

cout << repLength(it) << ",";

cout << representative(it) << endl;

++it;

}

Listing 31: Searching Supermaximal Repeats. This example finds
all supermaximal repeats of length ≥ 3 in a text. For each super-
maximal repeat, the program prints out the positions of its occurrences
(getOccurrences), the length of the repeat (repLength), and the repeat
string (representative).
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Index type and the BottomUp specialization type. The following
example shows how our index can be traversed as a suffix tree with
myIterator in a bottom-up fashion:

// postorder dfs

Iterator< Index<String<char> >, BottomUp<> >::Type

myIterator(myIndex);

for (; !atEnd(myIterator); goNext(myIterator))

// do something with myIterator

Another kind of traversing the suffix tree provides the light-weight
TopDown iterator. Starting in the root node the iterator can
goDown the left-most edge, the edge beginning with a certain char-
acter or the path of a certain string. goRight can be used to go
to the right (lexicographically larger) sibling of the current node.
These functions return a boolean value which indicates whether
the iterator could successfully be moved. To visit the children of
the root node in lexicographical ascending order, you could write:

Iterator< Index<String<char> >, TopDown<> >::Type

myIterator(myIndex);

goDown(myIterator);

while (goRight(myIterator))

// do something with myIterator

To go back to the upper nodes, you can either save copies of
the TopDown iterator or use the more intricate TopDownHistory

iterator which stores the way back to the root and can
goUp. This is a specialization of the TopDown iterator and
can be instantiated with Iterator< Index<String<char> >

, TopDown<ParentLink<> > > ::Type myIterator(myIndex);.
As this iterator can randomly walk through the suffix tree it can
easily be used to do a preorder or postorder depth-first search.
Therefore this iterator also implements the functions goNext and
atEnd. The order of the dfs traversal can be specified with an
optional template argument of ParentLink<..> which can be
Preorder (default)
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// preorder dfs

Iterator< Index<String<char> >,

TopDown<ParentLink<Preorder> > >::Type myIterator(myIndex);

for (; !atEnd(myIterator); goNext(myIterator))

// do something with myIterator

or Postorder. As top-down iterators starts in the root node, the
iterator must manually be moved down to the first postorder node
which is the left-most leaf.

// postorder dfs

Iterator< Index<String<char> >,

TopDown<ParentLink<Postorder> > >::Type myIterator(myIndex);

while (goDown(myIterator));

for (; !atEnd(myIterator); goNext(myIterator))

// do something with myIterator

Please note that a relaxed suffix tree is a suffix tree after removing
the $ characters and empty edges. For some bottom-up algorithms
it would be better not to remove empty edges and to have a one-
to-one relationship between leaves and suffices. In such cases you
can use the tags PreorderEmptyEdges or PostorderEmptyEdges

instead of Preorder or Postorder or EmptyEdges for the TopDown
iterator.
To end this chapter we give again some examples of how to access
suffix tree nodes to which iterators point.

11.4.2.1 How to access a suffix tree

All iterators are specializations of the general VSTree Iterator

class, hence they inherit all of its functions. There are
various functions to access the node the iterator points
at, namely representative, getOccurrence, getOccurrences,
isRightTerminal, isLeaf, parentEdgeLabel, parent. Note
that there is a difference between the functions isLeaf and
isRightTerminal. In a relaxed suffix tree a leaf is always a suf-
fix, but not vice versa, as there can be internal nodes in which a
suffix ends. For them isLeaf returns false and isRightTerminal

returns true.
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The following example demonstrates the usage of the iterator for
MUMs:

#include <iostream>

#include <seqan/index.h>

using namespace seqan;

using namespace std;

int main ()

{

We begin with a StringSet that stores multiple strings.

StringSet< String<char> > mySet;

resize(mySet, 3);

mySet[0] = "SeqAn is a library for sequence analysis.";

mySet[1] = "String is the fundamental sequence type.";

mySet[2] = "Subsequences can be handled with the Segment.";

Then we create an Index of this StringSet.

typedef Index< StringSet<String<char> > > TMyIndex;

TMyIndex myIndex(mySet);

To find maximal unique matches (MUMs), we use the MUMs it-
erator and set the minimum MUM length to 3.

Iterator< TMyIndex, MUMs >::Type myMUMiterator(myIndex, 3);

String< SAValue<TMyIndex>::Type > occs;

while (!atEnd(myMUMiterator)) {

A multiple match can be represented by the positions it occurs
at in every sequence and its length. getOccurrences returns an
unordered sequence of pairs (seqNo,seqOfs) the match occurs at.

occs = getOccurrences(myMUMiterator);

To order them in ascending order with respect to seqNo, we use
orderOccurrences.
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orderOccurrences(occs);

for(unsigned i = 0; i < length(occs); ++i)

cout << getValueI2(occs[i]) << ", ";

The function repLength returns the length of the match.

cout << repLength(myMUMiterator) << " ";

The match string itself can be determined with the function
representative.

cout << "\t\"" << representative(myMUMiterator)

<< ’\"’ << endl;

++myMUMiterator;

}

return 0;

}

11.4.3 Handling Multiple Sequences

Section 11.1.1 briefly described how an index of a set of strings
can be instantiated. Instead of creating an Index of a String you
can also create an Index of a StringSet. A character position of
this string set can be one of the following:

(1) A local position (default), i.e., Pair (seqNo, seqOfs) where
seqNo identifies the string within the StringSet and seqOfs

identifies the position within this string.

(2) A global position, i.e., single integer value between 0 and the
sum of string lengths minus 1 (global position). This integer
is the position in the gapless concatenation of all strings in
the StringSet to a single string.

The meta-function SAValue determines which position type (lo-
cal or global) will be used for internal index tables (suffix array,
q-gram array) and what type of position is returned by functions
like getOccurrence or position. SAValue returns a Pair which
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is local position by default, but could be specialized to re-
turn an integer type (global position) for some applications.
If you want to write algorithms for both variants, you should
use the functions posLocalize, posGlobalize, getSeqNo and
getSeqOffset. To search in multiple strings, the Finder exam-
ple from above can be modified to:

// set StringSet

StringSet< String<char> > mySet;

resize(mySet, 3);

mySet[0] = "tobeornottobe";

mySet[1] = "thebeeonthecomb";

mySet[2] = "beingjohnmalkovich";

// find "be" in Index of StringSet

Index< StringSet<String<char> > > myIndex(mySet);

Finder< Index<StringSet<String<char> > > >

myFinder(myIndex);

while (find(myFinder, "be"))

cout << position(myFinder) << " ";

This code outputs:

< 0 , 11 > < 1 , 3 > < 2 , 0 > < 0 , 2 >

As TText is a StringSet, position(finder) returns a Pair

(seqNo,seqOfs) where seqNo is the number and seqOfs the local
position of the sequence the pattern occurs at.
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Graphs

A graph G consists of a set V of vertices and a set E ⊆ V × V of
edges between the vertices. G is called undirected, if for each edge
e = 〈v, u〉 ∈ E also the reverse 〈u, v〉 ∈ E, otherwise G is directed.
For an edge 〈v, u〉 of a directed graph we say that it goes from v
to u, and that the vertices v and u are adjacent.

Graphs are very common in computer science, and they have also
many applications in sequence analysis, for example automata
(Section 12.1) or alignment graphs (Section 12.2). Although
SeqAn is not a declared graph library like the Boost Graph Library
(Siek et al. 2002) or Leda (Mehlhorn and Näher 1999), it offers a
variety of graph types and algorithms. Graph data structures in
SeqAn are implemented as specializations of the class Graph (see
Table 33). Graphs can be traversed using iterators. Besides the
fundamental graph data structures, SeqAn provides the most well-
known graph algorithms, e.g., Dijkstra’s shortest path algorithm.
The fundamental graph algorithms are supplemented with some
specialized alignment algorithms. All graphs can be exported in
dot format for visualization.

Functions like addVertex, removeVertex, addEdge, or
removeEdge can be used to add or remove vertices and
edges. Each vertex and each edge in a graph is identified
by a so-called descriptor. The usual descriptor type for vertices is
unsigned int, it can be determined by calling the metafunction
VertexDescriptor. The metafunction EdgeDescriptor returns
the descriptor type for edges, which is usually a pointer to the
data structure that holds information about the edge. The
following example shows how to build up a simple graph:

211
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Directed A general purpose directed graph. It stores for each vertex

v ∈ V an adjacency list of all vertices u ∈ V with 〈v, u〉 ∈ E.

Undirected A general purpose undirected graph. As for Directed, the

edges are stored in an adjacency list. Functions like addEdge

for inserting or removeEdge for removing edges always affect

both edges 〈v, u〉 and its reverse 〈u, v〉.

Tree One vertex of this directed graph is marked as root. A tree

can be built up from the root to the leaves by calling the

function addChild.

Automaton A graph with character labeled edges that can be used to

scan sequences; see Section 12.1.

WordGraph A sub-specialization of Automaton that labels the edges with

sequences instead of single characters.

Alignment Alignment graphs are a very flexible way of storing align-

ments between two or more sequences; see Section 12.2.

Hmm This graph type is used to store hidden Markov models

(HMMs).

Table 33: Graph Data Structures. Specializations of the class Graph.
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Metafunctions

EdgeDescriptor The type that is used to store edge descriptors,

i.e., handles for edges in the graph.

VertexDescriptor The type that is used to store vertex descriptors,

i.e., handles for vertices in the graph.

Cargo The type of additional data stored in the edges

of the graph, or void if no additional data

should be stored.

Functions

addVertex Adds a new vertex to the graph.

addEdge Adds a new edge to the graph

removeVertex Removes a vertex from the graph.

removeEdge Removes an edge from the graph.

numVertices Returns the number of vertices stored in the

graph.

numEdges Returns the number of edges stored in the

graph.

clearVertices Removes all vertices from the graph.

clearEdges Removes all edges from the graph.

degree Returns the number of incident edges for a given

vertex.

depth_first_search Performs a depth-first search through the graph.

breadth_first_search Performs a breadth-first search through the

graph.

resizeVertexMap Initializes a vertex map that can be used to store

additional data attached to the vertices of the

graph.

resizeEdgeMap Initializes an edge map that can be used to

store additional data attached to the edges of

the graph.

Table 34: Common Functions and Metafunctions for Graphs.
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typedef Graph< Directed<> > TGraph;

typedef VertexDescriptor<TGraph>::Type TVertexDescriptor;

typedef EdgeDescriptor<TGraph>::Type TEdgeDescriptor;

TGraph g;

TVertexDescriptor v = addVertex(g);

TVertexDescriptor u = addVertex(g);

TEdgeDescriptor e = addEdge(g, v, u);

The graph in the above example has data attached neither to its
vertices nor to its edges. Property maps are a fundamental abstrac-
tion mechanism to attach auxiliary information to the vertices and
edges of a graph. A typical example is the city names and flight
distances of a graph representing a flight network. In most sce-
narios, users should use an external property map to attach this
information to the graph, but other mechanisms do exist (below we
illustrate the use of a Cargo parameter). Be aware that the word
external is a hint that the information is stored independently of
the graph and functions like removeVertex do not affect the prop-
erty map. Property maps are indexed via the already well-known
vertex and edge descriptors. This is quite handy since we can use,
for instance, a vertex iterator to traverse the graph and access
the properties on the fly. Most graph algorithms make heavy use
of this concept and therefore it is illustrated below. First, let us
create a simple graph.

Graph<Directed<> > g;

TVertexDescriptor v0 = addVertex(g);

TVertexDescriptor v1 = addVertex(g);

TEdgeDescriptor e1 = addEdge(g,v0,v1);

Second, we have to create and resize an edge property map so that
it can hold information on all edges.

String<unsigned int> distanceMap;

resizeEdgeMap(g, distanceMap);

As you can see, property maps are simply strings of some type. In
this case, we use unsigned integer to store the distances for our
graph g. For each edge we can store a distance now.
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assignProperty(distanceMap, e1, 10);

Note how the edge descriptor is used to access the property map.
An algorithm can now traverse all edges and access the distances.

typedef typename Iterator<Graph<Directed<> >,

EdgeIterator>::Type TEdgeIterator;

TEdgeIterator it(g);

for(;!atEnd(it);goNext(it)) {

std::cout << getProperty(distanceMap, *it) << std::endl;

}

Alternatively a directed graph can be defined with two optional
arguments, a cargo and a specification. Cargos are attached to
edges in the graph. A typical example are distances for flight
networks represented as a graph. The basic principle is simple: If
you add an edge you have to provide a cargo, if you remove an edge
you also remove the cargo. If you do not want to use cargos, you
can leave out the TCargo parameter or you can use void, which
is the default. All edges are directed, that is, they have a distinct
source and target vertex.

Graph<Directed<TCargo> > directedGraph;

TCargo is any kind of data type, e.g., a double.

There are several iterators in SeqAn for traversing vertices or
edges, and to traverse graphs; see Table 35. This is demonstrated
by the following example program that enumerates the vertices of
the graph g and prints out their descriptors:

typedef Iterator<TGraph, AdjacencyIterator>::Type

TAdjacencyIterator;

for (TAdjacencyIterator it(g); !atEnd(it) ;goNext(it))

{

std::cout << *it << ",";

}
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In the next example you see the use of an edge iterator. SeqAn
provides a simple Edge Iterator and an Out-Edge Iterator. The
use of the latter is showed in the next code piece.

typedef typename Iterator<TGraph, OutEdgeIterator>::Type

TOutEdgeIterator;

TOutEdgeIterator it(g, v0);

for(;!atEnd(it);goNext(it)) {

std::cout << cargo(*it) << std::endl;

}

In this example, we traverse all out-edges of vertex v0 and print
their cargo.

Vertex Iterators

VertexIterator Enumerates all vertices of a graph in increasing or-

der of their descriptor.

AdjacencyIterator Enumerates for a vertex v all vertices u such that

〈v, u〉 ∈ E.

DfsPreorder Starting from a given vertex (e.g., the root in case

of a Tree or Automaton), this iterator enumerates

all reachable vertices in depth-first-search ordering.

BfsIterator Starting from a given vertex (e.g., the root in case of

a Tree or Automaton), this iterator enumerates all

reachable vertices in breadth-first-search ordering.

Edge Iterators

EdgeIterator Enumerates all edges of a graph.

OutEdgeIterator Enumerates for a vertex v all edges 〈v, u〉 ∈ E.

Table 35: Graph Iterators. These tags are used as template arguments for
the Iterator metafunction to select the iterator type for a Graph object.

SeqAn implements a variety of standard algorithms on graphs;
see Table 36, most of them are described in Cormen et al. (2001).
The bioinformatics algorithms heavily use the alignment graph, all
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others use the appropriate standard graph. All algorithms require
some kind of additional input, e.g., Dijkstra’s algorithm requires
a distance map, alignment algorithms sequences and a score type;
the network flow algorithm requires capacities on edges. The basic
usage can be found in the documentation but a simple example is
given here. The following code piece aligns two sequences.

typedef String<char> TString;

typedef StringSet<TString, Dependent<> > TStringSet;

typedef Graph<Alignment<TStringSet, void> > TGraph;

TStringSet str;

TString str0("annual");

assignValueById(str, str0);

TString str1("annealing");

assignValueById(str, str1);

TGraph g(str);

Score<int> score_type = Score<int>(0,-1,-1,0);

int score = globalAlignment(g, score_type,

NeedlemanWunsch() );

We first assign the sequences annual and annealing to a
string set. Based on this string set an alignment graph is cre-
ated. A Score object is used to configure the Needleman-Wunsch
algorithm and the globalAlignment call creates the alignment.
We will now describe in more detail the different graph specializa-
tions with a focus on algorithms for automata (Section 12.1) and
alignment graphs (Section 12.2).

12.1 Automata

The specialization Automaton of Graph serves the purpose of stor-
ing deterministic finite automata (dfa). A dfa G is a directed graph
that allows multiple edges 〈u, v〉 between two vertices u and v. The
edges are labeled with characters such that two different edges
〈u, v〉 and 〈u, v′〉 going out from the same vertex u have different
labels. A certain vertex called the root can be used as a start-
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Searching Breadth-first-search: breadth_first_search.
Depth-first-search: depth_first_search.

(Both can also be done by iterators; see Ta-

ble 35.)

Topological Sort topological_sort.

Components strongly_connected_components.

Shortest Path Single-source shortest path prob-
lem: dag_shortest_path, dijkstra,
bellman_ford_algorithm.

All-pairs shortest path problem:

floyd_warshall.

Minimum Spanning Tree prims_algorithm, kruskals_algorithm.

Maximum Flow ford_fulkerson.

Transitive Closure transitive_closure.

Table 36: Overview of Common Graph Algorithms in SeqAn. We
omit here algorithms especially designed for automata (see Section 12.1)
and alignment graphs (see Section 12.2).
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ing point for a run through the automaton guided by a coincident
scan through a sequence: Let r = v1, v2, . . . , vk = v be a path p
in G, and let si−1,i be the label of the edge from vi−1 to vi, then
we call s(p) = s1,2s2,3 . . . sk−1,k the path label of p. By definition,
deterministic automata are constructed such that s(p1) 6= s(p2)
for two different paths p1 and p2 both starting in the root. Let
a = a1 . . . an be a string, then we say that a graph G scans a, if
there is a path p starting from the root in G with s(p) = a. If
G scans a, then it obviously also scans all prefixes a1 . . . ai of a.
Finding the maximal prefix that is scanned by a given graph is
part of pattern matching algorithms like BFAM (Section 9.1.4) or
MultiBFAM (Section 9.2.2), and it can also be done in SeqAn
by calling the function parseString.

Note that Graph objects do not store a set of accept states as it
is usually supposed in the literature about automata theory (e.g.,
Hopcroft and Ullman, 1990). If accept states are needed, then we
can use a property map of bool to store for each vertex whether
it is accepting or not.

In the following, we will discuss two special kinds of automata
in more detail, namely tries (Section 12.1.1) and factor oracles
(Section 12.1.2).

12.1.1 Tries

A dfa is called a trie, if it is also a tree, i.e., if the root has no
incoming edges and there is for each vertex u a unique path from
the root to u; see Figure 39.

The trie of a set of sequences a1, . . . , ad is the unique minimal trie
that scans all sequences ai. In SeqAn, the function createTrie

implements the simple algorithm BuildTrie (Algorithm 34) for
building up the trie for a given set of sequences. This takes O(n)
time and space, where n is the sum of the sequence lengths.

The suffix trie of a sequence a = a1 . . . an is the trie of all suffixes
aj . . . an. A suffix trie of a scans exactly the substrings of a. The
function createSuffixTrie can be used to construct suffix tries.
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Figure 39: Trie. The trie of the sequences "ACGGAT", "ACTTAAA", "ACTTAC",
"CGCC", "TAACTTA", and "TAAGAC".

¤ BuildTrie (a1, a2, . . . , ad)
G ← graph that only contains the root r1

for i ← 1 to d do2

ni ← length of ai3
k ← max{j ≤ ni | G scans the prefix ai

1 . . . ai
j}4

if k < ni then5
v ← the vertex in G with s(v) = ai

1 . . . ai
k6

append to v a new branch with labels ai
k . . . ai

ni7






add ai

to G

Algorithm 34: Trie Construction. The algorithm builds up the trie of the
sequences a1, a2, . . . , ad.
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12.1.2 Factor Oracles

Suffix tries for sequences a1, . . . , ad of total length n have worst
case size Ω(n2). Allauzen, Crochemore, and Raffinot (1999) pro-
posed an alternative dfa called factor oracle that also scans all suf-
fixes a1, . . . , ad, but has only ≤ n+1 vertices and ≤ 2n edges. The
factor oracle may – other than the factor trie – also scan sequences
that are no substrings of any ai. For example, the factor oracle in
Figure 40 scans "CAC", which is no substring of "CTCAACTCATC".

Figure 40: Factor Oracle. The oracle of the sequence "CTCAACTCATC". The
dotted arrows visualize the supply array S.

Algorithm 35 shows how to construct a factor oracle in linear time
by adding at most n more edges to the trie of a1, . . . , ad. Buil-

dOracle traverses the trie starting from the root r. Let u ∈ V
be a vertex and s(u) = s1 . . . sm the label of the path from r to u
in the trie, let v ∈ V be the predecessor to u on this path, and let
c be the label of its last edge 〈v, u〉. When the main loop reaches
u, then the algorithm extends G to ensure that it scans all suffixes
of s(u). So G will scan all suffixes of a1, . . . , ad once all vertices
are processed.

Since the vertex v was processed before u, we already made G to
scan all suffixes of s(v) = s1 . . . sm−1. Let vi be the vertex that
is reached if we scan in G for the i-th suffix s(vi) = si . . . sm−1,
where i ∈ {0, . . . ,m − 1}. We want G to scan also the suffixes
s(vi)c of s(u), so we just need to take care that each vi has a c-
edge, which means that vi has an outgoing edge labeled with c.
For v0 = v such an edge already exists in the trie; all other vi can
be found by following a linked list stored in the supply array S.
BuildOracle constructs S in a way that S[v] is the vertex vi 6= v
with minimal i, i.e., s(S[v]) is the longest suffix of all suffixes s(vi)
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with vi 6= v. All s(vi) with vi 6= v are suffixes s(S[v]), so the
next largest suffix of s(v) smaller than s(S[v]) is s(S[S[v]]). The
set {v, S[v], S2[v], S3[v], . . . , r} therefore contains all vertices vi in
descending order of their suffix lengths. Enumerating the vertices
u in breadth-first search order (line 4) ensures that the supply
values of all vertices vi are already computed.
For each vertex Sj[v] without c-edge, we add in line 12 an edge
〈Sj[v], u〉 labeled with c. From now on G scans the suffix s(Sj[v])c
of s(u). Since each scan that reaches u can go further in the trie,
G now also scans all suffixes of a1, . . . , ad that start with s(Sj[v])c.
There exists at least one suffix of that kind, and for this suffix
we will never need to insert another edge into G. The number of
edges added in line 12 of BuildOracle is therefore bounded by
the number of suffixes of a1, . . . , ad, i.e., it is ≤ n.
Note that we can stop the enumeration of the Sj[v] as soon as we
found a vertex Sj[v] with a c-edge 〈Sj[v], w〉, since in this case,
w is a vertex that was already processed by G, and therefore all
further vertices S[vi], S2[vi], . . . have c-edges. Therefore the total
runtime of BuildOracle is O(n).
SeqAn implements this algorithm in the function createOracle.

12.2 Alignment Graphs

12.2.1 Alignment Graph Data Structure

Alignment graphs are, besides Align data structures (see Sec-
tion 8.2), the second representation for alignments in SeqAn. They
were initially introduced by Kececioglu (1993) and later extended
by Kececioglu et al. (2000).
An alignment graph G (see Figure 41) for d sequences a1, a2, . . . , ad

is an undirected d-partite graph with a set V of vertices and a set
E of edges that meet the following criteria:

(1) V = V 1 ∪ V 2 ∪ . . . ∪ V d, where V i partitions ai into non-
overlapping segments (for 1 ≤ i ≤ d), i.e., each value in ai

belongs to exactly one vertex in V i.
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¤ BuildOracle (a1, a2, . . . , ad)
G = 〈V,E〉 ← BuildTrie(a1, a2, . . . , ad)1
r ← root of G2
S[r] ← nil3

for each u ∈ V \ {r} in bfs order do4

v ← the predecessor vertex of u in the trie5
c ← label of 〈v, u〉6

repeat7

v ← S[v]8

if exists 〈v, w〉 ∈ E labeled with c

then
9

S[u] ← w10
break11

insert edge 〈v, u〉 into E with label c12

if v = r then13
S[u] ← r14
break15

return G16

Algorithm 35: Factor Oracle Construction. The algorithm builds up the
oracle for the sequences a1, a2, . . . , ad.

Figure 41: Alignment Matrix and Alignment Graph. An alignment of
three sequences, displayed both in matrix style and as alignment graph.
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(2) E ⊆ {〈vi, vj〉 | vi ∈ V i and vj ∈ V j and 1 ≤ i, j ≤ d and
i 6= j and the segments vi and vj have the same length}.

Figure 42: Alignment Graph Examples. For the sequences "ABC", "DEF",
and "GHI". Left: A unique trace and the compatible alignment. Middle:
A non-unique trace and compatible alignments. The last two alignments
contain changing gaps at columns 2 and 3. Right: Three alignment graphs
that are not traces.

An alignment A and an alignment graph G are compatible, if for
each edge 〈vi, vj〉 in G, the segments vi and vj are aligned in A
without gaps. An alignment graph that is compatible to at least
one alignment is called a trace, and we call a trace unique, if
it is compatible to exactly one alignment. Figure 41 and Fig-
ure 42 (left) show examples of unique traces.
Some alignments are not compatible to any unique trace, because
they contain changing gaps (see Figure 42, middle), i.e., in the
alignment are two flanking columns i and i + 1 that together con-
tain at most one value of each sequence. Note that optimal align-
ments usually do not contain changing gaps, since, for reasonable
scoring schemes, the score gets better when the two columns i and
i + 1 are merged (see Section 8.3.1). For an alignment A that
does not contain changing gaps, the alignment graph G = 〈V,E〉
with V := {a | a is a value in one of the sequences of A} and
E := {〈a, b〉 | a and b are aligned in A} is a unique trace compat-
ible to A.
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12.2.2 Maximum Weight Trace Problem

Most algorithms in SeqAn for computing optimal global align-
ments (Section 8.5) or local alignments (Section 10.1) accept align-
ment graphs for storing the results. Beside of that, we can also
use alignment graphs to formulate alignment problems in a new
way (Kececioglu 1993): Given an alignment graph G and scores
weight(e) ≥ 0 for each edge e in G, then the maximum weight
trace problem is to find a trace G∗ that is a subgraph of G and for
which the sum of the edge scores is maximal. This kind of align-
ment problem is especially interesting for sparse alignment graphs
G = 〈V,E〉, because in this case algorithms exist that are more effi-
cient than, e.g., the Needleman-Wunsch algorithm (Section 8.5.1),
which takes exponential time in the number of sequences.
In the following we concentrate on pairwise alignment graphs
G = 〈V 1 ∪ V 2, E〉 between two sequences a1 and a2. Since the
edges 〈v1, v2〉 ∈ E can be considered as seeds between the two
segments v1 ∈ V 1 and v2 ∈ V 2, and since the segments in V 1

and V 2 do not overlap, the maximum weight trace problem can
be formulated as a global chaining problem; see Section 8.6.3. On
the other hand, one can also reduce the maximum weight trace
problem to the heaviest common subsequence problem (Jacobson
and Vo 1992), for which SeqAn implements an efficient algorithm
in function heaviestCommonSubsequence, that allows to compute
a maximum weight trace in time O(|E| log |E|). In fact, this al-
gorithm is equivalent to a simplified version of SparseChaining

(Algorithm 7, page 133), which uses sparse dynamic programming
for global chaining; see Section 8.6.3.
V 1 is a partition of sequence a1, and each seed covers only one
segment of a1, hence MaxWeightTrace (Algorithm 36) needs
not to handle the left and right positions of the seeds separately,
as it was done in SparseChaining. Let for both i ∈ {1, 2} the
segments in the sets V i = 〈vi

1, v
i
2, . . .〉 be ordered according to their

occurrences in ai, and for each edge ej = 〈v1
p, v

2
q〉 ∈ E we define

pos1(ej) = p and pos2(ej) = q. A seed ej ∈ E can be appended
to another seed ek ∈ E, if pos i(e1) < pos i(e2) for both i ∈ {1, 2},
and two edges ej, ek ∈ E can only be part of the same trace G∗, if
one of them can be appended to the other.
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¤ MaxWeightTrace
(
G =

〈
V,E = {e1, . . . , en}

〉
, w

)

sort ej ∈ E in decreasing order of pos2(ej)1
stable sort ej ∈ E in increasing order of pos1(ej)2
D ← ∅3
for each ej ∈ E in sorted order do4

Tj ← argmaxk∈D

{
pos2(ek)

∣∣ pos2(ek) < pos2(ej)
}

5

if Tj is defined then6

Mj ← MTj
+ weight(ej)7

else8
Mj ← weight(ej)9






find
best
chain
to ej

for each k ∈ D with pos2(ek) ≥ pos2(ej) and
Mk ≤ Mj do

10

D ← D \ {k}11
D ← D ∪ {j}12






update
D

j ← last element of D13
E∗ ← {ej}14

while Tj is defined do15

j ← Tj16
E∗ ← E∗ ∪ {ej}17






build
new
edge
set E∗

return G∗ = 〈V,E∗〉18

Algorithm 36: Maximum Weight Trace by Sparse Dynamic Program-
ming. The algorithm is a simplified variation of Algorithm 7 on page 133.
It computes a maximum weight trace subgraph G∗ of G, where w(e) ≥ 0
are the weights of the edges in G. The sorted set D stores all active seeds,
Mj is the score of the best chain that ends with ej , and Tj the predecessor
of ej in that chain. Note that argmax in line 5 returns undefined if it is
applied to an empty set. In this case ej has no predecessor.
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The algorithm enumerates the seeds ej in increasing order of their
positions pos1(ej) (line 4), searches in a set D of active seeds for
an optimal predecessor eTj

(line 5), computes the score of the best
chain ending in ej (lines 6 to 9), deletes all seeds ek in D that
are dominated from ej, i.e., those ek with pos2(ek) ≥ pos2(ej) and
smaller chain score Mk ≤ Mj (lines 10 to 11), and finally inserts ej

into D (line 12). To take care that ej is not appended to another
seed ek with pos1(ek) = pos1(ej), we enumerate seeds with equal
position pos1 in decreasing order of their position pos2 (line 1). At
the end, all edges on the trace back starting from the last item
in D are added to G∗ = 〈V,E∗〉, which is a maximal weight trace
subgraph of the input graph G.

12.2.3 Segment Match Refinement

A good strategy for getting an alignment graph G = 〈V,E〉 which
is sparse enough to be a viable input for Algorithm 36 of Sec-
tion 12.2.2 is to add only those edges to V that have a good
chance of becoming part of the optimal alignment, i.e., edges that
connect high scoring matches between the sequences a1, . . . , ad.
If we want to construct an alignment graph G for a given set
S = {S1, . . . ,Sn} of seeds, where each Sj aligns segments of two se-
quences ∈ {a1, . . . , ad}, then this could be problematic because (1)
alignment graphs allow only matches between segments of equal
length, and (2) it is possible that two seeds Sj and Sk overlap,
i.e., the aligned segments overlap. Figure 43 shows the solution

Figure 43: Segment Match Refinement.
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for both problems: We need to cut the seeds into a set of parts
R = {S ′

1, . . . ,S ′
m} such that (1) each S ′

j ∈ R aligns two seg-
ments of the same length, and (2) a segment that is aligned by
a seed S ′

j is either identical or disjoint to the segment that is
aligned by any other seed S ′

k ∈ R. Condition (1) is automatically
done when the alignment is transformed into its alignment graph
representation. Finding a refinement R of minimal size that ful-
fills condition (2) is called the segment match refinement problem
(Halpern, Huson, and Reinert 2002). SeqAn implements an algo-
rithm matchRefinement that solves this problem for an arbitrary
number of sequences (Emde 2007).
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Part III

Applications

In Part III of the book we will elaborate on different aspects of
programming with SeqAn and in SeqAn.
In Chapter 13 we use a well-known genome alignment program
– Lagan– to illustrate how complex analyses can be quite easily
programmed in SeqAn. The original Lagan algorithm was pub-
lished in Brudno et al. (2003) and combines many algorithmic
components that are now in SeqAn. In the chapter we show how
Lagan can be implemented in about 200 lines of code without
losing any efficiency.
Chapter 14 is about generality. We show how versatile the multiple
sequence alignment component in SeqAn is, and that it can be
configured to serve a multitude of alignment tasks ranging from
protein alignment to the computation of a consensus sequence in
assembly projects.
The last two Chapters 15 and 16 address the algorithm engineers.
In Chapter 15 the authors show how to add new functionality to
SeqAn using the algorithmic components already present in the
library, while in Chapter 16 the authors give a very nice exam-
ple of how to incorporate a new algorithm (in this case for the
construction of a suffix array) into SeqAn.
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Chapter 13

Aligning Sequences with LAGAN

In this Chapter, we use SeqAn to re-implement the basic func-
tionality of the common software tool Lagan by Brudno et al.
(2003).

13.1 The Lagan Algorithm

Lagan is a tool for aligning two long sequences a1 . . . an and
b1 . . . bm, and it uses a seed chaining approach; see Section 8.6.
The applied procedure (see Algorithm 37 for line numbers) works
in four steps; see Figure 44:

(1) Finding Seeds (lines 2 to 6): For a given length q = qmax,
all common q-grams of a1 . . . an and b1 . . . bm are found, e.g.,
by using a q-gram index (Section 11.2), and then combined to
a set D of seeds by local chaining (Algorithm 24 on page 174),
where the seed extension mode Chaos is used (Table 23 on
page 176). If no common q-grams are found, the q is de-
creased until a minimal bound qmin is reached.

(2) Global Chaining (line 7): A chaining algorithm like Spar-

seChaining (Algorithm 7 on page 133) computes the op-
timal global chain 〈S0, . . . ,Sk−1〉, where S0 is the top seed
and Sk+1 the bottom seed (see Section 8.6.2), and the rest
S1, . . . ,Sk ∈ D.

(3) Filling up Gaps (lines 8 to 12): We fill up the gaps between
any two successive seeds Si and Si+1 for i ∈ {0, . . . , k} by
applying step (1) to (3) recursively on the gaps for a smaller

231
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Figure 44: The Four Steps of Lagan. (1) Finding seeds, (2) chaining, (3)
recursively filling up gaps, and (4) banded alignment following the best
chain. The result is a global alignment between the sequences.

q. This recursion stops if either the length of the gap is in
both dimensions smaller than gapsmax , or q falls below qmin

(line 1).

(4) Banded Alignment (line 2): Following the chain C that
was computed in steps (1) to (3), a banded alignment algo-
rithm (see Section 8.6.4) is used to compute a global align-
ment A between a and b.

13.2 Implementation of Lagan

Before we start to implement Algorithm 37 in C++, we have to
choose the data structures we want to use. Our objective is to
align two DNA sequences a and b, so we use String<Dna> for
storing them. The seeds Si are 2-dimensional, so we apply the
specialization SimpleSeed of Seed (see Section 8.6.1). These seeds
are locally aligned, so the most appropriate data structure for D
is SeedSet. We apply the scored variant, since this supports the
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¤ Lagan(a1 . . . an, b1 . . . bm)
C ← LaganChaining(a, b, qmax)1 steps 1–3
A ← BandedAlignment(C)2 step 4
return A3

¤ LaganChaining(a1 . . . an, b1 . . . bm, q)
if (n < gapsmax ) and (m < gapsmax ) then return 〈 〉1

Q ← ∅2

while Q = ∅ and q < qmin do3
Q ← all common q-grams between a and b4
q ← q − 25

D ← LocalChaining(Q)6






step 1

〈S0, . . . ,Sk−1〉 ← SparseChaining(D)7 step 2

for i ← 0 to k + 1 do8
a′ ← aright0(Si) . . . aleft0(Si+1)9
b′ ← bright1(Si) . . . bleft1(Si+1)10
Ci ← LaganChaining(a′, b′, q)11

C ← {S1, . . . ,Sk} ∪
⋃k+1

i=0 Ci12






step 3

return sorted C13

Algorithm 37: The Algorithm of Lagan. The size q starts with
qmax and may go down to qmin. LaganChaining is only used if
the lengths of both sequences a and b are at least gapsmax . For
LocalChaining see Algorithm 24 on page 174, and for Spar-

seChaining see Algorithm 7 on page 133. We omit the details
of BandedAlignment; see Section 8.6.4.
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functionality that is used in the original tool. For storing the
chains 〈S0, . . . ,Sk−1〉 and Ci, we need a container class that sup-
ports fast insertion operation for merging several chains in line 12
of Algorithm 37, so a list type would be a good choice. We decide
to use the class std::list from the standard library.
The following program consists of two functions:1 The main func-
tion that implements Lagan of Algorithm 37 and laganChaining

that implements LaganChaining.
We start the main function by loading the two input sequences a
and b from FastA files. For that purpose, we use FileReader

strings (Section 7.11) that are copied to in-memory strings of type
String<Dna> for speeding up the further processing:

typedef String<Dna> TString;

TString a = String<Dna, FileReader<Fasta> >(argv[1]);

TString b = String<Dna, FileReader<Fasta> >(argv[2]);

Then we call the function laganChaining, which is described be-
low, to perform steps (1) to (3) of Algorithm 37:

typedef Seed<int, SimpleSeed> TSeed;

std::list<TSeed> chain;

laganChaining(chain,

infix(a, 0, length(a)),

infix(b, 0, length(b)), q_max);

The first argument is a list in which laganChaining will return a
chain of seeds. Since in step (3) of the algorithm, the function will
be called repeatedly on varying substrings of a and b, it expects
the input sequences to be passed as segment objects (Section 7.7).
The main function conveys the complete sequences.
The last argument is the length of the q-grams laganChaining

will start with. The initial call of laganChaining sets the size of
the q-grams to 13, and this q may fall down to q_min= 7 during
the execution.

1This program is based on Carsten Kemena’s Master’s thesis (Kemena 2008).
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Step (1)

In laganChaining, we need three data structures to perform step
(1) of Algorithm 37: A seed set for storing and merging the seeds,
a q-gram index for the input sequence b, and a finder for searching
the q-gram index:

typedef typename Value<TSeed>::Type TPosition;

typedef SeedSet<TPosition, SimpleSeed, DefaultScore> TSeedSet;

TSeedSet seedset(limit, score_min, scoring_scheme);

typedef Index<TSegment, Index_QGram<SimpleShape > > TQGramIdx;

TQGramIdx index_qgram(b);

typedef Finder<TQGramIdx> TFinder;

TFinder finder(index_qgram);

The constants limit and score_min define the area in which local
chaining searches for predecessor seeds (Section 10.2.2). The local
chaining also needs scoring_scheme to compute scores of seeds.
As long as no seeds are found, and q is at least q_min, we search
for common q-grams in a and b and add them to seedset:

while (length(seedset) == 0)

{

if (q < q_min) return;

resize(indexShape(index_qgram), q);

for (int i = 0; i < length(a)-q+1; ++i)

{

while (find(finder, infix(a, i, i+q)))

{

// add q-gram to seedset

...

}

clear(finder);

}

q-=2;

}
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The variable i iterates through all q-gram positions in a, and the
finder then enumerates all occurrences of the i-th q-gram of a in
the indexed sequence b.

In the inner while loop, we compute the starting positions of the
common q-grams relative to the complete sequences, and then add
the q-gram to seedset:

// add q-gram to seedset

typedef typename Position<TFinder>::Type TPosition;

TPosition a_pos = beginPosition(a)+i;

TPosition b_pos = beginPosition(b)+position(finder);

if (!addSeed(seedset, a_pos, b_pos, q, 0, Merge()))

if (!addSeed(seedset, a_pos, b_pos, q, host(a), host(b),

bandwidth, Chaos()))

addSeed(seedset, a_pos, b_pos, q, Single());

So we first try to merge the new q-gram S with another overlapping
q-gram on the same diagonal. If no such q-gram is available in
seedset, then we try to find instead a predecessor S ′ within the
area defined by limit and score_min. If a suitable S ′ is found,
then we merge S ′ and S to a single seed in the chaos style, i.e.,
with a single gap in between (Table 23 on page 176). Otherwise
we just add S to seedset.

Step (2)

Step (2) of Algorithm 37 just takes a single line of code:

globalChaining(seedset, chain);

The function globalChaining uses sparse dynamic programming
to compute the optimal chain of seeds without a penalty for the
gaps between the seeds (Section 8.6.3). Note that the resulting
chain that is stored in chain does not contain a top seed or a
bottom seed, but only the inner seeds from the chain.
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Step (3)

Note that q was decremented at least once during step (1). If q is
still ≥ q_min, then we enumerate all gaps between two succeed-
ing seeds in chain and try to fill them up by recursive calls of
laganChaining. After each call, all new seeds that are returned
in subchain are inserted into chain between the seeds *it and
seed *it2:

list<TSeed> subchain;

typedef typename list<TSeed>::iterator TIterator;

TIterator it = chain.begin();

TIterator it2 = it;

++it2;

while (it2 != chain.end())

{

laganChaining(subchain,

infix(host(a), rightDim0(*it), leftDim0(*it2)),

infix(host(b), rightDim1(*it), leftDim1(*it2)), q);

chain.splice(it2, subchain);

it = it2;

++it2;

}

Note that we have to do the same for the gaps before the first seed
and behind the last seed in chain.

Step (4)

Back in the main function, it remains last step (4) of Algorithm 37:
We add a and b as rows to an Align object (Section 8.2) and call
bandedChainAlignment (see Section 8.6.4):

Align<TString, ArrayGaps> alignment;

resize(rows(alignment), 2);

setSource(row(alignment, 0), a);

setSource(row(alignment, 1), b);

int score = bandedChainAlignment(chain, B, alignment,

scoring_scheme);
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The constant B is the used band width, and scoring_scheme

defines the applied scoring scheme.
At the end, we print out the resulting alignment and its score:

cout << "Score: " << score << endl;

cout << alignment << endl;

13.3 Results

The original tool was published in 2003 by Brudno et al., and
it was implemented in a combination of C programs that were
stitched together by several Perl scripts. Its source code is much
more extensive than our program, which takes about one hun-
dred lines of code; for example the source code of the tool chaos
that is responsible for steps (1) and (2) of the algorithm is more
than twenty-fold larger than our program. Although the original
tool is certainly more elaborate and therefore more complex than
ours, both programs compute alignments of similar quality, and
Figure 45 shows that the running times are also comparable.
This example shows that programs which were developed with
SeqAn can match up with hand written tools. Moreover we demon-
strated the components provided SeqAn are indeed useful for tool
design, and that the application of SeqAn leads to concise and
comprehensible solutions.
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Figure 45: Runtimes of Lagan and SeqAn. We aligned a 100kbp part
of the genome of Escherichia coli with a point mutated counterpart. The
figure shows the average run times (in seconds) of the original Lagan

tool and the SeqAn program depending on the similarity between the two
sequences.
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Chapter 14

Multiple Alignment with Segments

Anne-Katrin Emde∗ and Tobias Rausch∗

Multiple sequence alignment is another fundamental bioinformat-
ics task that we can easily solve within SeqAn. In the following
we will see how to plug together a progressive multiple alignment
strategy applicable to a large range of alignment problems.

14.1 The Algorithm

SeqAn offers all the components necessary for implementing a T-
Coffee-like (Notredame, Higgins, and Heringa 2000) consistency-
based multiple alignment algorithm within only 60 lines of source
code. The central data structure that we make use of is the
AlignmentGraph (Section 12.2). It allows us to compute multi-
ple alignments on protein sequences as well as on long genomic
sequences, since time and space complexity scale with the number
of nodes in the graph, independent of the length of the original
sequences. The algorithm is shown in Listing 38 on which we will
elaborate now.
Our starting point is a set of sequences S = {S1, . . . , Sn}. In
order to compute a multiple sequence alignment, the algorithm
proceeds in four steps as illustrated in Figure 46 and outlined in
the following (for more details see Rausch et al. 2008):

(1) Generating Segment Matches (line 1): For each pair of
sequences Sp, Sq ∈ S a set of local alignments, i.e., segment

∗Institute for Computer Science and Mathematics, Freie Universität Berlin,
Germany.
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Figure 46: Illustration of the Segment Based Multiple Alignment
Method. (1) Segment match generation, (2) segment match refinement,
(3) consistency enhanced alignment graph construction, and (4) segment
based progressive alignment along the guide tree. The result is a global
multiple alignment of sequences A, B and C.

¤ SegmentMSA(S1 . . . Sn)
M ← localMatches(S1 . . . Sn)1
G ← matchRefinement(M)2
tripletExtension(G)3
D ← distanceMatrix(G)4
T ← guideTree(D)5
A ← followGuideTree(G,T )6
return A7

Algorithm 38: The Algorithm of segmentMSA. localMatches can
be any pairwise alignment method that returns the found alignments as
gapless segment matches. The minimal refinement as explained in Sec-
tion 12.2.3 is then computed by matchRefinement. tripletExten-

sion updates the alignment graph edges according to the consistency
extension method introduced in the T-Coffee algorithm. distanceMa-

trix and guideTree compute a hierarchical clustering as explained in
Section 1.2.3 and followGuideTree progressively aligns the sequences
along the guide tree.
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matches, is either computed or parsed from a precomputed
file (for example, Blast output). Different sources of seg-
ment match information can also be combined. All segment
matches are stored in a set M = {M1, . . . ,Mm}.

(2) Segment Match Refinement (line 2): The pairwise seg-
ment matches in M can overlap. We use the segment
match refinement algorithm (12.2.3) to minimally subdivide
them such that they can be stored in an alignment graph
G = 〈V,E〉. Each node v ∈ V corresponds to a sequence
segment and each edge e ∈ E represents part of an original
input match. Each edge e = (v1, v2) with v1, v2 ∈ V is as-
signed a weight w(e) representing the benefit of aligning the
incident nodes.

(3) Consistency Extension (line 3): In this step, the edge
weights of G are updated, such that edges (i.e., refined seg-
ment matches) consistent with other edges (i.e., other refined
segment matches) are rewarded. For each triplet v1, v2, v3 ∈
V with e1 = (v1, v2), e2 = (v2, v3) ∈ E and v1 and v3 belong-
ing to two different sequences, the weight of edge e3 = (v1, v3)
is increased by adding min{w(e1), w(e2)}. If e3 does not yet
exist, it is created with weight min{w(e1), w(e2)}. The re-
sult is an alignment graph G′ = 〈V,E ′〉 with E ∈ E ′ con-
taining a consistency-enhanced match library that can serve
as a scoring system for the subsequent progressive multiple
alignment.

(4) Segment-Based Progressive Alignment (line 4 to 6):
Progressive alignment requires a guide tree that dictates the
order in which sequences are incorporated into the grow-
ing multiple alignment (see Section 8.5.5). In order to con-
struct such a guide tree, using the neighbor-joining or Up-

gma algorithm, a matrix D of distances between each pair
of sequences is needed. D can be filled by using the pair-
wise alignment information contained in G′ or for example
by counting the number of shared k-mers for each sequence
pair. Finally, the sequences are aligned following the order
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of the guide tree (8.5.5). The alignment is computed on the
sequences of segments as given in G′. The alignment of two
nodes v1 and v2, or more precisely the gapless alignment of
the two subsequences stored in these nodes, is then scored
with edge weight w((v1, v2)). The computation time there-
fore depends on the cardinality of V , and not on the total
length of the original sequences. The result of this last step
is an alignment graph A〈V,E ′′〉 that is 1) a subgraph of G′

and 2) a valid alignment, i.e., a trace that can be converted
into an alignment matrix.

14.2 Implementation

As already mentioned above, the main data structure that lends
itself to addressing segment-based multiple sequence alignment in
SeqAn is the AlignmentGraph (12.2). For storing the set of se-
quences, we can use a StringSet<String<TAlphabet> > where
TAlphabet is the alphabet type of the sequences, e.g., Dna for ge-
nomic sequence alignment. First, we need to import the sequences
which we suppose to be given in Fasta format.

typedef String<Dna> TSequence;

typedef StringSet<TSequence> TSequenceSet;

TSequenceSet seqs;

for(unsigned i = 1; i < argc; ++i)

appendValue(seqs, String<Dna, FileReader<Fasta> >(argv[i]));

Step (1)

Now we create segment matches. For genomic sequence alignment,
maximal unique matches (MUMs) are a reasonable choice1. After
building an index of the sequences, we can conveniently iterate

1A suitable MUM length should be chosen according to the length and similar-
ity of the sequences. Here, length 5 is chosen solely for illustration purposes.
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over all MUMs using the appropriate Iterator<TIndex,MUMs>.
Function getOccurences returns the suffix array entries of the
individual MUM occurrences. All pairwise matches of each MUM
are then stored as Fragment objects in the container matches.
The Fragment data structure is a space-efficient way of storing
gapless pairwise alignments, as only the two sequence IDs and the
two start positions as well as the alignment length are stored.

typedef Fragment<> TMatch;

String<TMatch> matches;

typedef Index<TSequenceSet> TIndex;

TIndex index(seqs);

Iterator<TIndex,MUMs>::Type mumIt(index, 5);

String<SAValue<TIndex>::Type> occs;

while (!atEnd(mumIt))

{

occs = getOccurrences(mumIt);

for(unsigned i = 0; i < length(occs); ++i)

{

for(unsigned j = i+1; j < length(occs); ++j)

{

TMatch m(getValueI1(occs[i]),getValueI2(occs[i]),

getValueI1(occs[j]), getValueI2(occs[j]),

repLength(mumIt));

appendValue(matches,m);

}

}

++mumIt;

}

Step (2)

An alignment graph is initialized on the set of sequences. As we
do not want to copy the whole sequence set, we use a dependent
StringSet. The alignment graph is automatically filled with the
refined segment matches by handing matches, sequences and g to
the function matchRefinement. As all match information is now
stored in g, we can discard matches.

© 2010 by Taylor and Francis Group, LLC



246 Biological Sequence Analysis Using the SeqAn C++ Library

typedef StringSet<TSequence,Dependent<> > TDepSequenceSet;

typedef Graph<Alignment<TDepSequenceSet> > TAlignmentGraph;

TAlignmentGraph g(seqs);

matchRefinement(matches, seqs, g);

clear(matches);

Step (3)

The tripletLibraryExtension increases the weights of consis-
tent edges, as described in detail before.

tripletLibraryExtension(g);

Step (4)

There are many ways to compute pairwise distances. One way
is to use getDistanceMatrix with tag KmerDistance() which
counts the number of k-mers shared by each pair of sequences and
returns a distance matrix. The guide tree of type Graph<Tree>

can then be constructed with a hierarchical clustering method such
as upgmaTree. Along this guide tree the sequences are aligned
progressively, using g as library and writing the resulting trace into
gOut. The result of this last step is the output alignment graph
gOut that is converted to an alignment matrix when printed on
screen.

typedef String<double> TDistanceMatrix;

TDistanceMatrix distanceMatrix;

getDistanceMatrix(g, distanceMatrix,KmerDistance());

typedef Graph<Tree<double> > TGuideTree;

TGuideTree guideTree;

upgmaTree(distanceMatrix, guideTree);

TAlignmentGraph gOut(seqs);

progressiveAlignment(g, guideTree, gOut);

cout << gOut;
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Example

To show that this simple program produces reasonable multiple
alignments for highly similar sequences, we demonstrate an exem-
plary run on three input sequences, seq1.fa:

>seq1

ACGTGGTACCCCCCGTAATAGTACAGTAT

seq2.fa:

>seq2

ACGTGGTAGTAATAGTACAGTAT

and seq3.fa:

>seq3

ACGTGGTAGTAATAGTACAGTATACAGTAT

Passing these three files to our demo program, we receive the fol-
lowing output:

user@computer:~$./segmentalignment seq1.fa seq2.fa seq3.fa

Alignment matrix:

0 . : . : . : .

ACGTGGTACCCCCCGTAATAGTACAGTAT-------

|||||||| |||||||||||||||

ACGTGGTA------GTAATAGTACAGTAT-------

|||||||| |||||||||||||||

ACGTGGTA------GTAATAGTACAGTATACAGTAT

14.3 Results

The above presented algorithmic pipeline has been implemented
and published in two tools: SeqAn::T-Coffee (Rausch et al. 2008)
and SeqCons (Rausch et al. 2009).
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The first is an extension of the T-Coffee tool that not only signif-
icantly improves upon the original T-Coffee’s time consumption,
but is also among the fastest compared to other state-of-the-art
mutliple alignment tools. On several benchmark sets such as BAl-
iBase (Thompson, Koehl, Ripp, and Poch 2005), we could show
SeqAn::T-Coffee’s (and especially SeqAn::M-Coffee’s; see Rausch
et al. 2008) superiority in computing highly accurate protein align-
ments. Due to its segment-based approach, SeqAn::T-Coffee is
also suitable for long genomic sequence alignment.
SeqCons is a tool for robust consensus sequence construction in
genome assembly projects. Given an initial read layout, it com-
putes multi-read alignments using the consistency- and segment-
based approach. This approach has proved to be less susceptible
to insertion/deletion-misalignments commonly observed in other
consensus methods.
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Chapter 15

Basic Statistical Indices for SeqAn

Simona E. Rombo∗, Filippo Utro† and Raffaele Giancarlo†

This chapter describes in detail some functionalities included in
SeqAn for the computation of fundamental statistical indices for
strings, namely, expectation, variance and z-score. Their compu-
tation rests on the assumption that the strings are generated by a
Markov Chain of finite order. The implementation of those func-
tionalities follows closely the design principles of SeqAn and makes
full use of its basic data types and algorithmic primitives, while
adding new ones.

15.1 Statistical Indices and Biological Sequence Analysis

The detection of recurrent patterns in sequences is a fundamental
task in data mining, in particular for biological sequences (Chen
and Lonardi 2009). In this latter context, the identification of
regularities in sequences cannot be separated from their biological
relevance. Usually, the algorithms return a set of interesting rela-
tionships involving a set of substrings occurring in a given set of
strings. The level of interest is established via statistical indices
quantifying how unusual the discovered relationships are. Such an
approach that has been adopted as a de facto paradigm in com-
putational biology, is justified by experimental studies indicating

∗Dipartimento di Elettronica, Informatica e Sistemistica, Università della Cal-
abria, Italy.
†Dipartimento di Matematica ed Applicazioni, Università degli Studi di
Palermo, Italy.
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that there is an excellent connection between the statistical prop-
erties characterizing some substrings occurring in a set of strings
and their involvement in important biological processes. Two ex-
amples may be of use in illustrating this point, while we refer the
reader to (Reinert, Schbath, and Waterman 2005) for a review of
the fundamental mathematical approaches and techniques charac-
terizing the mentioned paradigm.

The well-known BLAST alignment program (Altschul et al. 1990)
assigns a significance score to an alignment indicating how likely
it is for that alignment to be due to chance. Only the ones de-
viating substantially from chance are returned to the user since
common practice indicates that they are very likely to describe
a relevant biological relation between the two strings. Chance or
randomness of an alignment is established with the use of a back-
ground probabilistic model describing how likely it is that two
symbols are aligned at random. In the realm of pattern discovery
for the identification of transcription factors DNA binding sites
(I-TFBS, for short) in herpes virus genomes, Leung et al. (Le-
ung et al. 1996) give substantial evidence that there is a strong
correlation between the number of occurrences of a substring in a
string deviating from its expected number and that substring being
a genuine binding site. Following that work, most of the very suc-
cessful pattern discovery algorithms for I-TFBS are based on the
identification of exceptionally frequent or rare substrings in bio-
logical sequences. That is usually done by discovering over- and
under-represented patterns in biological sequences, where over-
and under-representation is measured by statistical indices, e.g.,
z-score, and with the use of a background model for the data.
The interested reader can find a compendium of relevant results
in (Apostolico et al. 2003; Tompa et al. 2005).

For the purposes of this chapter, a particularly important incar-
nation of the pattern discovery process just described for I-TFBS
is due to Sinha and Tompa (2003). Indeed, their method com-
putes a z-score and assumes a Markovian background model of
order three for the data. It is worth recalling that, although a z-
score is a quite standard measure of deviation from expectation, its
computation becomes quite challenging when applied to strings.
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That is due to the computation of the variance, which is a far from
trivial mathematical problem with only computationally costly so-
lutions. In fact, those difficulties have led to the proliferation of
algorithms for the computation of z-scores for strings, (e.g., Apos-
tolico et al. 2003; Apostolico and Pizzi 2007), where the main
differences among them are on how the variance is computed and
on the basic probabilistic assumptions on how strings are gener-
ated via a background probabilistic model. The approach by Sinha
and Tompa offers the advantages of being both very rigorous from
the mathematical point of view and inclusive of a generalization of
z-score computation to genomic sequences that accounts for their
specific nature, in particular complementary base-pairing. It also
lends itself to a very clean implementation in terms of classic string
matching primitives.
Before we enter the technical part of this chapter, it should be
pointed out that the material presented here is also strongly re-
lated to Chapter 10, dealing with the problem of motif searching
in molecular biology.

15.2 Mathematical Outline

Let Σ be a finite alphabet from which strings are generated. Let
W be a multi-set of strings, which we refer to as pattern, and let
X be a set of strings, which we refer to as text. |W | and |X|
denote the cardinalities, i.e., number of elements, of W and X,
respectively. The pattern occurs in the text if and only if at least
one string in W occurs in at least one string in X. The number
of occurrences of W in X is given by the sum of the number of
occurrences of each of its strings in the strings in X. The z-score
zW for W w.r.t. X and a given background model M for the data
is defined as follows:

zW =
NW − E

σ
, (15.1)

where:
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• NW is the number of occurrences of W in X.

• E is the expected value of the random variable number of
occurrences of W in a finite set of strings, each of finite
length, generated from M.

• σ is the standard deviation of the same random variable.

We now provide additional details about M, E and the variance
σ2.

15.2.1 A Markov Chain as a Background Model

We use a Markov chain (MC, for short) of finite order m to for-
malize the background model for the data. It is worth recalling
(Durbin, Sean, Krogh, and Mitchison 1999; Rabiner 1989) that
an MC induces a probability distribution P on Σ∗. Moreover, it
can be seen either as a generator of strings according to P or as
a tool to evaluate the probability of a string, again according to
P . We take this second viewpoint. In our setting, MC can either
be known a priori or it can be learned from a training set S. In
the latter case, S must be a good representative of the statistical
properties of the information source one is trying to model, i.e., a
typical set for the source.

For convenience, from now on, M denotes an MC of order m. For
future reference, we point out that an instantiation M of an MC
requires either knowledge of the state transition matrix and char-
acter stationary distribution or knowledge of a set of strings S from
which the mentioned information can be computed. Moreover, in
order for M to be used in the computation of the variance and the
z-score, additional probability transition matrices and probabil-
ity vectors are required, which are referred to simply as auxiliary
information. They are also computed as soon as M is defined.

15.2.2 Expected Value

Using linearity of expectation, the expected value of a multi-set of
strings W w.r.t. to M and X is given by the formula:
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E =

|W |∑

i=1

Ei, (15.2)

where Ei is the expected value of wi, the i-th string in W . Once
again due to the linearity of the expectation, each Ei is (Sinha
2002):

Ei =

|X|∑

h=1

nh−li+1∑

j=1

pj(c) · p∗(wi),

where c is the first character of wi, li is the length of wi and nh is
the length of the string xh in X. Moreover, p∗(wi) is the probability
that wi occurs in any position of xh and it is computed via the state
transition matrix of M . The term pj(c) is the probability that c
occurs at position j of xh. Assuming that pj(c) is independent of
j, i.e., assuming that M has a character stationary distribution p
(of the occurrence of the first symbol of wi in a string generated
by M), Ei can be further simplified as follows:

Ei =

|X|∑

h=1

(nh − li + 1) · p(c) · p∗(wi).

This latter formula is the one used here for the computation of
Ei. Additional technical details on the derivation of the above
formulas can be found in (Kleffe and Borodovsky 1992; Sinha and
Tompa 2000).

For later reference, we point out that a method computing E must
take as input a multi-set of strings W , information about the car-
dinality of the text X and the length of each string in it, and a
suitable encoding of M .

15.2.3 Variance

Following Sinha and Tompa (2000), the computation of the vari-
ance can be conveniently broken down into the computation of
three quantities, as follows:

© 2010 by Taylor and Francis Group, LLC



254 Biological Sequence Analysis Using the SeqAn C++ Library

σ2 = B + 2C − E2, (15.3)

E is the expected value of W , as specified above. Intuitively,
the term B accounts for the autocorrelation of the strings in W ,
with respect to their occurrences in strings in X. C is analogous
to B, but it accounts for correlation instead of autocorrelation.
Computation of all those quantities critically depends on M .
For later reference, as in the case of E, a method computing σ2

must take as input a multi-set of strings W , information about the
text X, and a suitable encoding of M .

15.2.4 The Special Case of DNA

When W and X are meant to be DNA sequences, i.e., strings over
the alphabet Σ = {A,C,G, T} satisfying the well-known base-
pairing and complementarity rules, the computation of the z-score
must be suitably modified. Indeed, the strings in W encode pieces
of DNA strings on the same strand of the genomic sequences one
is analyzing, those latter being represented by strings in X. How-
ever, accounting only for the occurrences of W in X results in an
overlook of the matches induced by W on the other DNA strand,
yielding an underestimation of the quantities involved in Formula
(15.1). In order to carry out a correct computation, one has to in-
clude in the pattern multi-set also the reverse complements of each
string in W . Let W ′ be this new multi-set. However, now an over-
counting problem crops up. As pointed out by Sinha and Tompa,
such a problem involves semi-palindromes. A semi-palindrome is
a string w that can be superimposed with, i.e, it is equal to, its
reverse complement, as for instance AATT . If a semi-palindrome
were in W , it would appear also in W ′ in the form of its reverse
complement and that would lead to count twice for the occurrences
of that string in any text, including the ones generated from M
to compute the variance. More precisely, such an overcounting
would affect term B in Formula (15.1). In conclusion, in the case
of DNA, one has to modify the computation of B taking into ac-
count semi-palindromes. Additional details can be found in the
already mentioned paper by Sinha and Tompa.
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15.3 SeqAn Algorithms and Data Types

We now describe the data types and functions that are available
in SeqAn for the computation of the statistical indices discussed
in the previous section, also for the case of DNA.

15.3.1 The Data Type MarkovModel

This data type gives a suitable representation of an MC and pro-
vides functions for its instantiation and use in SeqAn; see Table 37.
We first describe these functions and illustrate their use with some
examples. Then, in Section 15.4, we give some details about the
internal representation of the data type.

Listing 32 illustrates how to build and store an MC. A training
set composed of N strings is taken as input in lines 1-7. The
remaining part of the listing is dedicated to declare, build and
store a MarkovModel M of order m = 3.

Listing 33 shows how to read a previously stored MarkovModel M
(lines 20-21), how to input a set of three strings W (lines 23-26),
how to compute the probability of the entire set W (line 28) and
that of a single string (line 30), with respect to M .

15.3.2 The Functions expectation, variance and zscore

Listing 34 shows an example where the two functions expectation
and variance are used in order to compute the expectation and
the variance of the multi-set W w.r.t. M and X. In addition to
the inputs of the previous functions, zscore needs an indication
of which string matching algorithm to use in order to compute
the number of occurrences of the pattern in the text, among the
many algorithms provided by SeqAn (see Table 19 on page 147).
Listing 35 shows how the function may be exploited, with use of
two different string matching algorithms.
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buildMarkovModel Given the training set S, this function computes

the transition matrix, the character stationary dis-

tributions and the auxiliary information for the

desired instance M of MC.

setMarkovModel Given the transition matrix and, possibly, the

character stationary distributions of M , this func-

tion creates a new instance of MarkovModel cor-

responding to that information. The auxiliary in-

formation is also computed. If the character sta-

tionary distributions of M are not provided, it is

computed from the transition matrix.

emittedProbability This function stores in a text file F the transition

matrix, the character stationary distributions and

the auxiliary information of M .

write Given a text file F , containing a proper represen-

tation of a data type MarkovModel as returned

by the function write, read loads it into a cor-

responding instance M of MC.

read Given a multi-set of strings W as input, this func-

tion computes the cumulative probability P for W

w.r.t. M . It is P =
∑|W |

i P (wi), where P (wi) is

the probability that wi is emitted by M .

Table 37: Markov Model Functions.
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1 typedef char TAlphabet;

2 typedef String<TAlphabet> TSequence;

3 StringSet<TSequence> S;

4 appendValue(S,str_1);

5 appendValue(S,str_2);

6 ...

7 appendValue(S,str_N);

8 unsigned int m =3;

9 // define a MarkovModel M of order m

10 MarkovModel<TAlphabet> M(m);

11 // build M w.r.t. the training set S

12 buildMarkovModel(M, S);

13 FILE *fd = fopen("Model.txt", "w+");

14 // store M into the file "Model.txt"

15 write(fd, M);

16 fclose(fd);

Listing 32: Instantiation and Storage of an MC.
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17 MarkovModel<TAlphabet> M(m);

18 fd = fopen("Model.txt", "r");

19 // load from the file ‘‘Model.txt’’ the MarkovModel M

20 read(fd, M);

21 fclose(fd);

22 // input a set of three strings W

23 StringSet<TSequence> W;

24 appendValue(W, string1);

25 appendValue(W, string2);

26 appendValue(W, string3);

27 // output: the probability that set W is emitted by M

28 std::cout << emittedProbability(M, W);

29 // output: the probability that string1 is emitted by M

30 std::cout << emittedProbability(M, string1);

Listing 33: Example Program for MarkovModel. The program reads M

and a set of strings W . Then, it computes the probability of W and that
of a single string, according to M .

1 /* compute expectation of the multi-set of patterns W w.r.t.

2 the text X and the MarkovModel M */

3 TFloat E = expectation(W, X, M);

4 /* compute variance of the multi-set of patterns W w.r.t.

5 the text X and the MarkovModel M */

6 TFloat V = variance(W, X, M);

Listing 34: The Primitives expectation and variance.
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7 /* Compute the z-score for the set of pattern W w.r.t. the

8 text X and the MarkovModel M using the AhoCorasick algorithm

9 to compute the number of occurrence of W in X */

10 TFloat z1 = zscore<AhoCorasick>(W,X,M);

11 /* Compute the z-score using the WuManber algorithm

12 instead of the AhoCorasick one*/

13 TFloat z2 = zscore<WuManber>(W,X,M);

Listing 35: Use of zscore.

15.3.3 The Special Case of DNA

As mentioned in Section 15.2.4, the statistical indices computa-
tion has to be slightly modified for the case of DNA. The affected
functions are variance and zscore. In order to make them work
correctly one has simply to specify that the alphabet for the strings
is that of DNA, i.e., one uses typedef DNA TAlphabet instead of,
for example, typedef char TAlphabet used in Listing 32.

15.4 Implementation Outline

We now briefly discuss some implementation details concerning
the data type MarkovModel included in SeqAn. Recall from the
previous section that the functions build and set, although they
take as input different things, give the same output. In particular,
in both cases, the auxiliary information required for the use of M
in the computation of variance and z-score is computed with the
function computeAuxiliaryMatrices, which is not public.

From now on, we concentrate on the format of MarkovModel. Since
SeqAn provides utilities that are optimized for the management
of string data, matrices and arrays have been conveniently stored
and managed as strings. Figure 47 illustrates the format of the
file representing a Markov model. Such a format is expected by
read and it is enforced by write. In particular, the terms ai,j
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and bj represent the elements of the transition matrix and of the
stationary distribution, respectively; ci,j, di,j and ei,j are the terms
of the auxiliary matrices needed for the computation of variance
and z-score.

a1,1 <space> a1,2 <space> . . . <space> a1,|Σ|m <return>
a2,1 <space> a2,2 <space> . . . <space> a2,|Σ|m <return>
...
a|Σ|m,1 <space> a|Σ|m,2 <space> . . . <space> a|Σ|m,|Σ|m <return>
b1 <space> b2 <space> . . . <space> b|Σ|m <return>
c1,1 <space> c1,2 <space> . . . <space> c1,|Σ|m <return>
c2,1 <space> c2,2 <space> . . . <space> c2,|Σ|m <return>
...
c|Σ|m,1 <space> c|Σ|m,2 <space> . . . <space> c|Σ|m,|Σ|m <return>
d1,1 <space> d1,2 <space> . . . <space> d1,|Σ|m <return>
d2,1 <space> d2,2 <space> . . . <space> d2,|Σ|m <return>
...
d|Σ|m,1 <space> d|Σ|m,2 <space> . . . <space> d|Σ|m,|Σ|m <return>
e1,1 <space> e1,2 <space> . . . <space> e1,|Σ|m <return>
e2,1 <space> e2,2 <space> . . . <space> e2,|Σ|m <return>
...
e|Σ|m,1 <space> e|Σ|m,2 <space> . . . <space> e|Σ|m,|Σ|m <return>

Figure 47: Markov Model File Format.
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Chapter 16

A BWT-Based Suffix Array
Construction

Tobias Marschall∗, Marcel Martin∗ and Sven Rahmann∗

In this chapter, we offer a different perspective on using SeqAn as
a research tool and ask, how easily can SeqAn itself be extended?
We do not want to plug together existing components, but write a
component ourselves. We choose a relatively unknown suffix array
construction algorithm called BwtWalk.
Choosing SeqAn as an implementation platform gives us various
benefits. First, we can easily compare the new algorithm to the ex-
isting suffix array construction algorithms that have already been
implemented in SeqAn. Second, by using the same standard in-
terface as those other algorithms, our algorithm can be used in
all situations in which an arbitrary suffix array construction algo-
rithm is required. And since the algorithm has been integrated
into SeqAn, the implementation is available to the community.
We describe the ideas behind BwtWalk, how we extend SeqAn
with its implementation, and how we use SeqAn to test and bench-
mark it. The reader should be familiar with the suffix array basics
described in Chapter 11.

16.1 Introduction to BwtWalk

We call the algorithm BwtWalk because it simulates walking
along (partial) Burrows-Wheeler transform (see below) of the in-

∗Bioinformatics for High-Throughput Technologies, Computer Science 11, TU
Dortmund, Germany.
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put string s to construct the suffix array. It is well known that s
can be reconstructed from its BWT ŝ and that ŝ is generally easier
to compress than s (for suitably structured non-random s).

Most programs that use the BWT (e.g., for compression) first
construct the suffix array of s explicitly and then obtain the BWT
from it, a prominent example being Julian Seward’s bzip2 com-
pressor1. In contrast, the method presented here uses BWTs of
successively longer suffixes of s to construct a linked suffix list
of s and from it the suffix array. The method is easy to under-
stand and implement, quite efficient on small alphabets and – with
some engineering – allows an in-place variant that we describe as
well. The worst-case complexity of the standard method, which
we call BwtWalkFast, is Θ(n log n) on strings of length n, but
we observe linear complexity in practice, except on artificial in-
puts; for the in-place method, which we call BwtWalkInPlace,
the worst-case complexity is Θ(n2). The extra memory usage (in
addition to the space for the input string and the suffix array) is
n words for BwtWalkFast, and no extra memory (or n bits if
one is picky) for BwtWalkInPlace.

The BwtWalk idea was independently developed first by Baron
and Bresler from 2002 onwards and later by the authors (from
2005 onwards) before the publication of Baron and Bresler’s pa-
per (Baron and Bresler 2005), which was pointed out to us by
Karsten Klein (TU Dortmund). While Baron and Bresler engi-
neered an asymptotically faster implementation using hierarchi-
cal lists with Θ(n

√
log n) worst-case time but significantly higher

memory usage (about 3n extra words), we focus on the in-place
method BwtWalkInPlace, which is, to our knowledge, unpub-
lished.

1http://www.bzip.org/
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16.2 The Main Idea of BwtWalk

In what follows, Σ is an alphabet of constant size, s = s0 . . . sn−1 =
s[0] . . . s[n− 1] is a string of length n over Σ, and sp := sp . . . sn−1

denotes the suffix starting at position p. In contrast to Chapter 11,
we call the suffix array pos (and not S or SA) and its inverse rank
(and not I), because pos[r] is the starting pos ition of the lexico-
graphically r-th smallest suffix and rank[p] is the lexicographic
rank of suffix sp.
The BWT of s is a pair (ŝ, f) consisting of a permutation ŝ of the
characters of s and the position f of the last character of s in ŝ.
If s ends with a unique character, the value of f can be inferred
directly from ŝ and is therefore redundant; in this case, only ŝ is
called the BWT of s. The BWT is defined by ŝ[r] := s[pos[r]−1],
where s[−1] is to be understood as s[n − 1]. In other words, ŝ[r]
is the character that appears in s immediately before the starting
position of the lexicographically r-th smallest suffix.
We will construct a linked suffix list (a representation of the suffix
array) of s in n rounds, starting with round n− 1, counting back-
wards, and finishing with round 0. After round p, we have a suffix
list of sp.
For 0 ≤ p < n, we define lexnextpos[p] := pos[rank[p] + 1],
the starting position of the suffix that comes next in lexicographic
order after sp. If such a suffix does not exist (because rank[p] =
n− 1), we set lexnextpos[p] := ⊥ (a special nil value). Similarly,
we define lexprevpos[p] := pos[rank[p] − 1]. With lexnextpos

and lexprevpos, we thus simulate a doubly linked list that keeps
the suffix starting positions in lexicographic order in each round.
For each c ∈ Σ, we further define lexfirstpos[c] and
lexlastpos[c] as the starting positions of the lexicographically
first and last suffixes that begin with c. They facilitate inserting
suffixes sp = cu, where c ∈ Σ does not occur in u ∈ Σ∗. Initially
(before round n−1), we set lexfirstpos[c] = lexlastpos[c] = ⊥
for all c ∈ Σ.
At the beginning of round p, the arrays lexprevpos[p+1, . . . , n−
1], lexnextpos[p + 1, . . . , n − 1], lexfirstpos and lexlastpos
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represent the suffix array of sp+1. There are two different cases for
the update in round p, based on sp.

(1) The easy case occurs if sp does not occur in sp+1, that is,
if and only if lexfirstpos[sp] = lexlastpos[sp] = ⊥. We
then need to find the largest character c− < sp for which p− :=
lexlastpos[c−] 6= ⊥ and the smallest character c+ > sp for which
p+ := lexfirstpos[c+] 6= ⊥. Since presently p− precedes p+ in
lexicographic order, we only need to insert p between p− and p+

by updating both lexnextpos and lexprevpos accordingly. We
also initialize lexfirstpos[sp] and lexlastpos[sp] to p.

(2) If sp already occurs somewhere in sp+1, we need to determine
the correct positions p− and p+, between which p must be inserted
to maintain lexicographic order. They are found with the following
lemma: If there exists a position q > p with sp = sq, and sq+1 is
the direct lexicographic predecessor (successor) of sp+1, then sq is
the direct lexicographic predecessor (successor) of sp. This is seen
by a contradiction argument and leads to the following algorithm
to find the direct lexicographic predecessor position if it exists.

Starting at position p + 1 (of the most recently inserted suffix),
follow the lexprevpos links to the left in the simulated linked list.
Thus, let c := sp be the character to be searched for, start at i ←
lexprevpos[p + 1], and check whether si−1 = c. If not, continue
following the lexprevpos links (i ← lexprevpos[i]). If eventually
si−1 = c, insert p into the list after p− := i − 1. In other words,
writing p+ := lexnextpos[p−], we update lexnextpos[p−] ← p
and lexnextpos[p] ← p+, and we update lexprevpos accordingly.
Additionally, if previously lexlastpos[c] = p−, we must update
lexlastpos[c] ← p. On the other hand, if we eventually fall off
the list (i = ⊥), then sp must be the lexicographically first suffix
starting with c, and we update the arrays accordingly.

Indeed, the above paragraph describes the main loop of the al-
gorithm. Comparing si−1 to c for different i can be visualized
as walking leftward along the BWT while searching for the first
occurrence of c; hence the name BwtWalk.

To complete the description of the BwtWalkFast algorithm, it
remains to say that we can similarly walk rightward in the BWT
(following the lexnextpos links), and we can do so in both direc-
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tions in parallel, stopping at the first c in either direction. Inter-
estingly, as shown by Baron and Bresler (2005), this small measure
improves the worst-case running time from Θ(n2), when walking
only leftward or only rightward, to Θ(n log n).
To create the suffix array pos from the suffix list, we start with
r ← 0 at position p ← lexfirstpos[a], where a is the smallest
character, and repeatedly set pos[r] ← p and increment r, while
following the links (p ← lexnextpos[p]). Because lexprevpos

is no longer required, it can occupy the same memory as pos (if
pos allows fast random access; see Section 16.5); so we need n
extra words for lexnextpos. The following section explains how
to avoid using this extra space.

16.3 Saving Space

We can save space by storing both lexprevpos and lexnextpos in
the same array using an old folklore trick by xor-ing their values,
i.e., we only use a single array

lexxorpos[p] := lexprevpos[p] xor lexnextpos[p].

If either lexprevpos[p] or lexnextpos[p] is known, the other value
can be computed because the xor-operation is its own inverse.
It is still possible to “walk” unidirectionally through the array if
the first or last value is known. However, it is not informative
to randomly access lexxorpos[p]; from this value alone, neither
previous nor next position can be determined.
Therefore, to insert p between p− and p+, as described for Bwt-

WalkFast, it is not sufficient to determine either p− or p+ by
walking along the BWT, because it is now impossible to find the
other value by following a lexnextpos or lexprevpos link. In-
stead, both p− and p+ need to be determined by walking until the
sought character is found in both directions. Depending on the
structure of the input string, this sometimes only approximately
doubles the running time, but can have a much stronger effect and
increases the worst-case complexity to Θ(n2) (see Section 16.7).
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After constructing lexxorpos, another complication arises: We
cannot simply overwrite it with pos in-place. This is not a prob-
lem if pos is an external file because it can be written sequentially
to disk, while lexxorpos remains in memory. However, if pos is
desired or required to be in memory, we may proceed as follows
(suggested by David Weese): Following the (implicit) lexnextpos
links, we overwrite each visited element with sequential numbers.
This overwrites lexxorpos with the inverse suffix array rank in
place. It remains to overwrite rank with its inverse. Fortunately,
Knuth’s The Art of Computer Programming, Vol. 1, Section 1.3.3,
contains an “Algorithm I” (Knuth 1997) that performs this task
(almost) in place, using the cycle structure of the permutation.
However, an additional bit per element (e.g., the sign bit) is re-
quired to mark already visited elements. If n < 231 (on 32-bit
architectures, resp. n < 263 on 64-bit architectures), this does not
consume additional memory in practice. Otherwise, we explicitly
allocate n bits temporarily.

16.4 SeqAn Implementation of BwtWalkFast

16.4.1 Getting Started

Among others, SeqAn contains a simple suffix array construction
algorithm that uses quicksort (seqan/index/index_sa_qsort.h),
which serves as a guide.
In SeqAn, functionality is offered through global template func-
tions whenever possible (see Section 4.4). Different algorithms
that solve the same problem are differentiated by tags (see Sec-
tion 4.6.2). At first, we implement the BwtWalkFast algorithm.
We therefore define the tag BwtWalkFast:

struct _BwtWalkFast {};

typedef Tag<_BwtWalkFast> const BwtWalkFast;

We follow the coding convention to prepend an underscore to
names meant to be used only locally. This coding practice sim-
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ulates private declarations in SeqAn (see Section 4.4.2). Hav-
ing the tag in place, we overload the global template function
createSuffixArray:

template < typename TSA, typename TText >

void createSuffixArray(TSA &SA, TText &s,

BwtWalkFast const &)

The template parameters TText and TSA specify the type of the
input text and the type of the suffix array to be computed, re-
spectively. We could, for example, use String<Dna> for TText

and String<unsigned> for TSA. To make our implementation as
generic as possible, we derive other needed types from these tem-
plate parameters. Table 38 summarizes all used types, whose pre-
cise definitions are given at the appropriate places throughout the
next sections.

TAllowsFastRandomAccess Defined either as True or False, de-

pending on the AllowsFastRandomAccess

metafunction.

TAlphabetArray Type of lexfirstpos and lexlastpos arrays.

TArray Type of lexprevpos and lexnextpos arrays; always in

internal memory.

TChar Type of a text character.

TSA Type of the suffix array; usually String<unsigned> or

String<unsigned long long>.

TSaIter Iterator over the suffix array.

TText Type of the input text.

TTextIter Iterator over the input text.

TValue Type of a suffix array entry.

Table 38: Overview of all Template Type Parameters and Derived
Typedefs.
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The algorithm can naturally be divided into several functions.
This improves clarity but does not compromise performance as
the functions are inlined by the compiler when appropriate.

16.4.2 List Operations

As explained in Section 16.2, we use two arrays lexnextpos and
lexprevpos to represent the linked suffix list. Within the lists, a
special constant named NIL represents invalid list indices ⊥. With
the help of the SupremumValue metafunction (see Section 4.5), NIL
is defined to be the largest representable value of the index data
type TValue.

const TValue NIL = SupremumValue<TValue>::VALUE;

We can now understand the first helper function, which inserts a
value p into a list:

template < typename TArray, typename TValue >

void _insertBetween(TArray &lexprevpos,

TArray &lexnextpos, TValue p,

TValue predecessor, TValue successor)

{

value(lexprevpos, p) = predecessor;

value(lexnextpos, p) = successor;

const TValue NIL = SupremumValue<TValue>::VALUE;

if (predecessor != NIL)

value(lexnextpos, predecessor) = p;

if (successor != NIL)

value(lexprevpos, successor) = p;

}

Note how we follow the SeqAn policy of using the value function
instead of the index operator (see Section 5.1.4).
For insertion, both predecessor and successor need to
be known. For convenience, we provide the two functions
_insertAfter and _insertBefore that simply look up prede-
cessor or successor in lexnextpos or lexprevpos, respectively,
before calling _insertBetween. If predecessor and successor

© 2010 by Taylor and Francis Group, LLC



A BWT-Based Suffix Array Construction 269

are already known, we can still call _insertBetween directly and
save one table look-up.

16.4.3 Main Algorithm

Using the helper functions defined in the previous section, the main
part of our algorithm can be written down concisely. We declare
the function _createSuffixList, which contains the algorithm’s
main building block, namely the construction of the linked list
representation of the suffix array. It returns the position of the
smallest suffix, or, in other words, the head of the list. Let us take
a look at the function declaration and useful typedefs:

template < typename TArray, typename TText >

typename Value<TArray>::Type _createSuffixList(

TArray &lexprevpos, TArray &lexnextpos, TText &s)

{

typedef typename Iterator<TText, Standard>::Type

TTextIter;

typedef typename Value<TArray>::Type TValue;

typedef typename Value<TText>::Type TChar;

const unsigned int ALPHABETSIZE =

ValueSize<TChar>::VALUE;

const TValue NIL = SupremumValue<TValue>::VALUE;

// ... continued below

More metafunctions are used here: Value determines the type
of elements in a container, whereas Iterator returns an appro-
priate iterator to traverse the container; by specifying Standard

as second template argument, we communicate that we do not
need a rooted iterator (see Section 6.5). The third metafunction,
ValueSize, allows us to conveniently determine the alphabet size.

Our next concerns are allocation and initialization of the auxiliary
arrays lexfirstpos and lexlastpos. Table 6 on page 85 tells us
that an array string is the right data type to use:
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typedef String<TValue,Array<ALPHABETSIZE> >

TAlphabetArray;

TAlphabetArray lexfirstpos, lexlastpos;

fill(lexfirstpos, ALPHABETSIZE, NIL, Exact());

fill(lexlastpos, ALPHABETSIZE, NIL, Exact());

Here, the fill function is used to resize and fill the newly created
array strings in one step. Since we know that the arrays will not
grow, we use the tag Exact to reserve only the required amount
of memory (and not more).
We now have all needed types and arrays in place and proceed to
the algorithm’s main part. In each iteration, we insert one suffix
into the list of suffixes, starting with the shortest suffix. To iterate
over those suffixes, we use the iterators provided by SeqAn (see
Section 7.5):

TTextIter it = end(s);

TValue p = length(s);

while (it != begin(s)) {

--it;

--p;

TChar c = *it;

unsigned int cOrd = ordValue(c);

// main step: insert suffix that starts at position p

// ...

}

The used ordValue function maps each character of an alphabet
to a positive integer (see Section 6.4 for details), allowing us to
use cOrd as an index to the lexfirstpos and lexlastpos arrays.
To complete the _createSuffixList function, only the insertion
operation needs to be implemented. The corresponding code frag-
ment is shown in Table 36. Recall from Section 16.2 that we need
to differentiate between two cases. If we see the current character c
for the first time, lexfirstpos and lexlastpos provide the cor-
rect insertion position and need to be updated accordingly (code
omitted). Most of the time, the character has already occurred at

© 2010 by Taylor and Francis Group, LLC



A BWT-Based Suffix Array Construction 271

least once. In this case, we walk along the preliminary BWT until
we find the character c. If we hit the beginning (end), we know
the current suffix to be the first (last) suffix starting with c and
can insert it accordingly (code omitted).

// first time we see character c?

if (value(lexfirstpos, cOrd) == NIL) {

// ... omitted

} else

{

TValue pLeft = value(lexprevpos, p+1); // walking left

TValue pRight = value(lexnextpos, p+1); // walking right

while (true) {

// end of list found while walking left?

if (pLeft == NIL) {

// ... omitted

break;

} else

{

// character found walking to the left?

if (value(s, pLeft-1) == c) {

_insertAfter(lexprevpos, lexnextpos, p, pLeft-1);

if (value(lexlastpos, cOrd) == pLeft-1)

value(lexlastpos, cOrd) = p;

break;

}

}

pLeft = value(lexprevpos, pLeft);

// ... (analogous code for walking right omitted)

}

}

Listing 36: The Main Loop of _createSuffixList.

This completes the function _createSuffixList. Given the suffix
list, we still need to build the suffix array. We address this issue in
the next section. Furthermore, we see how the arrays lexprevpos
and lexnextpos, which we assumed to be given, can smartly be
provided.
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16.5 Containers with and without Fast Random Access

When createSuffixArray is called, the caller provides a reference
to the suffix array to be filled:

template < typename TSA, typename TText >

void createSuffixArray(TSA &SA, TText &s,

BwtWalkFast const &)

Temporarily storing the lexprevpos array in the memory provided
by &SA (see Section 16.2) is only sensible if TSA refers to a type that
allows fast random access. We cannot take this for granted as TSA
could be an external string type (see Section 7.3.5). Fortunately,
this issue can be resolved by using the AllowsFastRandomAccess

metafunction.

template < typename TSA, typename TText >

void createSuffixArray(TSA &SA, TText &s,

BwtWalkFast const &)

{

typedef typename AllowsFastRandomAccess<TSA>::Type

TAllowsFastRandomAccess;

_createSuffixArray(

SA, s, BwtWalkFast(), TAllowsFastRandomAccess());

}

We use createSuffixArray as a wrapper and move the actual
implementation into the function _createSuffixArray, of which
we provide two overloaded variants. The result returned by the
metafunction AllowsFastRandomAccess is either the type True or
the type False. Hence, the signatures of the two functions are the
following:

template < typename TSA, typename TText >

void _createSuffixArray(

TSA &SA, TText &s, BwtWalkFast const &, True const &)

template < typename TSA, typename TText >

void _createSuffixArray(

TSA &SA, TText &s, BwtWalkFast const &, False const &)

© 2010 by Taylor and Francis Group, LLC



A BWT-Based Suffix Array Construction 273

In the first variant, we use the provided SA memory for lexprevpos
and allocate additional memory only for lexnextpos, while in
the second one, we allocate memory for both lexprevpos and
lexnextpos. The latter variant only accesses SA once and only
consecutively when creating the suffix array from the suffix list.
Both variants call _createSuffixList and traverse the generated
list in order to build the suffix array:

// variant-specific array allocation code omitted

TValue p = _createSuffixList(lexprevpos, lexnextpos, s);

TSaIter saIt = begin(SA);

while (p != NIL) {

*saIt = p;

p = value(lexnextpos, p);

++saIt;

}

16.6 In-Place Version

As explained in Section 16.3, BwtWalkFast’s space consump-
tion can be reduced at the cost of additional running time by com-
bining lexprevpos and lexnextpos into a single array lexxorpos.
Now we are in a frequently encountered situation: There are two
versions of an algorithm with different space-time trade-offs, and
we want to let the user decide which version to use. SeqAn’s an-
swer to this situation is template subclassing (see Section 4.3):

struct _BwtWalkFast {};

typedef Tag<_BwtWalkFast> const BwtWalkFast;

struct _BwtWalkInPlace {};

typedef Tag<_BwtWalkInPlace> const BwtWalkInPlace;

template <typename TSpec = BwtWalkFast >

struct BwtWalk {};

Here, we declare a tag BwtWalk for the whole class of Bwt-

Walk algorithms. The tag has a template parameter. By filling
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in BwtWalkFast or BwtWalkInPlace, one can choose the desired
version, called algorithm subclass. We modify the main wrapper
function createSuffixArray to pass on the subclass parameter:

template < typename TSA, typename TText, typename TSpec >

inline void createSuffixArray(

TSA &SA, TText &s, BwtWalk<TSpec> const &)

{

typedef typename AllowsFastRandomAccess<TSA>::Type

TAllowsFastRandomAccess;

_createSuffixArray(

SA, s, BwtWalk<TSpec>(), TAllowsFastRandomAccess());

}

In total, we provide four overloaded versions of
_createSuffixArray: The user may choose between
BwtWalkFast and BwtWalkInPlace, and at the same time
the provided container may allow random access or not. Although
we provide four versions of the same function, almost no code
is duplicated. These functions are short since most of the work
is done in _createSuffixList or _createXoredSuffixList,
respectively. The latter function contains the main part of the
algorithm using the space efficient lexxorpos array. Recall that,
in this case, we have to walk along the BWT into both directions
(code omitted).

16.7 Experiments

Implementing our algorithms within SeqAn allows us to easily
compare them to the existing ones. In this section, we show the
results of this comparison.

16.7.1 A Demo Program

It is time to see how to read a text file, run a suffix array construc-
tion algorithm, and measure its running time in SeqAn. Listing 37
shows a code example.
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1 #define SEQAN_PROFILE

2 #include <fstream>

3 #include <seqan/index.h>

4 #include "index_sa_bwtwalk.h"

5 using namespace seqan;

6 using namespace std;

7 int main() {

8 fstream inputFile("example.txt");

9 CharString text;

10 read(inputFile, text, Raw());

11 String<unsigned> sa;

12 resize(sa, length(text));

13 SEQAN_PROTIMESTART(time);

14 createSuffixArray(sa, text,

15 BwtWalk<BwtWalkFast>());

16 cout << SEQAN_PROTIMEDIFF(time) << endl;

17 return 0;

18 }

Listing 37: Example for BwtWalkFast. This small example program that
runs the BwtWalkFast algorithm on the file example.txt and prints the
time needed to compute the suffix array.
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Note the definition of the SEQAN_PROFILE preprocessor macro in
line 1. The macros for time measurements are only available
when this macro is defined. When starting time measurements,
SEQAN_PROTIMESTART is used. It stores the current time in a vari-
able whose name is given as a macro parameter. To read out the
elapsed time, SEQAN_PROTIMEDIFF is used as if it was a function
that returns a floating point value representing the number of sec-
onds since the start of the timer. The measured time is wall-clock
time.

16.7.2 Experimental Setup

For our experiments, we use a tool that extends the above exam-
ple. It measures the running time (CPU time, in this case) of
several suffix array construction algorithms on various data files.
Our corpus is assembled from parts of (1) the Manzini-Ferragina
corpus (Manzini and Ferragina 2004)2, (2) the Gauntlet corpus3,
and (3) the corpus used by Schürmann and Stoye (2007)4. Table 39
contains descriptions of all data files.

Since we are also interested in seeing how the algorithms cope with
large strings such as the human genome, we include two more
files. The first one, hg18.dna is created by concatenating the
sequences of the NCBI’s human genome5 build 36.1, separated
by the $ character, and then converting all characters to upper
case. hg18.seq was created from that file by replacing the human-
readable characters A, C, G, T, N, and $ with the byte values 0,
1, 2, 3, 4, and 255, respectively. Both files therefore have the same
length and represent the same information, only the alphabets
chosen to encode the sequence differ. The suffix arrays of both files
also differ, since the lexicographical order is different: In ASCII
encoding, N < T, but in byte encoding, T ≡ 3 < 4 ≡ N.

2http://web.unipmn.it/~manzini/lightweight/corpus/
3http://www.michael-maniscalco.com/msufsort.htm
4http://bibiserv.techfak.uni-bielefeld.de/download/tools/bpr.

html
5http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/chromFa.

zip
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File (MB) |Σ| Description

4Chlamydophila 4.9 6 four Chlamydophila genomes
6Streptococci 11.6 5 six Streptococcus genomes
A_thaliana_Chr4 12.1 7 Arabidopsis thaliana chromosome 4
C_elegans_Chr1 14.2 5 Caenorhabditis elegans chromosome 1
E_coli 4.6 4 Escherichia coli genome
Fibonacci 20.0 2 Fibonacci string
abac 0.2 3 Gauntlet corpus
abba 10.5 4 Gauntlet corpus
bible 4.0 64 King James bible of the Canterbury

Corpus
book1x20 15.4 81 Gauntlet corpus
chr22 34.6 5 Homo sapiens chromosome 22
ecoli 14.8 5 The file E.coli of the Canterbury corpus
etext 105.3 146 Project Gutenberg texts
fss10 12.1 2 Gauntlet corpus
fss9 2.9 2 Gauntlet corpus
gcc 86.6 150 GCC 3.0 source files (tar archive)
hg18.dna 3107.7 6 See text
hg18.seq 3107.7 6 See text
houston 3.8 16 Gauntlet corpus
howto 39.4 197 Concatenation of Linux Howto files
jdk 69.7 113 .html and .java files from the JDK 1.3
linux 116.3 256 Linux kernel 2.4.5 source files (tar

archive)
paper5x80 1.0 92 Gauntlet corpus
period_20 20.0 17 Repeated Bernoulli string
period_1000 20.0 26 Repeated Bernoulli string
period_500000 20.0 26 Repeated Bernoulli string
random 20.0 26 Bernoulli string
reuters 114.7 93 Reuters news in XML format
rfc 116.4 120 Concatenation of RFC text files
sprot 109.6 66 Swissprot database (rel.34)
test1 2.1 256 Gauntlet corpus
test2 2.1 256 Gauntlet corpus
test3 2.1 256 Gauntlet corpus
w3c 104.2 256 HTML files of W3C homepage
world 2.5 94 The CIA world fact book (Canterbury

corpus)

Table 39: Description of Benchmark Data Sets.
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The algorithms that we compare are BwtWalkFast (abbrevi-
ated “BwF”), BwtWalkInPlace “BwIP,” Manber-Myers “MM,”
(Manber and Myers 1993) Deep-Shallow “DS,” (Manzini and Fer-
ragina 2004), Skew3, (Kärkkäinen and Sanders 2003) and quick-
sort (“qsort”). There are many more suffix array construction al-
gorithms, some of which are faster than the ones chosen here, but
those have—at the time of writing—not yet been incorporated into
SeqAn. Also, the primary purpose of this comparison is simply to
give an estimate of the performance of the newly implemented
algorithms relative to those that already existed in SeqAn.

The experiments were run on a machine that has four AMD Dual-
Core Opteron 2.4GHz processors (i.e., 8 cores) and 128GB RAM.
The algorithms were run one at a time to avoid memory bandwidth
issues.

16.7.3 Suffix Array Construction Benchmarks

BwtWalk is an inherently serial algorithm with abysmal cache
performance. Each access to lexnextpos (and the other arrays)
is likely to induce a cache miss in long input texts. Nevertheless,
running times in practice are competitive for several strings, espe-
cially on small alphabets. All running times are shown in Table 40.

BwtWalkFast’s specialty is dealing with highly repetitive
strings such as abba, abac, Fibonacci, houston, test{1,2,3}, and
especially the period_. . . files. On those strings, BwtWalkFast

is always faster than the other algorithms, often by a large margin.

BwtWalkFast is weak for medium to large alphabets. Texts
involving the full English alphabet plus perhaps numbers, punctu-
ation, etc. as in the etext, gcc, howto, linux, and w3c files, provoke
long running times.

At first, the houston file seems to be an exception. As shown in
the table, its alphabet size is medium (16 characters), but Bwt-

WalkFast is still the fastest algorithm. On closer inspection, we
find that 98% of that file is made up of only three unique char-
acters. In other words, for BwtWalkFast, the distribution of
character occurrences is a better indicator of performance than
only the alphabet size.
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File DS BwF BwIP Skew3 MM qsort
4Chlamydophila 2.1 1.7 5.2 7.2 29.7 29.4
6Streptococci 4.0 4.9 13.2 18.6 90.4 20.6
A_thaliana_Chr4 3.4 5.8 11.3 20.1 96.8 19.4
C_elegans_Chr1 4.0 6.5 14.2 21.6 107.0 1930.4
E_coli 1.1 2.0 3.9 7.0 30.9 4.9
Fibonacci 360.1 2.6 8.4 20.6 93.1 —
abac 27.7 0.0 17.7 0.0 0.1 903.1
abba 39.7 1.4 8.4 12.0 56.0 —
bible 0.9 6.2 56.7 6.0 25.7 3.6
book1x20 122.7 3.4 1436.2 22.3 79.8 —
chr22 11.2 23.4 6595.2 62.7 374.8 3275.6
ecoli 8.5 4.8 12.7 24.7 117.1 2767.5
etext 55.0 1284.8 7873.5 280.5 1694.0 716.6
fss10 109.9 1.5 5.2 12.8 52.7 —
fss9 8.1 0.3 1.1 2.6 10.3 10144.0
gcc 58.4 540.3 4458.2 179.1 986.7 20524.0
hg18.dna N/A 4321.3 21182.0 16219.5 — —
hg18.seq N/A 4354.5 7953.1 16131.7 — —
houston 124.9 0.5 201.9 1.3 7.8 8211.0
howto 13.3 322.8 1970.7 80.6 421.2 84.3
jdk 51.8 146.1 1516.8 134.3 771.6 639.4
linux 42.6 634.1 4233.7 262.2 1474.5 509.5
paper5x80 0.8 0.1 42.9 0.8 2.7 3237.1
period_20 24785.6 1.5 — 19.5 66.5 —
period_1000 537.3 2.7 — 28.7 138.9 —
period_500000 362.4 3.7 1353.6 33.0 111.2 —
random 6.0 43.8 128.6 26.8 200.1 19.7
reuters 98.8 437.4 — 262.2 1625.9 642.9
rfc 48.7 856.9 6130.2 270.0 1664.3 273.5
sprot 52.8 393.3 22227.8 258.3 1580.2 305.2
test1 17.2 0.2 — 2.6 13.3 —
test2 17.2 0.2 — 2.6 13.3 —
test3 14.8 0.3 785.0 2.4 16.4 23001.5
w3c 83.3 1019.7 9443.5 217.2 1173.2 14536.9
world 0.4 6.0 46.4 3.3 14.4 2.1

Table 40: Suffix Array Construction Running Times. A comparison of
the running times of some of the suffix array construction algorithms im-
plemented in SeqAn, including BwtWalkFast and BwtWalkInPlace.
Dashes (—) denote computations that did not finish within 10 hours; for
hg18, the limit was increased to 20 hours. Since no 64-bit version of Deep-
Shallow is available, it could not be run on the hg18 files (“N/A” in the
table). |Σ| is the alphabet size. The times include neither reading the
input files nor writing the finished suffix array to disk.
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On all of the tested data sets, either Deep-Shallow or BwtWalk-

Fast is the fastest algorithm. This reflects that Deep-Shallow
and BwtWalkFast have opposite strengths. Deep-Shallow is
good on large alphabets and bad on repetitive strings, while Bwt-

WalkFast is bad on large alphabets and good on repetitive
strings.

BwtWalkInPlace is naturally always slower than BwtWalk-

Fast. For some sufficiently benign strings, it takes only approx-
imately two or three times as long as BwtWalkFast (ecoli,
4Chlamydophila.dna, C_elegans_Chr1.dna), but in many cases
its quadratic worst-case behavior is apparent and it is many times
slower than BwtWalkFast.

Fortunately, the human genome sequence hg18.seq is of the benign
sort. For creating a suffix array of such huge strings, memory usage
becomes a concern and since BwtWalkInPlace is very efficient
in that regard, it is still a viable alternative when it is acceptable
to trade construction time for memory usage. Interestingly, that
trade-off becomes less attractive when simply a different encoding
of the alphabet is chosen: Switching from an alphabet that is
ordered (A, C, G, T, N) to one that is ordered (A, C, G, N, T) slows
down BwtWalkInPlace by a factor of approximately 2.6. Still,
both BwtWalk algorithms and Skew3 were the only ones to finish
the construction of the hg18 suffix arrays within an acceptable
time. Deep-Shallow could not be used for that file since only a
32-bit version is available.

Memory Usage

Since memory consumption is only interesting for large files, we
provide it for the construction of the suffix array for hg18.dna.
BwtWalkFast needs 49 GB and BwtWalkInPlace needs
26 GB, while Skew3 requires 64 GB. Manber-Myers and the simple
quicksort algorithm did not finish their construction of the suffix
array, but after some time their memory usage was stable at 78 GB
and 26 GB, respectively.
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Add’l
Algorithm SeqAn Function Memory

BwtWalkFast _createSuffixArrayBwtWalkMin n words
with FastRandomAccess

BwtWalkFast _createSuffixArrayBwtWalkMin 2n words
without FastRandomAccess

BwtWalkInPlace _createSuffixArrayBwtWalkBoth none
with FastRandomAccess [or n bits]

BwtWalkInPlace _createSuffixArrayBwtWalkBoth n words
without FastRandomAccess

Table 41: Overview of Implemented BwtWalk Variants. See also
Sections 16.3 and 16.6.

16.8 Conclusion

We have implemented four versions of the BwtWalk algorithm.
All of them need memory for the input text (n characters) and
memory for the suffix array (n words), where a word is usually
4 bytes on 32-bit systems (limiting the length of the text that
can be indexed) and 8 bytes on 64-bit systems. All versions also
need a constant number of extra words for the lexfirstpos and
lexlastpos tables and further bookkeeping.
SeqAn allows the output pos array to be on external memory, so
the above n words are not required to be available in main mem-
ory. However, since the BwtWalk algorithms need fast random
access to lexprevpos and to lexnextpos (or to lexxorpos), we
can only temporarily use the pos-space for one of the lists if pos
allows fast random access. Otherwise, we have to reserve n extra
words in main memory. Algorithmically, we have the two variants
BwtWalkFast (faster, using n extra words) and BwtWalkIn-

Place (often only twice as slow, but can be much slower, but uses
no extra words of memory). Table 41 gives an overview.
The SeqAn library is fast and generic. This is achieved through
a heavy use of templates. A programmer who wants to extend
SeqAn first needs to learn its paradigms and conventions. Espe-
cially the consequent use of coding conventions is rather important
in SeqAn, as some language concepts are replaced by conventions;
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for example, private fields are simulated through a prepended un-
derscore and inheritance is replaced by template subclassing. In
fact, the first part of this book gives an introduction to these topics
and discusses the reasons for these design choices. Once familiar
with SeqAn’s concepts, it was relatively easy to extend it with
a new algorithm. We highly benefited from the fact that a sim-
ple suffix array construction algorithm was already available and
served as a template.
We hope that this example encourages more researchers and de-
velopers to integrate their algorithms into the SeqAn framework,
so comprehensive benchmarks on large corpora can be run in the
future. Indeed, SeqAn provides an excellent platform to com-
pare different algorithms empirically. The BwtWalkInPlace

example on the human genome shows that large-scale suffix array
construction might still offer a few surprises.
We gratefully acknowledge the help of the SeqAn team; especially
David Weese and Andreas Döring provided additional ideas and
advice. We thank Karsten Klein (TU Dortmund) for pointing us
to the Baron and Bresler (2005) paper.
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