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Preface

This book has its origins in a meeting entitled ‘‘Toward Replacement Parts for the

Brain: Intracranial Implantation of Hardware Models of Neural Circuitry,’’ that

took place in Washington, D.C., in August 1999. The meeting was sponsored by the

National Institute of Mental Health (NIMH), the University of Southern California

(USC) Alfred E. Mann Institute for Biomedical Engineering, and the USC Center

for Neural Engineering. The motivation for the meeting was a growing realization

among neuroscientists, engineers, and medical researchers that our society was on

the threshold of a new era in the field of neural prosthetics; namely, that in the near

future it would be possible to mathematically model the functional properties of dif-

ferent regions or subregions of the brain, design and fabricate microchips incorporat-

ing those models, and create neuron/silicon interfaces to integrate microchips and

brain functions. In this manner, our rapidly increasing understanding of the com-

putational and cognitive properties of the brain could work synergistically with the

continuing scientific and technological revolutions in biomedical, computer, and elec-

trical engineering to realize a new generation of implantable devices that could bi-

directionally communicate with the brain to restore sensory, motor, or cognitive

functions lost through damage or disease.

Recognizing the ambitious nature of such a vision, the goal of the meeting and

thus of this book, was to explore various dimensions of the problem of using biomi-

metic devices as neural prostheses to replace the loss of central brain regions. The

first two chapters focus on advances in developing sensory system prostheses. The re-

markable success in development and clinical application of the cochlear implant,

and the rapid progress being made in developing retinal and visual prostheses, pro-

vide the best foundation for considering the extension of neural prostheses to central

brain regions.

Cortical brain areas in particular present their own set of challenges. Beyond the

issues of designing multisite electrode arrays for the complex geometry and cytoar-

chitecture of cortical brain (chapters 3 and 12) it is clear that neural representations

of sensory receptive fields are not static, but in fact are dynamic, changing over time



and with experience (chapter 4). The limitations of using static, multisite electrode

arrays to extract information from a dynamically changing population of neurons

must be taken into account when designing neural prosthetic systems triggered by

sensory ensemble codes. Sophisticated analyses of multielectrode recordings from

the hippocampus in behaving animals (chapters 5 and 6) emphasize the complexity

of neural representations typical of memory systems in the brain. Hippocampal neu-

rons respond to multiple dimensions (modalities) of a given learning and memory

task, with key, higher-level features distributed across populations of spatially dispa-

rate cells. How to extract information from systems with such complex functional

properties in real time, process that information, and then transmit the processed

output back to other parts of the brain to influence cognitive function and behavior

constitutes a considerable challenge.

Given the multiple levels of function that characterize the nervous system (i.e.,

molecular, cellular, network, or system), chapter 7 provides one of the few existing

theoretical frameworks for modeling the hierarchical organization of neural systems.

Chapter 8 o¤ers some practical approaches for how to organize multidimensional

time series data to achieve representational schemes for sensorimotor coupling.

Despite these complexities, considerable progress is being made in implementing

biologically realistic neural system models in hardware. The importance of this step

is that, to design and construct a neural prosthetic system that can interact with the

brain, the mathematical models required to capture the nonlinear dynamics and non-

stationarity of neural functions need to be miniaturized for implantation in the brain

or on the skull, and need to take advantage of the parallel processing and high-speed

computation o¤ered by microelectronic and optoelectronic technologies. Examples

of such first steps in very large-scale integration (VLSI) are described here for the

hippocampus (chapter 12) and thalamocortical systems (chapter 13). In addition,

the use of photonics and holographic technologies for achieving high-density con-

nectivity between neural processors (chapter 14) and multiple-pattern storage for

context-dependent connectivities and functions (chapter 15) o¤er novel and exciting

possibilities for achieving the complexity of neural system functions in hardware.

Chapter 16 o¤ers a series of intriguing insights on the potential synergy between neu-

roscience and computer engineering; that is, how the capabilities of current VLSI and

photonic technologies can facilitate the implementation of biologically based models

of neural systems, and how our increasing understanding of neural organization and

function can inspire next-generation computational engines.

Finally, designing and controlling the interface between neurons and silicon is a

critical consideration in the development of central brain neural prostheses. Commu-

nication between biotic and abiotic systems must be bidirectional, so that the ‘‘state’’

of a neural system ‘‘upstream’’ from a damaged brain region can be sampled (e.g.,

electrophysiologically recorded) and processed by a biomimetic computational de-
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vice, with the processed output then used to ‘‘drive’’ or alter (e.g., electrophysiologi-

cally stimulate) the state of a neural system ‘‘downstream’’ from the damaged region.

Moreover, the ‘‘sampling’’ and ‘‘driving’’ functions must be achieved through an

interface having su‰cient density of interconnection with the target tissues, and cor-

respondance with their cytoarchitecture (see chapter 12), to maintain the requisite

input-output neural representations required to support a given level of cognitive

function.

Perhaps most important, the neuron/silicon contacts must be target specific and

maintained for multiyear durations to justify the surgical procedures required for im-

plantation. Three chapters (9, 10, and 11) describe some of the latest updates in de-

signing neuron/silicon interfaces and o¤er insights into the state-of-the-art problems

and solutions for this aspect of implantable biomimetic systems.

There were other aspects of the global problem of how to achieve the collective vi-

sion of implantable biomimetic neural prostheses that were covered at the original

meeting but, unfortunately, they are not readily compatible with a written volume.

For example, we considered the need for new graduate education programs to pro-

vide next-generation neuroscientists and engineers with the expertise required to ad-

dress in the scientific, technological, and medical issues involved, and discussed the

technology transfer and commercialization obstacles to realizing a viable medical de-

vice based on an interdisciplinary science and technology foundation for implantable

neural prostheses.

Preface ix
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1We Made the Deaf Hear. Now What?

Gerald E. Loeb

Neurons and modern digital electronic devices both process information in the

form of all-or-none impulses of electricity, respectively called action potentials and

logical states (bits). Over the past 50 years, electrophysiological techniques have

been developed to provide sophisticated, safe, and reliable interfaces between elec-

tricity carried as ion fluxes in water and electricity carried as electron motion in metal

conductors. Neural prostheses consist of the use of such interfaces to replace or

repair dysfunction in the human nervous system. This chapter reviews the promises

and the reality of what has been and might be achieved in the areas of sensory and

motor prostheses, in the hope of providing some useful lessons and strategies for

undertaking even more ambitious projects to repair higher neural functions such as

cognition, memory, and a¤ect.

Some years ago, the New Yorker printed a cartoon showing a bookstore patron

gazing balefully at three aisles of books labeled, respectively, ‘‘nonfiction,’’ ‘‘fiction,’’

and ‘‘lies.’’ That is a useful, if somewhat harsh and labile, way to categorize the sta-

tus of a given scientific proposal to do something ‘‘di‰cult.’’ Using an electronic de-

vice to fix a broken nervous system is certainly di‰cult. The first two New Yorker

categories are akin to the distinction sometimes drawn between problems of ‘‘engi-

neering’’ and those of ‘‘science,’’ which raises the delicate question of what falls into

the third category. Let us start with some examples drawn from other fields and then

try to relate this categorization to actual or potential neural prostheses in order to

understand their technical feasibility, clinical potential, and strategic risk.

The cliché question from the layperson is, ‘‘If we can put a man on the moon, why

can’t we cure cancer?’’ Putting a man on the moon is in the category of engineering

because all the laws of physics required to demonstrate its feasibility are known, and

calculations based on those laws can demonstrate that it is feasible. In fact, theoreti-

cal feasibility has been demonstrable for over a century, but practical achievement

required a lot of technology, time, and money.

At some point between Jules Verne and the Apollo missions, putting a man on the

moon shifted from fiction to nonfiction. I submit that the point occurred when some-

one, probably early in the history of modern rocketry, actually performed the myriad



calculations related to gravity fields, rocket acceleration, fuel e‰ciency, life-support

systems, etc. and couldn’t find any reason why it would not work.

In contrast, curing most cancers remains in the category of scientific research

rather than engineering or clinical practice because we still do not know enough

about what causes cancer or how cells control their reproduction to even identify a

particular strategy for curing cancer in general. One can construct plausible scenarios

for how it might be possible to cure cancer, but they must be based on suppositions

or hypotheses about how cells work that are as yet unproven. Thus, such scenarios

are a credible form of science fiction, permitting even scientists knowledgeable in

those fields to indulge in a ‘‘willing suspension of disbelief.’’

Stories based on time travel, perpetual motion machines, or extrasensory percep-

tion, for example, represent a di¤erent form of science fiction. One can only suspend

disbelief if one doesn’t know enough about physics, thermodynamics, or neurophysi-

ology to realize that the bedrock theory upon which those sciences are based makes

those ideas fundamentally impossible, not just temporarily impractical. I submit that

such stories become ‘‘lies’’ when they are o¤ered up to the lay public with the prom-

ise that if they spend enough money on a particular fiction, it can be made real. They

are particularly pernicious lies if one tells such stories to patients and their families,

who would like to believe and use them as a basis for important personal decisions

on alternative methods of treatment and rehabilitation.

This is not to say that scientific theory cannot be overturned; an eighteenth-century

physicist would have dismissed a story about atomic energy and transmutations of

the elements as such a lie. Nevertheless, it would have been prudent even then to rec-

ognize that the scenario could never be realized by alchemy and to wait for the even-

tual development of quantum mechanics. With the benefit of hindsight, we can look

at the prior criticisms of research on neural prostheses to see if this categorization

might have provided guidance in selecting projects that turned out to be useful.

Cochlear Implants

In the early days of cochlear implants (circa 1975), many knowledgeable auditory

neurophysiologists believed (and some forcefully stated) that a functionally useful au-

ditory prosthesis could not be built. Their arguments were not based on theoretical

limits on the electrical excitability of the auditory nervous system. The biophysics of

neurons in general had been well worked out 50 years earlier, and experiments in

humans had already demonstrated that perceptions of sound could be produced by

reasonable and safe electrical stimulation. Their objection was based on their per-

sonal hypotheses regarding how the central nervous system might process and per-

ceive various temporospatial patterns of electrical activity in the ensemble of

auditory neurons.

4 Gerald E. Loeb



Even as practiced today with multichannel intracochlear electrodes and sophisti-

cated digital signal processors, cochlear stimulation creates temporospatial patterns

of neural activity that are greatly distorted from what would have occurred if those

sounds had been presented acoustically to a normally functioning ear. It turns out

that the brain is much more tolerant of some types of distortion than others and

that it is possible to present this relatively crude electrical stimulation in ways that

the brain accepts as quite natural sound. In fact, recent psychophysical tests in coch-

lear implant patients suggest that the intelligibility of speech as a function of number

of information channels follows essentially the same curve in cochlear implant users

as it does in normal hearing individuals. It levels o¤ at about four to six channels re-

gardless of how many stimulation channels the implant can provide (Wilson, 2000,

1997).

On the other hand, there are a lot of ways to present the same number of informa-

tion channels that are not intelligible at all. In fact, a substantial minority (about

20%) of cochlear implant recipients never acquire high levels of speech recognition,

for reasons that remain mysterious (Kessler et al., 1995; Loeb and Kessler, 1995).

Thus, it was plausible but not provable to assert in 1975 that functional hearing

would not be produced by multichannel cochlear implants. Fortunately for tens of

thousands of deaf people and for the field of neural prosthetics in general, this asser-

tion turned out to be wrong. Cochlear implants progressed from plausible science

fiction to engineering and clinical fact, although it took 20 years to complete this

transition.

There are still reasons for trying to increase the number of useful channels actually

provided, but they fall into the category of incremental improvements rather than en-

abling technology. Such improvements might be expected to enhance performance in

cluttered acoustic environments with background noise. They might also address the

problematic minority who have di‰culty using implants, but this is less certain. The

underlying problem that limits the number of e¤ective channels is related to the ten-

dency for electrical stimulation currents to spread longitudinally in the fluid-filled

scala tympani before passing through the subjacent bony walls into the spiral gan-

glion, where the auditory neurons are stimulated. Addressing this problem requires

substantial changes to the design of the electrode arrays (for example, see figure

1.1), which raises various challenges for manufacturing techniques, surgical insertion

strategies, and biocompatibility.

Alternatively, it may be more useful to address the temporal distortions produced

by the present electrical stimulation waveforms. There are various speech encoding

and stimulus waveforms in use (recently reviewed by Wilson, 2000), but they all in-

troduce an unphysiological degree of synchronicity in the firing of the auditory neu-

rons. The auditory nervous system is exquisitely tuned to decode temporal patterns

(Loeb et al., 1983), so this may be more important than the simple rate coding that

We Made the Deaf Hear. Now What? 5



appears to dominate most sensory encoding systems. By applying very high stimulus

pulse frequencies, the auditory neurons can be desynchronized to fire on random sub-

harmonics of the stimulation frequencies, reducing this unnatural synchronization

(Rubinstein et al., 1999). Unfortunately, such stimulation is less e‰cient in terms of

the mean power consumption needed to produce a given level of perceived loudness.

This would conflict with the emphasis on smaller, lighter prostheses that can be worn

on the ear (see Figure 1.1, insert 2) or even fully implanted in the body. Given steady

improvements in the power e‰ciency of digital signal processing, the power budget

for cochlear implants is increasingly dominated by the power dissipated by pushing

stimulation currents through electrodes and cochlear tissues. The combination of

more channels and higher stimulus pulse rates would require substantially larger,

heavier batteries or more frequent recharge cycles.

Figure 1.1
A cochlear prosthesis consists of an external sound processor (optional configurations shown in inserts 1
and 2) that transmits power and data to an implant (3) that generates complex patterns of stimulation
pulses delivered to the cochlea by a multichannel electrode system. Insert 5 shows a new cochlear electrode
array that attempts to improve the localization of each stimulation channel by pushing the array (4)
against the medial wall of the scala tympani (closer to the spiral ganglion cells to be stimulated) and
by incorporating silicone bumps between contacts to block the longitudinal spread of stimulus currents.
(Illustration of the CLARIONTM system with HiFocusTM electrode provided courtesy of the manufac-
turer, Advanced Bionics Corp., Valencia, Calif.)
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It is not clear whether either the temporal or spatial enhancement strategies will

be useful in any particular patient, much less in all. There are some suggestions that

cochlear implant patients and perhaps even normal hearing individuals vary consid-

erably in their relative dependence on the wide range of partially redundant acoustic

cues that distinguish speech. Conventional cochlear implants are based on replicating

the Helmholtzian place-pitch encoding, but some listeners may depend more on

decoding of the high-frequency temporal cues that arise from phase-locked transduc-

tion of complex acoustic waveforms (Loeb et al., 1983). For example, some subjects

prefer interleaved patterns of biphasic pulses that avoid electrotonic summation be-

tween channels. Other subjects prefer and perform just as well with simultaneous

multichannel stimuli consisting of complex analog waveforms obtained by bandpass

filtering and compressing the dynamic range of the raw acoustic signal.

Despite the wealth of electrophysiological and psychophysical data that can be

collected from patients with multichannel cochlear implants, no correlations have

yet emerged that account for their often striking di¤erences in performance and pref-

erence. Thus, it is not surprising that there are essentially no preoperative predictors

to decide which patients should receive which cochlear electrode or which speech-

processing system. This forces engineering teams to try to design into the implants

a very wide range of signal-processing and stimulus generation and delivery schemes,

greatly complicating what is already perhaps the most complex biomedical device

ever built. That complexity, in turn, demands a high level of sophistication from the

clinicians, who must decide how to program each implant in each patient, and a high

level of design for the supporting software that allows those clinicians to navigate

and manage all those options.

Despite (or perhaps because of ) all these emergent complexities and competing

strategies, cochlear implants remain the visible proof that sophisticated neural func-

tions can be successfully replaced by well-designed neural prosthetic systems. They

succeeded clinically and commercially because even the relatively primitive single-

channel and multichannel devices that emerged in the late 1970s provided useful ben-

efits for the large majority of patients in whom they were implanted (Bilger, 1983).

This provided the impetus for much further research and development that vastly

improved both the basic performance and general usability of cochlear implants. It

also provided a wide range of improved general design and manufacturing tools and

techniques that should be applicable to other neural prosthetic devices, provided that

we understand their underlying basic science.

Visual Prostheses

Research on visual prostheses has been going on for even longer than cochlear

implant development, but it is still stuck in the category of science fiction. In 1965,
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when the scientific community got wind of Giles Brindley’s plan to implant an array

of cortical surface electrodes in a blind volunteer patient, a secret conference was

convened largely to vilify the attempt (notes from that conference can be found as

an appendix to the proceedings of a later meeting edited by Sterling et al., 1971). As

with cochlear implants, it was well known from biophysical theory and prior experi-

mentation that electrical stimulation of the striate cortex (Brodmann’s area 17, now

known as V1) could produce sensations of light (Penfield and Perot, 1963). Contem-

porary hypotheses about visual perception suggested, however, that it would not be

possible to create useful, stable percepts from such stimulation. In the event (a few

months later), the patient reported seeing ‘‘phosphenes’’ that were much more stable

and well defined than had been predicted (Brindley and Lewin, 1968). This led to

about 10 years of aggressively pursued research to build a practical visual prosthesis

based on this approach. It turned out that the surprisingly punctate phosphenes pro-

duced by relatively high levels of poorly focused stimulation were the product of the

surround-inhibitory neural circuitry of cortical columns, which were discovered about

this time. These same circuits, however, also produced uncontrollable nonlinear

interactions between adjacent sites of surface stimulation when an attempt was made

to combine them into images (reviewed by Girvin, 1988). In the end, this plausible

attempt to convert science fiction into engineering fact had to be abandoned.

In order to overcome the problem of the interaction of stimulus channels,

some researchers turned next to developing intracortical microstimulation. Very fine

microelectrodes can be inserted about 2 mm into the cortex so that they stimulate

just a few neurons within a cortical column, using microamperes of current rather

than milliamperes (Ranck, 1975). Given the concurrent advances in the neurophysi-

ology of vision, this approach is now primarily an engineering rather than a science

problem. Unfortunately, it is a very large problem. Small arrays with a few micro-

electrodes have been used successfully to produce stable and apparently combinable

phosphenes in patients (Schmidt et al., 1996; Bak et al., 1990). Scaling this up to

hundreds or thousands of separately controlled channels to produce useful (but still

crude) images poses daunting problems for fabrication, surgical implantation, bio-

compatibility, protective packaging, interconnections, power consumption, psycho-

physical fitting and programming, image acquisition, and real-time data processing.

There are promising technologies under development for each of these requirements,

but their combination into a clinically safe, e¤ective, and practical system remains

only plausible, not certain.

Over the past decade, attention has shifted toward the very di¤erent strategy of

electrically stimulating the retina. Obviously this is not a viable strategy for blindness

caused by damage to the retinal ganglion cells whose axons make up the optic nerve

(e.g., glaucoma, retinal detachment, optic nerve compression), but it might work for

patients with primary degenerative diseases of the photoreceptors (e.g., retinitis pig-
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mentosa and macular degeneration). The problem is that the retinal cells are very

small; biophysical theory predicts that they should be di‰cult to stimulate electri-

cally. Initial experiments in patients with intact retinas (who were undergoing

removal of the eye because of malignant tumors) appeared to confound this predic-

tion because microampere currents produced sensations of light. In fact, this is an

unsurprising consequence of introducing small biases in a system of photoreceptors

and intraretinal circuitry that employs spontaneous activity to create very high sensi-

tivity to weak but coherent incident energy, such as light reflected from dimly illumi-

nated objects. The transduction systems of both the intact retina and the intact

cochlea are built in this way. It has long been known that the first sensations induced

by weak electromagnetic fields are visual and auditory auras. In the absence of this

background activity from the receptors, however, the postsynaptic neurons that gen-

erate all-or-none action potentials to convey sensory information to the brain revert

to their type-specific and predictable biophysical properties.

When electrical stimulation is applied to the vitreous surface of a retina without

photoreceptors, the lowest threshold neural elements are the long, myelinated output

axons of retinal ganglion cells coursing horizontally over the retinal surface on their

way into the optic nerve. Any local subset of these axons would map into a wedge-

shaped sector of the retina. The resulting ‘‘phosphene’’ would not be a promising

primitive from which to create complex visual images. One clever alternative is to

take advantage of the di¤erent membrane time constants of the myelinated retinal

ganglion axons and the unmyelinated bipolar cells, which are local interneurons ori-

ented perpendicularly to the retinal surface (Greenberg et al., 1999). Electrical stimu-

lation becomes more e‰cient when pulse duration approximates this time constant

(Ranck, 1975), so it is possible to selectively stimulate bipolar cells with much longer

pulses (@2 ms) than normal (@0.2 ms). Long pulses may cause problems, however, if

they also require high stimulus currents and repetition rates to produce stable phos-

phenes. A retinal prosthesis is likely to need large numbers of closely spaced, rela-

tively small electrodes to achieve useful image resolution. The individual stimulus

pulses may exceed the charge density limits of the electrode materials (Loeb et al.,

1982) and the aggregate power dissipation may cause excessive heating of the retina.

Initial experiments with relatively crude electrode arrays have been encouraging

(Humayun et al., 2003).

Epiretinal stimulation is likely to lead to the same problems of subliminal channel

interaction that were encountered with cortical surface stimulation. It is possible

that the same fix will be feasible—using penetrating microelectrodes to inject current

much closer to the target bipolar neurons, thereby reducing power requirements and

channel interactions. However, the bipolar cells are biophysically much less excitable

than cortical pyramidal cells, and the retina is a much more delicate place in which

to implant such electrode arrays. Thus, for the time being, this strategy is plausible
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science fiction in need of well-focused experiments to determine theoretical feasibil-

ity. If it is theoretically feasible, then the e¤ort can shift to the formidable technical

obstacles inherent in transmitting large amounts of data and power to dense elec-

trode arrays that have to function for many years in the presence of saltwater and

constant motion.

An alternative approach to retinal stimulation seeks to avoid the enormous com-

plexity of external image acquisition and transmission of power and data to multi-

channel electrode arrays. The idea is to use integrated silicon arrays of photocells

and electrodes implanted into the retina itself, between the superficial photoreceptor

layer on the scleral side and the rest of the retinal ganglion circuitry on the vitreous

side (Chow, 1991). It is a relatively simple matter to compute the maximal electrical

current that can be derived from converting incident photons to electrons, assuming

any reasonable photoelectric e‰ciency. Unfortunately, the answer is in the nanoam-

pere range. There is no biophysical reason to expect such tiny stimulus currents to

evoke action potentials in retinal cells deprived of background depolarization from

photoreceptors.

Neuromuscular Reanimation

For the past 30 years, much of the technology developed for stimulating peripheral

nerves and muscles has been predicated on the notion of getting paraplegics to walk.

Despite substantial research e¤orts, there are no commercially available systems for

locomotion; most research on functional electrical stimulation (FES) of the legs has

retreated to the goal of providing FES-assisted standing. Paradoxically, the feasibil-

ity of electrically stimulating muscles to contract and move the limbs has been

known since Luigi Galvani’s discovery of bioelectricity in 1790. Is this an example

of poor execution or unreasonable expectations?

The main challenge to the creation of clinically viable FES comes neither from

science nor engineering but largely from selecting realistic objectives and tactics.

There are many useful and practical clinical problems that can be addressed, given

our present understanding of neurophysiology and currently available technologies,

but getting paraplegics to walk is not one of them. Paraplegia presents a heteroge-

neous set of conditions in a relatively small population of patients. Moving around

by wheelchair is readily available, relatively cheap, safe, and actually more energy

e‰cient than normal walking or running. Equal-access laws have removed most mo-

bility barriers in public places. Conversely, moving the legs with electrical stimula-

tion of the muscles is highly invasive, cumbersome to program and to use, and

ine‰cient and slow, even in a laboratory environment. In an uncontrolled field envi-

ronment, it is likely to be quite dangerous as a consequence of inadequate strategies

for coping with unpredictable footing and obstacles, the inability to control and min-
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imize injury from falls, and the inability to get up after a fall. The kinematics and

kinetics of unperturbed gait are easily measured in normal subjects, but the central

neural strategies for achieving stability in the face of a wide range of perturbations

and long delays in actuator response are not understood at all. Given these limita-

tions, the resulting product would be unlikely to reduce health care costs or to im-

prove the employability of paraplegics, in which case there would be no motivation

for insurers to pay for it.

We have chosen instead to focus initially on the myriad secondary problems of

muscle paralysis and paresis (Loeb and Richmond, 1999). Many of these result in

substantial morbidity and large health care costs, but may be treatable with a modest

number of stimulation channels and little or no real-time control. We have developed

a modular, generic technology consisting of wireless intramuscular stimulators that

can be injected nonsurgically into a wide range of sites (Cameron et al., 1997; figure

1.2). Each of these BION (bionic neuron) implants receives power and digital com-

mand signals by inductive coupling from an external coil that creates an amplitude-

modulated radio-frequency magnetic field in the vicinity of the implants (Troyk and

epimysial
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12ga

16mm

percutaneous

nerve
cuff

transcutaneous

BIONTM

activated
iridium
electrode

hermetic
glass capsule
with electronic
subassembly

sintered,
anodized
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Figure 1.2
Various approaches to stimulating muscles include transcutaneous and percutaneous electrodes and surgi-
cally implanted multichannel stimulators with electrodes attached to nerves and muscles. BION implants
are shown as they would be injected into muscles through a 12-gauge hypodermic needle. Each implant
receives power and digitally addressed and encoded commands from an external controller and transmis-
sion coil. This system is in clinical trials to prevent disuse atrophy and related complications of upper mo-
tor paralysis, such as stroke and spinal cord injury. In principle, coordinated stimulation of many muscles
could reanimate a paralyzed limb, but this will require substantial advances in sensing command and feed-
back signals from the patient and in emulating the complex and poorly understood control circuitry of the
brain and spinal cord.
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Schwan, 1992). The patient is provided with a portable controller (Personal Trainer)

that creates preprogrammed sequences of stimulation to exercise the muscles.

The first clinical applications of this technology have aimed to prevent or reverse

disuse atrophy of paretic muscles (Dupont et al., 2004). One clinical trial now under

way involves stimulation of the middle deltoid and supraspinatus muscles of stroke

patients to prevent chronically painful subluxation of the flaccid shoulder. Another

involves strengthening the quadriceps muscles to protect an osteoarthritic knee from

further stress and deterioration. Other applications in the planning phase include pre-

vention of venous stasis and osteoporosis in patients with spinal cord injuries, rever-

sal of equinus contractures of the ankle in cerebral palsy patients, and correction of

footdrop in stroke patients. Still other clinical problems that may be candidates for

such intramuscular stimulation include sleep apnea, disorders of gastrointestinal

motility, and fecal and urinary incontinence. For most of these applications, clinical

utility is as yet uncertain, morbidity would be unacceptable, and cost will be para-

mount. The generic, modular, minimally invasive and unobtrusive nature of BIONs

makes them feasible to apply first to relatively simple clinical problems that might

not justify the expense and morbidity of surgically implanted multichannel systems.

The BION technology is suitable for more ambitious FES to reanimate paralyzed

limbs, but first the present microstimulator technology must be enhanced to include

sensing and outgoing telemetry of the signals required for command and control.

Work is under way to accommodate bioelectrical signals such as electromyo-

graphy (EMG), motion and inclination as sensed by microelectromechanical system

(MEMS) accelerometers, and relative position between implants, which can be used

as a form of electronic muscle spindle to compute joint angles. These will be com-

bined in progressively more ambitious ways to address various deficits of grasping

and reaching in quadruplegic patients who have partial control of their arms.

Such applications are less likely than locomotion to run afoul of our still-primitive

understanding of sensorimotor control because speed, energy e‰ciency, and safety

are much less critical.

Conclusions

The clinical and commercial success of cochlear implants has greatly increased the

credibility of the field of neural prosthetics in general and the levels of technology

and funding available to pursue new applications. That this success was achieved

despite knowledgeable naysayers should not be cause for hubris. The laws of physics

apply equally to bioelectricity and to conventional electronics, so they cannot be

ignored. They represent the first and most easily predictable of many scientific, med-

ical, and logistical hurdles that must be overcome to produce any useful neural

prosthesis.
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2 Microelectronic Array for Stimulation of Large Retinal Tissue Areas

Dean Scribner, M. Humayun, Brian Justus, Charles Merritt, R. Klein, J. G. Howard,

M. Peckerar, F. K. Perkins, E. Margalit, Kah-Guan Au Eong, J. Weiland, E. de Juan,

Jr., J. Finch, R. Graham, C. Trautfield, and S. Taylor

During the 1990s a number of research groups began exploring the feasibility of

an intraocular retinal prosthesis (IRP). The hope of providing vision for the blind

has attracted a great deal of attention in the scientific and technological world. Re-

cent advances in the fields of microelectronics, neurophysiology, and retinal surgery

have advanced to the point where an implantable visual prosthetic system, based on

electrical stimulation, is considered feasible.

Another type of neural prosthesis, the cochlear prosthesis for deaf patients, has

been successfully developed and commercialized (Agnew and McCreery, 1990; Hei-

duschka and Thanos, 1998). Development of a retinal prosthesis is generally follow-

ing in the footsteps of the cochlear prosthesis, but is a number of years behind at this

point. Although there are other approaches to a visual prosthesis, this chapter

focuses primarily on the development of an intraocular electronic stimulator array.

Many issues need to be resolved before successful implants become practical for

long-term human use. This chapter describes the scientific and technical issues related

to development of an intraocular retinal prosthetic device.

It is important to note that the retina is a true extension of the brain, and in that

regard, there are many similarities between the design of an IRP and a device for direct

stimulation of the brain or other sensory areas of the central nervous system (CNS).

The first section of this chapter gives a brief description of the retina and some

background on work in visual prosthetics. The second section gives an overview of

the concept for an IRP. Electrical stimulation of the retina is discussed in the third

section. The fourth section discusses the development of a curved-surface electrode

array fabricated using channel glass. E¤orts to design and fabricate a microelectronic

stimulator array for an advanced IRP are described in the fifth section.

The Retina and Prosthetic Devices

The retina is the innermost layer of the eye. It is basically composed of two layers,

the outer retinal pigment epithelium (RPE) and the inner neural (sensory) retina



(figure 2.1). The sensory retina is a delicate sheet of transparent tissue varying in

thickness from 0.4 to 0.15 mm. The anatomical site for detailed fine vision, called

the fovea, is in the center of the macula. The outermost layer of the sensory retina

consists of photoreceptors (figure 2.2); in the macular region, the photoreceptors are

mostly cones (color-sensitive). Other more inner layers of the sensory retina are the

inner nuclear layer with bipolar, amacrine, and horizontal cells; and the ganglion

cell layer. The axons of the ganglion cells form the optic nerve after traversing the

nerve fiber layer.

Photoreceptor loss from diseases such as retinitis pigmentosa (RP) and age-related

macular degeneration (AMD) are the leading cause of legal blindness. Despite near-

total loss of photoreceptors in these diseases, there is relative preservation of the

other retinal neurons. By stimulating the remaining functional retinal layers, it may

be possible to restore visual perception. In other diseases, this approach may not

be practical. For example, in glaucoma (high intraocular pressure with optic nerve

damage), the ganglion cells are primarily damaged. In diseases such as retinopathy

of prematurity, diabetic retinopathy, and vascular diseases of the retina, all the layers

are a¤ected. In these diseases, it is highly unlikely that electrical stimulation of the

retina can restore visual function, and other approaches such as retinal transplanta-

tion or electrical stimulation of the visual cortex should be investigated.

Figure 2.1
Sagittal section of an adult human eye (from Ogden, 1989; modified by Kolb, 2001).
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Background of Visual Prosthetics

During the eighteenth century, scientists began to understand that electricity could

stimulate biological tissues. Galvani showed that electrical stimulation could cause

contraction in muscle preparations (Galvani, 1791). Fritsch and Hitzig (1870) dem-

onstrated the electrical excitability of the cerebral cortex in a dog. They were able to

use this finding to localize electrophysiological functions of the brain. Glenn and col-

leagues (1959) developed a totally implanted heart pacemaker using radiofrequency

waves to transfer information. This technological breakthrough overcame the prob-

lem of stimulating deep neural structures without the danger of infection that can

accompany percutaneous leads. Djourno and Eyries (1957) reported electrical stimu-

lation of the acoustic nerve in a totally deaf human by direct application of an elec-

trode in the inner ear.

Today, a number of research projects around the world are aimed at developing

prosthetic vision systems. The approaches can be categorized most simply by where

the actual stimulation occurs. The device discussed in this chapter addresses the tech-

nical problem of positioning a high-density electrode array against the retina to

achieve very high-resolution imagery. Other e¤orts in the United States, Germany,

and Japan are building on the basic idea of stimulating retinal cells with a small

number of electrodes on a microelectronic chip.

In the past, another approach has been to bypass the retina altogether and stim-

ulate the visual cortex of the brain. In this approach, an array with penetrating

microelectrodes is positioned against the visual cortex. This involves invasive brain

Figure 2.2
Three-dimensional section of human retina (from Polyak, 1941; modified by Kolb, 2001).
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surgery through the cranium. Both of these approaches are discussed in the sections

that follow.

There are two major advantages of the cortical stimulation approach (Normann,

1999). First, the skull is a stable stimulation site and will protect the electronics

and the electrode array. Second, the approach bypasses all distal visual pathway

pathologies. However, it has a number of disadvantages. The retinotopic mapping

on the cortical surface is poorly understood, so patterned stimulation may not pro-

duce patterned perception. Furthermore, it is unclear what visual perceptions will be

evoked by stimulation of cortical neurons. Also, the complex topography of the cor-

tical anatomy makes it a di‰cult site for implantation. Finally, surgical complica-

tions can lead to severe consequences.

Other groups are attempting to develop retinal prostheses that will cause visual

perception by electrical stimulation of the healthy inner layers of the retina in

patients who su¤er from diseases such as retinitis pigmentosa and age-related mac-

ular degeneration. Progress in the field of neural prosthetics has converged with

advances in retinal surgery to enable the development of an implantable retinal pros-

thesis. Initial experiments with intraocular stimulation were performed by de Juan

and Humayun several years ago (Humayun et al., 1994). Since that time, several re-

search groups have begun the development of retinal prostheses (Zrenner et al., 1999;

Humayun et al., 1999; Chow and Peachey, 1998; Eckmiller, 1997; Wyatt and Rizzo,

1996; Veraart et al., 1998; Yagi and Hayashida, 1999). Their approaches can be clas-

sified according to where their device will be positioned—on the retinal surface (epi-

retinal) or in the subretinal space (subretinal).

Epiretinal implantation has the advantage of leaving the retina intact by placing

the implant in the vitreous cavity, a naturally existing and fluid-filled space. Studies

at John Hopkins University Hospital have demonstrated that this position for an

array is biocompatible (Majji et al., 1999). Other groups are examining this approach

as well (Eckmiller, 1997; Rizzo and Wyatt, 1997). The basic concept that has been

described in the past is to mount a miniature video camera (e.g., a charge-coupled

device, CCD) on a pair of glasses. The video signal and power of the output would

be processed by a data processor, and the information transferred to intraocular

electronics by either an 820-nm wavelength laser (Rizzo and Wyatt, 1997) or radio-

frequency transmission from an external metal coil to an intraocular coil (Troyk and

Schwan, 1992; Heetderks, 1988). The power and data transmitted from the laser or

the coil would be converted to electrical current on a stimulating chip that would

then control the distribution of current to the epiretinal electrode array. A later

section of this chapter discusses a means of naturally imaging light onto an epiretinal

prosthesis.

Subretinal implantation of a retinal prosthesis is being developed by Zrenner

(Zrenner et al., 1999; Guenther et al., 1999) and Chow (Chow and Peachey, 1998;
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Chow and Chow, 1997; Peyman et al., 1998). This approach essentially replaces the

diseased photoreceptors with a microelectronic stimulator device. However, the sur-

gical implantation requires detaching the retina, and the location of the device may

be disruptive to the health of the retina (Zrenner et al., 1999). The histology of the

retina after long-term implantation of a device showed a decline in the densities of

inner nuclear and ganglion cell layers (Peyman, et al., 1998). The outer layers of the

retina are nourished by the choroid. For this reason, Zrenner’s group included nutri-

tion openings in each unit of their device. These issues are being examined in recently

announced phase I clinical trials of a subretinal implantation by Chow and col-

leagues in Chicago. A disadvantage of this approach is that it is not applicable to

patients with AMD because the retina is no longer transparent.

Another approach to a retinal prosthesis was proposed by Yagi at the Kyushu

Institute of Technology, Japan (Yagi and Hayashida, 1999; Yagi and Watanabe,

1998). He proposed to develop a device called the hybrid retinal implant. This device

would be an integrated circuit and include both electronic and cellular components.

The neurons on the device would extend their axons to the central nervous system

and thus create a natural device/CNS interface.

The epiretinal and subretinal approaches have several advantages over the cortical

approach. They both have the ability to use existing physiological optics of the eye,

less severe consequences in case of infection, obvious spatial mapping or retinotopic

organization, and natural processing of the electrically stimulated images along the

proximal visual pathways. However, the retina encodes many properties of the image

that are passed on to the higher visual centers (color, intensity, motion, etc.). There-

fore it may be necessary to integrate some image-processing functions into a retinal

prosthesis. This issue is the subject of the next section.

Overview of an Intraocular Retinal Prosthetic Device

The basic concept of an IRP is straightforward: Visual images can be produced in the

brain by electrical stimulation of retinal cells. A layer of retinal cells, such as a gan-

glion cell layer, can be stimulated by using an adjacent microelectronic array that

inputs electrical impulses to create the perception of an image. The axons of the

stimulated ganglion cells then transmit the image through the optic nerve to cells in

the visual cortex. This is in place of the normal phototransduction process that

occurs in a healthy retina. In a large percentage of blind patients, the photoreceptors

are diseased but the other retinal layers are still responsive to electrical stimulation

(de Juan et al., 1989).

One concept for a high-resolution retinal prosthesis is shown in figure 2.3. A ray

trace of photons incident on a retina without a prosthesis is shown in the top half of

figure 2.3. Note that the incoming photons pass through several layers of transparent
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retinal cells before being absorbed by the photoreceptors. In the bottom half of figure

2.3, a retinal prosthesis is shown positioned against the retina. In this case, the pho-

tons are absorbed by a microelectronic imaging array that is hybridized to a glass

disk containing an imbedded array of microwires. The glass disk has one flat side,

while the other side has a curved surface that conforms to the inner radius of the

retina. The microelectronic imaging array is made of thin silicon containing very

large-scale integrated (VLSI) circuitry and photon detectors that convert the incident

photons to an electronic charge. The charge is then converted to a proportional

amount of electronic current that is input into the retinal cells. The cells fire and a

signal is transmitted through the optic nerve.

A number of technical issues must be addressed in designing and fabricating a

retinal prosthetic device that will generate a high-resolution image. First, there is the

problem of creating an electrical interface between the high-density electrode array

and the curved surface of the retina. The electrode array must have a spherical, con-

vex shape to conform to the spherical, concave surface of the retina. The electrode
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Figure 2.3
Basic concept for a retinal prosthesis. A ray trace of photons incident on a retina without a prosthesis is
shown in the top half of the figure. Incoming photons pass through several layers of clear retinal cells be-
fore being absorbed by the photoreceptors. In the bottom half of the figure, a retinal prosthesis is shown
positioned against the retina.
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array must be biocompatible and safe for permanent implantation. Second, the elec-

trical stimulation pulse shapes and repetition rates need to be determined in general

and may need to be optimized for each patient. Third, direct electrical stimulation of

the ganglion cells precludes certain image-processing functions that normally would

have occurred in earlier layers of the retina. Therefore, preprocessing operations

may need to be performed on the image before stimulation of the retina. Fourth,

the power supply to a permanent implant will need to be engineered so there are no

wires or cables through the eye wall. Fifth, because a normal retina processes image

information created by the photoreceptors in a simultaneous manner, it is assumed

that a prosthesis should similarly excite retinal cells in a simultaneous manner (as

opposed to a sequential raster scan like that used in video displays).

A microelectronic stimulator array is described here that addresses many of these

technical issues. The current joint e¤ort between the U.S. Naval Research Labora-

tory and Johns Hopkins University Hospital is aimed at developing a microelec-

tronic IRP stimulator array that will be used in preliminary short-term tests in an

operating room environment. The test device will receive input images from an exter-

nal camera connected via a microcable. These tests will determine the requirements

for a permanent IRP implant that images incident photons, as shown in the bottom

half of figure 2.3.

The test device will allow short-term human experiments (less than an hour) to

study basic issues involved with interfacing a massively parallel electrode array to

retinal tissue. The design combines two technologies: (1) electrode arrays fabricated

from nanochannel glass (NCG) (Tonucci et al., 1992), and (2) infrared focal plane

array (IRFPA) multiplexers (Scribner et al., 1991).

Nanochannel glass is a technology that uses fiber optic fabrication techniques to

produce thin wafers of glass with very small channels perpendicular to the plane of

the wafer (Tonucci and Justus, 1993a,b). Typical NCG wafers that will be required

for retinal prostheses are several millimeters in diameter and contain millions of

channels, with channel diameters on the order of 1 mm. The channels are filled with

a good electrical conductor, and one surface of the glass is ground to a spherical

shape consistent with the radius of curvature of the inside of the retina. The electrical

conductors on the curved surface should protrude slightly to form e‰cient electrodes.

NCG technology is discussed in a later section.

For the test IRP, a microelectronic multiplexer is required. The IRFPA commu-

nity has been developing a similar multiplexer technology over the past decade.

These arrays use microelectronic multiplexers that are fabricated at silicon foundries.

The multiplexer is a two-dimensional array that reads out the infrared images cap-

tured by a complementary detector array that converts photons into an electrical

charge. The charge is integrated and stored in each pixel (sometimes referred to as a

unit cell) for a few milliseconds. The full image is then multiplexed o¤ the array at
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frame rates compatible with commercial video. For a test IRP, the process is essen-

tially reversed, and the device acts as demultiplexer. That is, an image is read onto

the stimulator array. Although the devices discussed here for an IRP will perform

demultiplexing operations, they are simply referred to as multiplexers.

Figure 2.4 shows a test device for an IRP positioned against the retina as it would

be in a short-term human experiment performed by an ophthalmologist. The experi-

mental procedure uses standard retinal surgical techniques identical to those in an

operating room environment. It is necessary that the patient be administered local

(rather than general) anesthesia so that he or she is conscious during the procedure.

Figure 2.5 shows a side view of the fully packaged test device. The NCG is hybrid-

ized to the multiplexer using indium bump bonds; again, this is similar to hybridiza-

tion techniques used in IRFPAs. The image is serially input onto the multiplexer

through a very narrow, flexible microcable. The ceramic carrier with gold via holes

(conducting wires penetrating from the front to the back) provides a mechanically

convenient means of routing interconnects from the top side of the device to the

back side. By designing the ceramic carrier so that the via holes are in close proxim-

ity to the bond pads on the silicon multiplexer, the interconnection can be made with

conventional tab bonds (thin gold ribbons fused to interconnects with mechanical

pressure). This keeps all the interconnects from protruding above the spherical

curved envelope defined by the polished NCG surface and therefore protects the ret-

ina from damage and reduces the risk of breaking a tab bond.

As discussed later, a critical issue for any neural prosthesis is biocompatiblilty and

safety. Because the durations of any tests with the IRP are very short (less than an

Figure 2.4
An intraocular retinal prosthetic test device positioned against the retina as it would be in a short-term
human experiment performed by an ophthalmologist. External-drive electronics are needed to control the
device and interface it with a standard video camera.
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hour), biocompatibility issues are primarily reduced to acute e¤ects and need not

address the more di‰cult chronic issues that arise with permanent implants. Note

that the surface of the packaging shown in figure 2.5 consists only of glass, platinum

electrodes, and silicone encapsulation. However, as with any electronic medical

instrumentation, a major safety issue is electrical shock hazard. The objective of the

device is to provide minimal electrical stimulation of retinal tissue using very low vol-

tages and the smallest currents possible. During this procedure, the patient must be

coupled to the external instrumentation. To protect the patient from any electrical

shock, the patient is isolated from high voltages using optocouplers that are powered

by low-voltage batteries.

Neurophysiology of an IRP

Many questions and concerns arise when interfacing an electronic device to neural

tissue. One fundamental concern is that because the retina is a thin-layered structure,

more than one layer may respond to electrical stimulation. Other questions involve

electrode configurations, electrical currents, and pulse shapes, as well as the impor-

tant issues of safety and biocompatibility.

Preferential Stimulation of Retinal Cell Layers

The advantage of stimulating retinal cells other than ganglions was mentioned ear-

lier. Histological analysis of postmortem eyes of RP (Humayun et al., 1999b; Santos

et al., 1997; Stone et al., 1992) and AMD patients reveals apparently healthy gan-

glion and bipolar cells in the macular region. Experimentally, it has been shown that

phosphenes could be elicited in patients with advanced outer retinal degeneration via

electrical stimulation (Potts and Inoue, 1970; Weiland et al., 1999; Humayun et al.,

1996a; Rizzo et al., 2000). These electrically elicited responses require and indicate

the presence of functioning retinal cells.

retina

microcable silicon multiplexer silicone
encapsulation

indium bumpschannel glass with
microwires

Figure 2.5
Side view of the fully packaged test device for an intraocular retinal prosthesis (IRP). The nanochannel
glass (NCG) is hybridized to the multixplexer using indium bump bonds similar to the hybridization tech-
niques used in infrared focal plane arrays (IRFPAs).
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Retinal ganglion cells (RGC) lie close to the surface of the retina facing the vitre-

ous cavity and send mostly unmyelinated axons in a more superficial layer toward

the optic disk. As the human RGC axons exit the eye, they become myelinated and

form the optic nerve. The cell bodies (somas) of these ganglion cells are mapped over

the surface of the retina in a manner that approximates the projection of the visual

world onto the surface of the retina. However, at any particular location on the sur-

face of the retina, axons from distant sites overlay the individual ganglion cell bodies.

If these superficial passing axons were preferentially stimulated, groups of ganglion

cells from large areas of the retina would be excited. One might expect the visual

perception of such a stimulus to appear as a wedge. On the other hand, if the gan-

glion cell bodies or deeper retinal cells were stimulated, one would expect the visual

perceptions to be focal spots. RP patients that were stimulated with 50–200-mm-

diameter platinum disk electrodes reported seeing spots, not wedges, of light

(Humayun et al., 1999; Weiland et al., 1999; Humayun et al., 1996a).

To explore the possibilities of retinal electrical stimulation, a computational model

of extracellular field stimulation of the RGC has been constructed (Greenberg et al.,

1999). The model predicted that the stimulation threshold of the RGC soma is 58–

73% lower than a passing axon, even though the axon was closer to the electrode.

Nevertheless, a factor of less than 2 does not explain the source of visual perceptions

observed during previous experiments with intraocular patients.

Another possibility was that deeper retinal cells were stimulated. Postmortem

morphometric analysis of the retina of RP patients revealed that many more inner

nuclear layer cells retain functionality (e.g., bipolar cells and others, with 78.4%)

compared with the outer nuclear layer (photoreceptors, 4.9%) and the ganglion cell

layer (29.7%) (Santos et al., 1997). Early electrophysiological experiments showed

that cathodic stimulation on the vitreous side of the retina depolarizes presynaptic

end terminals of the photoreceptors (Knighton, 1975a,b) and bipolar cells (Toyoda

and Fujimoto, 1984). Recently, latency experiments in frog retinas showed that

higher currents stimulate the RGC directly, while lower currents activate other cells

(photoreceptors, bipolar cells) (Greenberg, 1998).

Another finding in those experiments was that shorter stimulating pulses (<0.5 ms)

have an e¤ect di¤erent than longer stimulating pulses (>0.5 ms). There are well-

defined relationships between the threshold current and the duration of the stimulus

pulse required for neuronal activation (West and Wolstencroft, 1983). As the dura-

tion of the stimulus pulse decreases, the threshold increases exponentially. Also, as

the pulse duration increases, the threshold current approaches a minimum value,

called the rheobase. A chronaxie is the pulse width for which the threshold current

is twice the rheobase current. Greenberg (1998) showed that deeper retinal cells

have unusually long chronaxies compared with RGCs. In human experiments, a

short stimulation time (<0.5 ms) created elongated phosphene percepts, while longer
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stimulation (1–8 ms) created rounded percepts (Greenberg, 1998). It can be specu-

lated from these results that there is a preferential stimulation of RGC cells or axons

for short pulses and deeper cellular elements for long pulses.

Interfacing IRP Electrodes to Retinal Tissue

A number of basic physiological questions and concerns arise when interfacing an

electronic device to neural tissue. Three of these questions are addressed here.

What Is the Minimum Current for Neuron Activation? In 1939, Cole and Curtis

found that during propagation of the action potential in the axon of the giant squid,

the conductance of the membrane to ions increases dramatically (Cole and Curtis,

1939). In 1949, Cole designed an apparatus known as the voltage clamp to overcome

the problems of experimentally measuring the Naþ and Kþ currents through the

axon’s membrane. The amount of current that must be generated by the voltage

clamp to keep the membrane potential from changing provides a direct measure of

the current flowing across the membrane. Hodgkin and Huxley (1952a,b) used the

voltage clamp technique and the squid axon to give the first complete description of

the ionic mechanisms underlying the action potential. According to the Hodgkin-

Huxley model, an action potential involves the following sequence of events. A depo-

larization of the membrane causes Naþ channels to open rapidly, resulting in an

inward Naþ current (because of a higher resting concentration of this ion outside

the cell membrane). This current causes further depolarization, thereby opening

more Naþ channels, and results in increased inward current; the regenerative process

causes the action potential.

Electrical stimulation elicits a neural response by ‘‘turning on’’ the voltage-

sensitive ion channels, bypassing the chemically gated channels in the stimulated

cell. There are di¤erent methods by which neurons can be activated. The first is acti-

vation of the cathodic threshold. This is the minimum amplitude and duration of

a stimulus required to initiate an action potential. Once the membrane reaches a cer-

tain potential, a trigger mechanism is released and an action potential results (an all-

or-nothing mechanism). Other methods to stimulate neurons are anodic pulses and

biphasic pulses.

There are well-defined relationships between the threshold charge and pulse

duration (West and Wolstencroft, 1983). Charge and threshold have di¤erent min-

imum requirements during neuronal stimulation. A minimum charge is required

for a shorter pulse duration, in contrast to threshold current, which is minimized

at long pulse durations. Experiments were performed at Johns Hopkins University

Hospital to define threshold currents for electrical stimulation of the retina. One

study assessed the e¤ect of changing the parameters of the stimulating electrode and

the stimulus pulse by recording electrically elicited action potential responses from
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retinal ganglion cells in an isolated rabbit retina (Shyu et al., 2000). It was concluded

that the threshold for stimulation from the ganglion side is lower than from the pho-

toreceptor side, especially when using microelectrodes (19.05 mA versus 48.89 mA,

with a pulse duration of 0.5 ms). Recently, similar experiments with very small elec-

trodes (10-mm diameter) demonstrated successful stimulations with currents as low as

0.14–0.29 mA (Grumet et al., 1999, 2000).

A second type of experiment compared the electrical stimulation threshold in nor-

mal mouse retinas with di¤erent aged retinal degenerate (rd) mouse retinas (Suzuki

et al., 1999). Retinal ganglion cell recordings were obtained from anesthetized 8- and

16-week-old rd mice, and 8-week-old normal mice in response to a constant current

electrical stimulus delivered via a platinum wire electrode on the retinal surface. The

excitation thresholds were significantly higher in the 16-week-old rd mouse (0.075 mC

for an 0.08-ms square pulse) than in the 8-week-old rd (0.048 mC for an 0.08-ms

square pulse) ( p < 0:05) and the normal mouse (0.055 mC for 0.08-ms square pulse)

( p < 0:05). In all groups, short-duration pulses were more e‰cient than longer pulses

(lower total charge) ( p < 0:05). A related experiment involved the electrical stimula-

tion of normal and rd mouse retinas and the visual cortical responses elicited (Chen

et al., 1999). A square-wave stimulus (240G 58 mA) was more e‰cient than the sine

waveform (533G 150 mA) or pulse-train (1000G 565 mA) waveform ( p ¼ 0:002).

In human experiments at Johns Hopkins University Hospital, typical thresholds

observed for retinal stimulation of RP patients was 500 mA with a 2-ms half-pulse

stimulus duration (1 mC/phase) using electrodes with from 50- to 200-mm-diameter

disks that were very near, but not touching the retina (Humayun et al., 1996a). The

quantity charge per phase is defined as the integral of the stimulus current over one

half-cycle of the stimulus duration. In summary, the measurements that have been

made to date serve as useful guides for the threshold levels needed to stimulate retinal

neurons; however, a quantitative relationship between minimum currents, electrode

size, proximity, and pulse shape is still incomplete.

What Is the Maximum Current That Can Be Used Before Impairing the Physiological

Function of Retinal Cells? Among the early studies that have addressed this issue are

the histopathological studies of long-term stimulation by Pudenz et al. (1975a,b,c) as

well as the electrochemical studies of the electrode/electrolyte interface by Brummer

and Turner (1975). Lilly (1961) demonstrated the relative safety of biphasic, charge-

balanced waveforms compared with monophasic waveforms. McCreery et al. (1988)

showed that stimulation-induced neural damage derives from processes associated

with the passage of stimulus current through tissue, rather than from electrochemical

reactions at the electrode/tissue interface.

They also showed that the threshold of tissue damage from electrical stimulation is

primarily dependent on charge density and charge per phase (McCreery et al., 1988,
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1990). Charge density is defined as charge per phase divided by the electrochemically

active electrode surface area. Since total charge density is responsible for the damage

of tissue and electrodes, it has been hypothesized that there is a theoretical limit

for how small electrodes can be (Brown et al., 1977; Tehovnik, 1996). Using simple

waveforms, conservative charge density limits for long-term stimulation with plati-

num are 100 mC/cm2 and 1 mC/phase. For activated iridium oxide electrodes, the

limit is 1 mC/cm2 and 16 nC/phase. Most of the studies that were done to determine

these limits were performed with superficial cortical electrodes (McCreery et al.,

1988, 1990), or intracortical microstimulation (Bullara et al., 1983). Long-term

in vivo retinal stimulation tests still need to be performed to define tissue damage

thresholds.

What Are the Optimum Conditions for Stimulating Retinal Neurons and What Is the

Desired Response? One of the conditions for safe electrical stimulation of neural

tissue is a reversible faradaic process. These reactions involve electron transfer across

the electrode/neuron interface. Some chemicals are either oxidized or reduced during

these reactions. These chemicals remain bound to the electrode surface and do

not mix with the surrounding solution. It is also necessary to know the chemical

reversibility of electrode materials and stimulation protocols. Chemical reversibility

requires that all processes occurring at an electrode that are due to an electrical pulse,

including H2 and O2 evolution, will be chemically reversed by a pulse of opposite

polarity.

The two basic waveforms used in electrical neural stimulation to achieve chem-

ical reversibility are sinusoidal and pulsatile. The sinusoidal waveform is completely

described by its amplitude and frequency. The pulsatile waveform is completely

described by a square-ware pulse amplitude, that is, amplitude, duration, polarity,

and repetition frequency (Gorman and Mortimer, 1983).

Over time, any net dc current can lead to charge accumulation and irreversible

electrolytic reactions. A biphasic current waveform consisting of two consecutive

pulses of equal charge but opposite polarity avoids these problems. A simple mono-

phasic waveform is similarly unacceptable. Studies with isolated rabbit retinas

in both normal and rd mice showed that the electrophysiological response has the

lowest threshold when a cathodic wave is used first. These studies also showed that

the response threshold was lower when a square-wave electrical stimulus was used

(Shyu et al., 2000; Suzuki et al., 1999; Chen et al., 1999).

Electrode Biocompatibility

Because any future implantable device would be positioned against neural tissue for

very long periods of time, potentially decades, a number of biocompatibility issues

need to be addressed. Among them is the following question.
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What Kind of Electrode Array and Attachment Methods Should be Used for Mini-

mizing Any Possible Damage to Neural Tissue? The biocompatibility between an

implanted medical device and the host tissue is as important as its mechanical dura-

bility and functional characteristics. This includes the e¤ects of the implant on the

host and vice versa. E¤ects of the implant on the tissue include inflammation, sensi-

tivity reactions, infections, and carcinogenicity. E¤ects of the tissue on the implant

are corrosion and other types of degradation. Sources of toxic substances are anti-

oxidants, catalysts, and contaminants from fabrication equipment.

Microfabricated electrodes were initially conceived in the early 1970s (Wise et al.,

1970). In subsequent years, the dimensions of these electrodes have been decreased,

using concurrent advances in the microelectronics industry. Today, micromachined

silicon electrodes with conducting lines of 2 mm are standard (Hetke et al., 1994;

BeMent et al., 1986; Kovacs et al., 1992; Turner et al., 1999). Methods for depositing

thin-film metal electrodes have been established. Long-term implantation and in vitro

testing have demonstrated the ability of silicon devices to maintain electrical charac-

teristics for long-periods (Weiland and Anderson, 2000).

Even the ‘‘noble’’ metals (platinum, iridium, rhodium, gold, and palladium) cor-

rode under conditions of electrical stimulation (McHardy et al., 1980; Laing et al.,

1967). Platinum and its alloys with iridium are the most widely used. Using simple

waveforms, conservative charge density limits for long-term stimulation with plati-

num are 100 mC/cm2. For activated iridium oxide electrodes, the limit is 1 mC/cm2

(Beebe and Rose, 1988). Platinum-iridium alloys are mechanically stronger then plat-

inum alone.

Iridium oxide electrodes belong to a new category termed ‘‘valence change

oxides.’’ Iridium oxide layers can be formed by electrochemical activation of iridium

metal, by thermal decomposition of an iridium salt on a metal substrate, or by reac-

tive sputtering from an iridium target. Activated iridium is exceptionally resistant to

corrosion. It appears to be a promising electrode material. Most neural prostheses

use platinum stimulating electrodes, the exception being the BION microstimulator

(Advanced Bionics, Sylmar, California), which uses iridium oxide. Iridium oxide has

been shown in vitro to have a safe stimulation limit of 3 mC/cm2 (Beebe and Rose,

1988). Recently, a titanium nitride, thin-film electrode has demonstrated charge in-

jection limits higher than both platinum and iridium oxide, with an in vitro limit of

22 mC/cm2 (Janders et al., 1996).

Stabilizing the electrode array on the surface of the retina is an especially formida-

ble problem. The biocompatibility and the feasibility of surgically implanting an elec-

trode array onto the retinal surface have been examined at Johns Hopkins University

Hospital. In one experiment, a 5� 5 electrode array (25 disk-shaped platinum elec-

trodes in a silicone matrix) was implanted on the retinal surface using retinal tacks

in each of four mixed-breed sighted dogs for a maximum period of 1 year. No retinal
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detachment, infection, or uncontrolled intraocular bleeding occurred in any of the

animals. Retinal tacks and the retinal array remained firmly a‰xed to the retina

throughout the follow-up period. It was concluded that implantation of an electrode

array on the epiretinal side (i.e., the side closest to the ganglion cell layer) is surgi-

cally feasible, with little if any significant damage to the underlying retina, and that

platinum and silicone arrays as well as the metal tacks are biocompatible in the eye

(Majji et al., 1999).

Another method for attaching electrode arrays is by biocompatible adhesives. Nine

commercially available compounds were examined for their suitability as intraocular

adhesives: commercial fibrin sealant, autologous fibrin, Cell-Tak, three photocurable

glues, and three di¤erent polyethylene glycol hydrogels. One type of hydrogel (SS-

PEG, Shearwater, Inc., Huntsville, AL) proved to be nontoxic to the retina (Margalit

et al., 2000). Hydrogels proved superior for intraocular use in terms of consistency,

adhesiveness, stability, impermeability, and safety.

IRP Experiments

A number of in vivo and in vitro retinal stimulation studies have been performed in

animals and humans at Johns Hopkins University Hospital. The next major step will

be long-term implantation of active devices in animal models to examine the e‰cacy

and safety of such devices.

Specific parameters that will be examined during these experiments are the clinical

appearance of the retina during the period of the implantation, and electrophysiolog-

ical responses—electroretinogram (ERG) and visual-evoked potentials (VEP). The

VEP can be examined by scalp electrodes, subdural surface electrodes, or intracorti-

cal recording of single neurons. These experiments will be conducted in both normal

and retinal degenerate animals. After chronic implantation in animal models, the ret-

ina and cortex will be examined for any histological damage using optical and elec-

tron microscopy. If animal model experiments prove successful, chronic human

experiments would follow with blind volunteer patients.

Future devices will contain more electrodes, more advanced electronics, and radio-

frequency or other wireless communication links. Proper hermetic sealing and the

use of advanced biocompatible materials will improve the host’s response and ensure

the long-term integrity of the device. After successful demonstration of prototype

devices, the issues of biocompatibilty will become the most challenging aspect of

this technology.

Research programs to develop retinal and cortical visual prostheses are progress-

ing in parallel tracks, and it is too early to say if either will provide therapeutic ben-

efit. Chronic experiments in animal models and humans will provide some idea of the

future of these projects in 5 years. A successful retinal prosthetic device will aid only

blind patients a¤ected with outer retinal degenerative diseases such as RP and AMD.
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Other blind patients would benefit from a cortical visual prosthesis. It is not clear

whether humans who became blind early in life will benefit from either type of pros-

thesis. The visual cortex is desensitized to visual information if the eyes are deprived

of visual stimuli during a critical period during early childhood. This process is called

amblyopia. Patients who have been blind from early childhood may have lost their

ability ever to process visual stimuli in the visual centers of their cortex and therefore

lose their ability to benefit from any type of visual prosthesis.

The cortical visual prosthesis, if and when it proves successful, can provide impor-

tant information on the mechanisms and development of amblyopia. Patients whose

blindness is caused by ischemic events, trauma, tumor, or other destructive processes

of the occipital cortex, may also have lost their ability to benefit from the visual pros-

thesis. These questions will be answered in future experiments.

Conformal Microelectrode Array in Retinal Protheses

Specific requirements for the NCG are that the channels be small enough so that

many microwires can be connected to each unit cell. This provides redundancy, but

more important, helps simplify the alignment process when the electrode array is

hybridized to the silicon multiplexer. If the NCG microwires were to approach the

size of the multiplexer unit cells, then a one-to-one alignment would be required.

This would be problematic because of irregularities in the channel glass periodicity

and the possibility of shorting nearest-neighbor cells. On the other hand, very narrow

channels imply very high length-to-width aspect ratios for the channel geometry.

This makes it di‰cult to fabricate large-area NCG samples with the proper thick-

ness. Therefore, a reasonable design goal for the channel width is about a 1-mm

diameter.

The NCG channels must be filled with a high-conductivity material to create

microwires. The microwires can be fabricated by using electrodeposition or infusion

of molten metal under pressure. After the channels have been filled with a conductive

material and the continuity of the microwires has been confirmed, one side of the

glass must be curved to create a spherical surface. Grinding and polishing techniques

similar to those used in lens fabrication can be applied to the NCG pieces. The ra-

dius of curvature is nominally half an inch to provide a conformal fit against the

inside of the retina. This is critically important because it allows the high-density

electrodes to be positioned in direct contact with the retinal tissue. The polishing pro-

cess will create microwires that are slightly recessed with respect to the curved NCG

surface. This is because the metal is softer than the glass. Therefore further process-

ing is necessary to create electrodes that protrude slightly above the curved surface.

This can be accomplished by applying a chemical etch to the surface that removes a

few micrometers of glass.
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In preparation for hybridizing the NCG to the multiplexer, indium bumps can be

deposited on the flat side of the NCG. Alternatively, the microwires can be hybrid-

ized directly to the indium bumps on the multiplexer if they are formed to protrude

slightly from the NCG. Getting the microwires to protrude could again be accom-

plished by chemical etching like that described for forming protruding electrodes on

the curved side of the NCG.

Currently, the electrode arrays that are being fabricated at the U.S. Naval Re-

search Laboratory use a novel approach involving electrodeposition of metals within

microchannel glass and nanochannel glass templates. The total number of electrodes

in an array that is 2� 5 mm can range up to several million. It should be noted that

the total number of electrically addressable pixels (or unit cells) on the silicon multi-

plexer array is in the thousands. Therefore, considerable redundancy is achieved in

the number of electrodes associated with each pixel.

Both microchannel and nanochannel glass are fabricated using glass drawing pro-

cedures that involve bundled stacks of composite glass fibers. The process is begun

by placing an acid-etchable glass rod into an inert glass tube and drawing this pairing

of dissimilar glasses at elevated temperature into a fiber of smaller diameter. Several

thousand of these fibers are then cut and stacked in a hexagonal close-packed ar-

rangement, yielding a hexagonal bundle. This bundle is subsequently drawn at an

elevated temperature, fusing the individual composite fibers together while reducing

the overall bundle size. At this stage, the fibers are hexagonal and contain a fine

structure of several thousand micrometer-sized (typically 5 to 10 mm in diameter)

acid-etchable glass fibers in a hexagonal close-packed pattern. Standard microchan-

nel plate glass is obtained at this point by bundling these fibers together in a twelve-

sided bundle and fusing the bundle together at an elevated temperature.

Alternatively, nanochannel glass may be obtained by stacking the hexagonal

fibers into a new bundle and then drawing the bundle at an elevated temperature,

thereby fusing the individual fibers together and reducing the overall size. In this

manner, submicrometer channel diameters and extremely high channel densities can

be achieved. After the last draw of the glass, the boules are wafered, polished, and

then etched to remove the acid-etchable glass. In this way, a glass with extremely uni-

form, parallel, hollow channels is obtained (Tonucci et al., 1992). A scanning elec-

tron micrograph (SEM) of nanochannel glass having a channel diameter of 0.8 mm

is shown in figure 2.6.

The thickness of the polished and etched channel glass wafers is dependent on the

diameter of the channels and the etching conditions. Wafers can generally be etched

if the thickness is less than 2000 times the channel diameter. For 1-mm diameter

channels, this means that a realistic overall thickness is about 2 mm. This is an im-

portant parameter since in the fabrication of the electrode array to be used in the

IRP, a spherical surface must be ground and polished on one side of the array to
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conform to the shape of the retina. Since the inner surface of a typical human eyeball

has a concave radius of curvature of about 12 mm, it is necessary to grind and polish

a convex, 12-mm radius of curvature on the electrode array. To perform such an op-

eration successfully, the array must have a thicknessb1 mm. If the channel diameter

is less than a micrometer, the aspect ratio of the channels is necessarily greater than

1000. Nanochannel glass is the only technology available at present that can provide

uniform, hollow channels having such large aspect ratios.

Once a nanochannel glass or microchannel glass template having the desired

channel diameter and length is obtained, the next step in the fabrication of an elec-

trode array is the deposition of metal nanowires or microwires in the channels. Elec-

trodeposition of metal nanowire arrays using nanochannel glass templates has been

described previously (Nguyen et al., 1998). In this work, arrays of uniform, continu-

ous nickel wires having diameter of 250 nm were fabricated. In addition, nanotubes

and nanowires of other metals, including platinum, copper, and cobalt, have been

fabricated. Using similar electroplating methods, modified to account for the growth

of metal wires with larger cross-sectional areas, arrays of nickel, copper, and plati-

num microwires have been grown in both microchannel glass and nanochannel glass

templates.

Briefly, the etched glass (hollow channels) is prepared for electrodepostion by coat-

ing one surface with a thin layer of gold. A film of chromium is first applied to ensure

good adhesion of the gold. The gold-coated channel glass is then attached to a gold

Figure 2.6
Scanning electron microscope (SEM) micrograph of nanochannel glass having 0.8-mm-diameter channels.
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electrode that has been similarly coated onto a glass slide. Good electrical contact

between the gold films is required. Electrodeposition of metal within the hollow

channels of the glass proceeds by immersing the sample in an electroplating solution

and applying a voltage using a current-regulated power supply. Growth rates vary

between 0.1 and 1 mm per hour, with a noticeable tradeo¤ between growth rate and

deposition quality. High-quality deposition is observed when the growth rate is main-

tained lower than that commonly used for electrodeposition of bulk metals. The

limited growth rate is most likely due to reactant depletion in the channels because

di¤usion-limited transfer of reactants down the high aspect-ratio channels is unable

to maintain an optimum reactant concentration. Following electrodepostition, the

piece is removed from the slide and both sides are ground and polished to a smooth

finish.

An optical photograph of a microelectrode array of nickel microwires electro-

deposited in channel glass is shown in figure 2.7. The microwire diameter is 5.6 mm.

The overall sample area is >1 cm2. A closeup of the nickel microwires is shown

in the SEM micrograph of figure 2.8. It is apparent from figure 2.8 that the wires

have an extremely uniform shape, are dense, and are well insulated from each

other.

Figure 2.7
Optical photograph of nickel microelectrode array. The channel diameter is 5.6 mm.
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Microelectronic Multiplexer Design for an Advanced IRP

The silicon multiplexer discussed previously performs several operations in a sequen-

tial order. During the first step, an image frame is read onto the multiplexer, pixel-

by-pixel, to each unit cell. Row-by-row, each unit cell samples the analog video input

and stores the pixel value as a charge on a metal-oxide-semiconductor (MOS) capac-

itor. A full field is completed every sixtieth of a second in a manner compatible

with the RS-170 television format (30 frames per second consisting of two fields per

frame); this allows the use of the test prosthesis with standard video equipment.

Figure 2.9 shows the multiplexer jointly developed by the U.S. Naval Research

Laboratory and Raytheon RIO Corporation. The digital electronics is of major im-

portance because it generates the switching pulses that route image data into the unit

cells. Without the on-chip digital electronics, a dozen or more clocks would have to

be input to the device. That would make the cable through the eye wall much larger

and more cumbersome. The use of IRFPA multiplexer technology greatly simplifies

the cable problems through the eye wall.

After all the unit cells have been loaded with the pixel values for the current frame,

the next step is to send a biphasic pulse to each unit cell, which in turn is modulated

in proportion to the pixel value stored in each unit cell. The biphasic pulse flows from

an external source, through each unit cell, thus stimulating retinal neurons in a si-

multaneous manner. This is an important feature of the design because it is a syn-

chronistic action analogous to imaged photons stimulating photoreceptors in a

normal retina. Finally, the electrodes are all connected to ground to prevent any pos-

sible charge buildup at the electrode/neuron interface.

There are several important considerations in designing a device that performs all

these operations successfully. First, the multiplexer operation should be designed with

Figure 2.8
SEM micrograph showing a closeup of the 5.6-mm-diameter nickel microwires of figure 2.7.
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many of the requirements that exist for imaging arrays; for example, good unifor-

mity, low noise, and high dynamic range. Of course, the prosthetic test device moves

image data in the direction opposite to that of a conventional imaging multiplexer;

that is, the image moves onto the device rather than o¤ it, but otherwise the specifi-

cations are analogous. Another consideration is that each unit cell should store an

individual pixel value and then use it to modulate the biphasic pulse that is input to

the retinal tissue through the NCG.

Figure 2.10 shows a simplified circuit design for such a unit cell. Note that the

biphasic pulse and the image data are both generated o¤-chip. This allows greater

flexibility during human testing because any image sequence can be input and com-

bined with any shape of biphasic pulse. The switch at the bottom of figure 2.10 pro-

vides the capability to connect the retinal tissue to ground to avoid any possibility of

charge buildup.

Ancillary Electronics

The operation of the test device during acute experiments is controlled and powered

by external ancillary electronics (figure 2.11). The input signal is an image sequence

at data rates fast enough to achieve 60 frames per second. As mentioned earlier, the

multiplexer array can be designed to sample the multiplexed input signal in a manner

compatible with the RS-170 format. This allows the test prothesis to be interfaced

Bond pads

Control logic

Row MUX

Column MUX

Output MUX (test)

Unit cells (80 x 40)

6 mm

3.2 mm

Figure 2.9
The floor plan of the microelectronic test IRP. Mux, multiplexer.

Stimulation of Large Retinal Tissue Areas 35



Figure 2.10
Conceptual design of the unit cell for a test device for an IRP showing the external inputs from o¤-chip.
The pixel values are acquired from a camera (or any other video system that generates RS-170 signals) and
are routed to each unit cell via a pixel-by-pixel raster scan through the on-chip multiplexer. The biphasic
pulse is generated o¤-chip and delivered to each unit cell via a global connection.

Figure 2.11
Block diagram of ancillary electronics for a test device for an IRP.
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directly with any standard video camera. This includes the use of a personal com-

puter that stores digital imagery and can display sequential fields at a 60-Hz rate.

The drive electronics control of the multiplexer array uses precisely timed pulses in

a manner similar to that used in typical imaging arrays. The sync pulse generator is

used to synchronize the RS-170 signal with the clocking pulses. Briefly, the sync pulse

generator detects the beginning of each RS-170 field and then sends a corresponding

pulse to the drive electronics box that triggers the clocking signals that control each

field of image data input to the multiplexer. The isolation interface box is used to iso-

late the human subject from any high-voltage power supplies. The box contains

optocouplers that isolate the clocks and biphasic pulse signals and low-voltage bat-

teries for supplying bias potentials.

The biphasic pulses used to stimulate the retinal tissue can be programmed so that

any pulse shapes can be tested. This has several important implications for the devel-

opment process. First, because the input impedance to the retinal tissue has both a

resistive and capacitive reactance associated with it, a square-wave voltage pulse

will not produce the desired square-wave current pulse. Neurobiologists have found

that square-wave current pulses are best to achieve e¤ective neural stimulation. With

knowledge of the output impedance at the electrode/retina interface, a voltage shape

can be computed that will provide a square-wave current pulse, thus providing e‰-

cient stimulation. Second, there is evidence that di¤erent-shaped pulses will stimulate

di¤erent layers of the retina—probably because of their di¤ering frequency responses.

Specifically, it is expected that either the ganglion or bipolar cells can be selectivity

stimulated. Stimulating the bipolar cells instead of the ganglion cells has the advan-

tage of reaching more deeply into the retina, allowing more use of natural signal

processing.

Algorithms

As mentioned earlier, direct electrical stimulation of the ganglion cells precludes cer-

tain processing functions that normally would have occurred in the earlier layers of

the retina. Therefore, it may be necessary to perform certain functions on the incom-

ing imagery before stimulation to compensate for the missing processing. Unfor-

tunately, a detailed model of human retinal functions has never been confirmed.

Nevertheless, animal models of retinal processing exist and are suitable for use in

defining processing algorithms. In fact, an existing model of the tiger salamander ret-

ina (Teeters et al., 1997) has been mapped onto the PC controller shown in figure

2.11.

As a future concept, a permanent IRP that responds to incident photons naturally

imaged through the lens of the eye was shown in the bottom half of figure 2.3. It

would be surgically implanted, with no external connections passing through the eye
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wall. The basic design is based extensively on the test IRP described here. Specifi-

cally, the permanent implant would use an NCG array hybridized to a silicon chip

in a manner identical to that of the test device. However, the unit cell circuitry would

need to be redesigned in that the image would no longer be multiplexed onto the chip

through an electrical lead from an external camera. Instead, the image would be gen-

erated simultaneously within each unit cell through a photon-to-electron conversion

using a silicon photodiode. The photons can propagate directly into each unit cell

because the silicon chip can be used in a backside illuminated configuration—

essentially the photons enter through the back side of the silicon chip. Therefore, the

packaging of the device would be di¤erent than that shown for the test device. An

implanted IRP would need to allow photons to pass through its back side. This is a

simple matter of eliminating the ceramic carrier. To improve the quantum e‰ciency,

the silicon chip can be thinned.

Note that because there is no need for any multiplexing functions, that is, input

of imagery onto the chip from an external camera, the design of the silicon chip

becomes much simpler. There are no ancillary electronics, as was needed in the case

of the test device. Although there are no multiplexing requirements, there are two

new requirements. Specifically, these are external power and a command link to ad-

just the operation of the IRP. Power and signals can be transmitted to the IRP with

an inductively driven coil or antenna (Liu et al., 1999). The major on-chip electronic

controls needed are adjustments of bias supplies and the biphasic pulse generator,

plus the standard digital electronics that supply timing for simultaneous operation

of the unit cell sequences.

The packaging of the permanent implant is demanding. Along with issues of

biocompatiblilty is the question of operational lifetime. Permanent implants might

need to operate for several decades. Similar requirements exist for other electronic

implants, such as cardiac pacemakers and cochlear prostheses.

Summary

The hope of restoring vision to the blind is now believed to be a real possibility using

neural prostheses. However, many technical problems remain and many engineering

issues must be resolved before complete clinical success is achieved. Not the least of

these problems is solving the issues of biocompatibility and the reliability of a device

that will be implanted and expected to function without degradation for decades. Ul-

timately, the true measure of success will be the acceptance of this approach by the

blind community. It is hoped that this success will parallel that of the cochlear im-

plant, which although initially slow, continues to grow exponentially each year and

is now a fully commercialized medical product.
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3 Imaging Two-Dimensional Neural Activity Patterns in the Cat Visual
Cortex using a Multielectrode Array

David J. Warren, Richard A. Normann, and Alexei Koulakov

The neural mechanisms that mediate each of the complex process of sensory encod-

ing, volition, perception, cognition, and memory are distributed over large numbers

of individual neurons that in turn are distributed over di¤erent functional centers in

the brain. A reasonable hypothesis advanced by systems-level neuroscientists is that

the expression of these higher-order brain functions is a direct consequence of and is

directly reflected in the coordinated spatiotemporal activity patterns of distributed

neuronal ensembles. This hypothesis is beginning to be validated in studies of record-

ings of activity patterns in neural ensembles in the visual pathways excited by

patterned visual stimuli (Singer, 1993; Warland et al., 1997; Stanley et al., 1999; Nor-

mann et al., 2001).

One of the most challenging problems confronting contemporary systems-level

neuroscientists is how to gain access to the responses of large numbers of neurons in

order to study this distributed information processing. Two general approaches are

being applied in animal models today: (1) direct visualization of neural structures

that have intrinsic or extrinsically augmented optical properties that correlate with

the activity patterns of neural ensembles (Blasdel and Salama, 1986; Grinvald et al.,

1986; Shtoyerman et al., 2000; for a review, see Grinvald et al., 1999), and (2) multi-

electrode recordings of activity from individual members of such ensembles (Kruger

and Aiple, 1988; Meister et al., 1994; Stanley et al., 1999; Normann et al., 2001).

While these optical imaging approaches are highly invasive, they have allowed

neuroscientists to better understand the functional architecture of the cerebral cortex

by inferring the patterns of neural activity in the observed region from direct optical

visualization of an animal’s exposed cerebral cortex. Localized regions of neural

activity are expected to subtlety alter regional optical features, mediated by such

factors as blood flow requirements. Accordingly, di¤erential recording of the optical

properties of the cerebral cortex at two di¤erent wavelengths provides a signature

that is altered by specific neural activity in a fashion that appears to be consistent

with maps made with single-electrode electrophysiological techniques.



These optical visualization techniques provide virtually continuous images from

the cortical surface, but these approaches su¤er from shortcomings in temporal reso-

lution that today can be mitigated only by multielectrode recording techniques. Spe-

cifically, single-microelectrode recordings allow the systems neuroscientist to record

the responses of individual neurons (single units) with submillisecond time resolution

and with single-neuron spatial resolution. This spatiotemporal resolution cannot be

achieved with contemporary optical techniques. In order to extend this capability,

electrophysiologists have developed arrays of electrodes that allow one to record

simultaneously from large numbers of single units. Meister (Meister et al., 1994) and

Masland (Masland, 1996) have used arrays of transparent flat disk electrodes, photo-

lithographically created on glass substrates, to record from ganglion cells in isolated

rabbit and salamander retinas. In order to record from cell bodies deeper within

neural tissues, Kruger (Kruger and Aiple, 1988), Wise (Wise and Najafi, 1991),

Normann (Jones and Norman, 1992), Eckhorn (Eckhorn et al., 1993), Nicolelis

(Nicolelis et al., 1993), and McNaughton (Gray et al., 1995) have developed arrays

of electrodes that have been designed to penetrate into tissues. These techniques vary

in complexity from sets of individual ‘‘microwires’’ (Nicolelis et al., 1993), twisted

sets of wires (stereotrodes and tetrodes; Gray et al., 1995), to complex 3-D systems

built from silicon (Wise and Najafi, 1991; Jones et al., 1992).

These electrode arrays have enabled the simultaneous recording of multi- and

single-unit activity from large numbers of neurons in anesthetized animals and in

behaving animals. Furthermore, the signal-to-noise ratio of this technique allows

one to directly record the neural activity patterns in limited areas of the cerebral cor-

tex in real time, and in response to single presentations of sensory stimuli in only

moderately restrained animals. It is hoped that the technique will allow systems-level

neuroscientists to begin to understand the role of the temporal features of the ensem-

ble responses in distributed neural processing.

This chapter explores the use of an array of 100 penetrating electrodes (the Utah

Electrode Array or UEA) to simultaneously record from large numbers of multiple

and single units in the visual cortex of the anesthetized cat. This number of electrodes

is su‰ciently large that imaging of the neural activity of localized regions of the ce-

rebral cortex is becoming possible. While this microelectrode array currently is being

used to study many di¤erent aspects of cortical information processing, we summa-

rize here how it can be used to study three basic features of the cortical functional

architecture: the neural representations of ocular dominance, orientation sensitivity,

and spatial visuotopy. We also demonstrate its use in recording ensemble responses

to single presentations of simple visual stimuli.

The data obtained from these studies are directly relevant to the problems of devel-

oping cortically based sensory and motor neuroprostheses where large numbers of

individual neurons must be selectively recorded from or stimulated. We conclude the
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chapter with a discussion of the use of these microelectrode arrays as a means for

restoring a lost sensory sense in those with profound blindness. When implanted in

motor pathways, these arrays could also enhance limited or lost motor function in

individuals with spinal cord injury or with demyelinating disorders.

Measurement Techniques and Instrumentation

Experiments were performed under animal care and experimental guidelines that

conformed to those set by the National Institutes of Health. Only a brief description

of the animal preparation, maintenance, and surgical procedures is given here be-

cause they have been fully described elsewhere (Nordhausen et al., 1996; Warren et

al., 2001). Felines were inducted with Telazol, cannulated, intubated, and their heads

immobilized. The animals were artificially ventilated and anesthesia was maintained

with halothane (approximately 0.8% during recording). The visual cortex was ex-

posed by a 1- to 2-cm-diameter craniotomy and the dura reflected. Paralysis was

established with pancuronium bromide (0.1 mg/kg/h, i.v.). The pupils were dilated,

the nictitating membranes were retracted, and the eyelids were sutured open. Gas-

permeable contact lenses were placed in each eye to protect the corneas. The retinas

were back-refracted onto a tangent screen and the locations of retinal landmarks

were recorded on the screen to locate the area centralis (Bishop et al., 1962; Nikara

et al., 1968).

An acute configuration of the Utah Electrode Array (Cyberkinetics Neurotech-

nology Systems, Inc. Foxborough, MA) was used for all experiments. An electron

micrograph of the UEA and a light micrograph of the implant array system are

shown in figure 3.1.

The fabrication and characteristics (Jones et al., 1992) as well as the pneumatic

insertion technique (Rousche and Normann, 1992) of the UEA are described else-

where. For the array used, the 1.5-mm-long electrodes were arranged in a 10� 10

grid with 0.4-mm spacing between adjacent electrodes. The electrode impedance

measured with a 1-kHz, 100-nA, sinusoidal signal ranged between 200 and 400 kW,

with the typical impedance around 300 kW. The UEA was implanted to a depth of

approximately 1 mm at the junction of the lateral and posterior lateral gyri.

Neural activity as well as the state of the visual stimulus was recorded by a 100-

channel data acquisition system (Cyberkinetics Neurotechnology Systems, Inc.).

This system filtered (250–7500 Hz) and digitized the neural signals. Further details

of the data acquisition system are available elsewhere (Guillory and Normann,

1999). In the experiments described in this chapter, we collected data from both

eyes and recorded activity on 98 of the possible 100 electrodes. No data were

recorded on the remaining two channels because these two amplifiers had known

problems.
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Visual Stimulus

All stimuli were provided by a 17-inch computer monitor placed at the approximate

visual space representation of the area centralis and 95 cm from the eye. The monitor

had a 640� 480-pixel resolution and 100-Hz refresh rate. Stimuli were presented

monocularly. A number of di¤erent visual stimuli were produced by software devel-

oped by the authors. The stimuli used to evoke the responses described in this chap-

ter were sinusoidal gratings, single drifting bars, and a random checkerboard pattern.

In the case of gratings, the spatial and temporal frequencies were approximately 0.25

cycles per degree and 2 Hz, respectively. Twelve equally spaced orientations were

tested between 0 and 330 degrees, where 0 degrees was defined as vertical stripes

sweeping to the right and 90 degrees was defined as horizontal stripes sweeping

from top to bottom. Each oriented stimulus was presented for 3 s, followed by ap-

proximately 3 s of a screen uniformly lit at the background intensity. Three hundred

trials were performed, giving twenty-five repeats for each orientation.

The orientation for each trial was randomly assigned through a shu¿ing algo-

rithm, thereby ensuring that each orientation was tested an equal number of times. In

the case of the single bar, the bar’s width and velocity were approximately 2 degrees

and 8 degrees per second, respectively. The same twelve orientations were tested, but

each trial consisted of 64 s of stimulation with a bar, resulting in four passes of the

bar, followed by approximately 4 s of a uniformly lit screen at the background inten-

sity. Only forty-eight trials were performed, representing four trials at each orienta-

tion. Again, the orientation for each trial was selected by a shu¿ing algorithm.

Figure 3.1
The Utah Electrode Array (UEA) consists of 100, 1.5-mm-long electrodes that project from a 0.25-mm-
thick, 4� 4 mm silicon substrate (see inset). The array is connected to a connector board by 100, 25-mm-
diameter insulated wires.
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The checkerboard pattern consisted of a number of 1:1� 1:1-degree squares.

Using a pseudorandom number generator, each square was set to one of three inten-

sities: white with 15% probability, o¤ with 15% probability, or background with 70%

probability. The logical origin of the screen was selected randomly. This allowed the

entire checkerboard to be shifted both vertically and horizontally by 0.14-degree

steps. A new checkerboard with a new logical screen o¤set was displayed at a rate

of 25 Hz. For all stimuli, the di¤erence between the most intense white and darkest

black was selected to give a 50% contrast, with the background intensity set half-

way through the intensity range. In addition, all stimuli completely filled the entire

screen.

Data Analysis

The optimal orientation was calculated from the drifting sine wave gratings by the

method described by Orban (1991). For each orientation tested, a peristimulus time

histogram (PSTH) was calculated for the activity recorded on each electrode. The

optimal orientation for each multiunit was selected as the orientation giving the

largest firing rate for that unit.

The recently introduced method of electrophysiological imaging (Diogo et al.,

2003) was utilized to estimate the optimal orientation at locations between electrodes.

In this method, one interpolates activity-level maps for each of the conditions tested;

here it was the orientation of a drifting sine wave grating. The condition maps are

then combined using the same methods used by the optical imaging community to

give a single response map. Their finding that the map of activity for a single condi-

tion is relatively smooth supports the validity of interpolating the condition maps.

The same method was also used to estimate the ocular dominance.

A reverse correlation method was used to estimate the receptive field size and

position from the random checkerboard stimulus (Jones and Palmer, 1987; Eckhorn

et al., 1993). In brief, this method performs a cross-correlation between the occur-

rence of a spike and the state of each of the pixels of the computer monitor. Since

there is a delay between changing the visual stimulus and the resulting spike, the

cross-correlation is typically only examined over a period of 100–20 ms before the

spike. After normalization, the result is a three-dimensional array of t-scores, with

two of the dimensions representing the vertical and horizontal extent of the computer

monitor and the third the latency from the state of the display to a spike. Since the

result is presented as a t-score, typically out of a distribution with a very large num-

ber of degrees of freedom, the magnitude of the cross-correlation has units of stan-

dard deviations. A more complete description of the statistical interpretation of the

cross-correlation as well as the spatial and temporal criteria that we apply before

accepting a region as being a receptive field are detailed elsewhere (Warren et al.,

2001).
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In this chapter, we defined the receptive field to be the contiguous region having a

magnitude greater than 4.3 standard deviations (SD). The size of the receptive field

was calculated as the area bounded by this region. The location of the receptive field

was defined as the center of mass of the region. Both the size and position were cal-

culated at the latency having the peak magnitude.

Fitting Receptive Fields

To analyze the visuotopic organization of the primary visual cortex, we compared

the position of the receptive field with fields estimated by an a‰ne coordinate trans-

formation of the locations of the electrode array onto its visual space representation.

The particular a‰ne transformation provides 5 degrees of freedom: magnification

(SFx and SFy), the rotation (y), and translation (OFFa and OFFe). A nonlinear,

least-mean-squares minimization method (FMINS function in MATLAB) was used

to minimize the di¤erence between the coordinate transform and the measured recep-

tive fields. The electrode position (Ex and Ey) was related to the visual space position

by the equation

Vh

Vv

� �
¼

SFx cos y SFy sin y

�SFx sin y SFy cos y

� �
Ex

Ey

� �
þ OFFa

OFFe

� �
;

where Vh and Vv are the horizontal and vertical positions of the receptive field in

degrees, respectively. We interpreted our results in terms of both linear and confor-

mal mapping. A conformal map is one that preserves angles. For example, a trans-

formation on a grid printed on a rubber diaphragm that has been stretched is a

conformal operation.

Results

The use of the UEA requires a new approach to electrophysiological measurements,

and it o¤ers distinct advantages and disadvantages over the conventional single-

electrode technique. The problem of inserting 100 electrodes simultaneously into the

cortex precludes the possibility of positioning each electrode individually so that it is

recording optimally from a well-isolated single unit. Rather, the entire array must be

rapidly inserted (Rousche and Normann, 1992) to a precisely determined cortical

depth. The recordings are then made from the electrodes that have either multiunit

or single-unit activity on them. Thus, the number of electrodes having single- or mul-

tiunit recording capability varies considerably from experiment to experiment, and

the quality of the recordings varies from electrode to electrode in each implantation.

Because the position of the electrode cannot be adjusted to optimize recordings,

the length of its exposed tip has been increased to improve the likelihood of record-
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ing useful neural activity from as many electrodes as possible, yet still preserving an

adequate signal-to-noise ratio for the units that are recorded. Thus the impedances

of the UEA electrodes are lower than those of conventional single microelectrodes

and range from 200 to 400 kW. An example of recordings we made with the UEA is

shown in figure 3.2A, where we have superimposed responses from an electrode that

recorded a mixture of well-isolated multiple and single units. Note that for reasons of

clarity, only 100 of the 24,000 spikes recorded on this electrode during a half hour

trial are shown. Figure 3.2B shows 50 superimposed responses after o¿ine identifica-

tion and classification of two distinct single units that were readily isolated from the

multiunit records of figure 3.2A. Unit classification was done by a mixture of Gaus-

sian methods (Sahani et al., 1997; Lewicki, 1998; Jain et al., 2000).

The size of the single units recorded with the UEA varies substantially from elec-

trode to electrode. In this experiment, one electrode recorded single units that had an

amplitude of 700 mV. The mean, isolated single-unit amplitude was 110G 50 mV, and

the median single-unit amplitude was 95 mV.

Single- versus Multiunit Response Characteristics

The recordings described in this chapter were obtained in our best experiment

to date. Of the 100 electrodes in the array, only two had unrecordable neural activity,

owing to two nonfunctioning channels in our multichannel amplifier. Of the 98

recording electrodes, 29 had clearly visible single units and 57 had isolatable single

units using a mixture of Gaussian approaches. The remainder recorded only noniso-

latable multiunit activity. In order to produce the most complete electrophysiologi-

cally determined maps, we used the multiunit recordings to determine orientation,
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Figure 3.2
Specimen records of (A) typical mixture of multiunit wave forms recorded with the UEA, and (B) two
single units that were isolated and classified (o¿ine) from the multiunit records of Figure 2A. The gray
unit was an ‘‘on-center’’ cell and the black unit was an ‘‘o¤-center’’ cell.
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ocular dominance, and visuotopic organization. We justify this simplification be-

cause the receptive field properties measured with both multiple and single units

recorded with the same electrode had very similar spatial properties. This compar-

ison of multi- and single-unit receptive field properties is illustrated in figure 3.3,

where we plotted the receptive fields measured with spike-triggered averaging (the re-

verse correlation technique) from multiple and single units recorded with one of the

100 electrodes in the UEA (the units illustrated in figure 3.2).

The two receptive field plots were made using the same absolute visual space coor-

dinates. As expected, the size of the multiunit receptive field is larger (5.2 degrees2)

than that measured from the single-unit data (3.4 and 2.6 degrees2), and the centers

of mass of the two receptive fields in figure 3.3B di¤er from the center of mass of the

multiunit receptive field by 21 and 32 seconds of arc. The lack of an ‘‘o¤’’ compo-

nent in the multiunit receptive field in figure 3.3A is due to the much larger number

of spikes used to generate the receptive field plot in that figure compared with the

number of identified spikes used to generate the receptive field map of figure 3.3B.

The estimated ocular dominance and the measured orientation sensitivity of the two

measures were very similar. We have performed similar comparisons in five other

well-isolated single units, and reached similar conclusions: the spatial properties of

the multi- and single-unit data are su‰ciently similar to justify the use of multiunit

data in the genesis of the functional maps described here.
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Figure 3.3
Receptive field plots generated with the reverse correlation technique from data recorded from one of the
100 electrodes in the UEA (the multi- and single-unit data shown in figure 3.2). (A) Plot generated from
multiunit data. (B) Plot generated from the two single units shown in figure 3.2B. The upward-plotted
unit is the ‘‘on’’ unit and the downward-plotted unit is the ‘‘o¤ ’’ unit of figure 3.2B. The horizontal and
vertical grids on each plot are built from 1-degree squares. The magnitude is represented in terms of
‘‘t-scores.’’
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Summary of Receptive Field Properties

We used spike-triggered averaging to determine the receptive field properties of

the multiple and single units recorded with each electrode. We measured the ‘‘on’’

and/or ‘‘o¤’’ nature of the receptive fields, the ocular dominance, the orientation sen-

sitivity, and the receptive field areas of the multiunits recorded on all 98 electrodes.

One significant advantage of using microelectrode arrays in such experiments is that

one can measure receptive field data from all 100 electrodes in the time it takes to

measure the same data from a single electrode. We have summarized these receptive

field data in the histograms of figure 3.4.

About half of the cells were of the ‘‘on’’ type; 6% responded mainly to the ‘‘o¤’’ of

the stimuli; and 21% responded to both ‘‘on’’ and ‘‘o¤’’ components of the stimuli.

Eighteen percent of the cells did not have a receptive field that could be revealed us-

ing spike-triggered averaging, but these cells responded well to moving bars. The oc-

ular dominance histogram showed that most multiunits were binocularly stimulated.

Eighty-two of the 98 multiunits showed significant orientation sensitivity, with half

of the cells being most sensitive to vertical lines. However, all orientations were rep-

resented in the 98 multiunits studied. Finally, the mean receptive field size of all 98

multiunits was 5:6G 3:4-degree2 (SD).

Ocular Dominance Maps

A fundamental organizational feature of the primary visual cortex is the representa-

tion of visual input from each eye. This feature was originally studied electrophysio-

logically (Hubel and Wiesel, 1962), and subsequently histologically (LeVay et al.,

1975). Both techniques reveal a segregation of inputs from each eye in layer IV,

where the ipsilateral and contralateral inputs alternate in a striped pattern. While

input from each eye is delivered to the visual cortex as an independent message, the

layers of visual cortex manifest binocular responses to varying degrees. Ocular dom-

inance was readily mapped using the UEA by recording the responses from all elec-

trodes in the array to sinusoidal grating stimulation delivered sequentially to each

eye. The ocular dominance for each electrode was quantified by the following rela-

tion:

ocular dominance factor ¼ ½ðNc �NoÞ � ðNi �NoÞ�=½ðNc �NoÞ þ ðNi �NoÞ�;

where Nc is the average firing rate for contralateral stimulation, Ni is the average

firing rate for ipsilateral stimulation, and No is the average firing rate in the absence

of stimulation. If the di¤erences between contra- or ipsilateral firing rates during

stimulation and the firing rates in the absence of stimulation were negative, this dif-

ference was set to zero. Thus, if the multiunit activity is exclusively driven by the con-

tralateral eye, the ocular dominance will be approximately þ1, and if it is driven

exclusively by the ipsilateral eye, the ocular dominance will be approximately �1.
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Receptive field properties of the multiunits recorded with the UEA. Measurements were made simultane-
ously in all 98 electrodes.
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Multiunits driven equally by both eyes will have an ocular dominance factor of ap-

proximately 0.

An ocular dominance factor was calculated for the multiunits recorded on each

electrode, and the resulting ocular dominance map is reproduced in gray scale in fig-

ure 3.5. In this and all subsequent maps, the activity maps represent neural activity

on each electrode as viewed looking down on the top of the array. The anterior and

medial directions of the brain are indicated on the map of figure 3.5A, and this con-

vention has been followed in all subsequent maps.

The raw ocular dominance map of figure 3.5A has been created from discrete

recordings from electrodes separated by 400 mm. This map preserves the discrete

400-mm sampling of the UEA, but the sharp boundaries between adjacent map

regions make patterns present in the overall ocular dominance image di‰cult to

appreciate. In order to compare this map with maps made using other spatially aver-

aged imaging techniques (histological or optical techniques), we used electrophysio-

logical imaging methods to develop an estimate of the ocular dominance in the

region sampled by the array, as shown in figure 3.5B. The estimated ocular domi-

nance image retains the raw data of figure 3.5A, but more closely resembles the pat-

terns found with histochemical or optical imaging techniques.

Orientation Sensitivity Maps

Another general organizational feature of the primary visual cortex is that many of

the cells in this area manifest orientation sensitivity (as shown in figure 3.4). These

cells are particularly sensitive to bars of a particular width and contrast, oriented in

a particular direction, and moving through the cell’s receptive field with a particular

velocity. Furthermore, the preferred orientation of these cells seems to vary in a
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Figure 3.5
Ocular dominance map of the cat area 17. (A) Raw map. (B) Electrophysiological imaging map generated
from the same data. The numbers surrounding the map represent electrode coordinates and are separated
by 400 mm.
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rational fashion as one records from a linear sequence of cells (Hubel and Wiesel,

1962).

We used the multiunit recordings obtained with the UEA in combination with

electrophysiological analysis methods to create orientation sensitivity maps of the

cat visual cortex. Sine wave patterns of various orientations were drifted across the

stimulation monitor and the responses of all multiunits recorded. This procedure

was repeated in 30-degree increments. Since we were demonstrating orientation sen-

sitivity, not directional selectivity, we combined the data for 30 and 210 degrees, 60

and 240 degrees, etc. Thus, the orientation angle was converted to the principal angle

through a modulo 180 function. The maximum multiunit response from each elec-

trode for the principal angle orientation was determined from the combined data.

Figure 3.6A shows the maximum orientation sensitivities for all electrodes for con-

tralateral stimulation. In figure 3.6B we show the same procedure, but for stimula-

tion delivered via the ipsilateral eye.

The ipsilateral and contralateral maps of figure 3.6 manifest similar periodicity,

but they di¤er in their detailed structure. This di¤erence does not seem to be due to

eye rotation caused by the paralytic agent because the two maps cannot be made

identical by a simple redefinition of the stimulus bar angle by any given amount for

one eye. Thus it appears that while a given unit generally is activated by bars of a

particular orientation for monocular stimulation, the optimal orientation for stimu-

lation via the other eye is often not the same orientation. This di¤erence in the con-

tra- and ipsilateral orientation sensitivity of the visual cortex has been noted by

others (Hubener et al., 1997) and raises questions about how the higher visual centers

decompose binocularly viewed images (Hubel, 1988).
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Figure 3.6
The orientation sensitivity organization of cat area 17 as measured with the UEA. (A) Map produced by
contralateral stimulation, and (B) map produced by ipsilateral stimulation. The numbers surrounding the
map represent electrode coordinates and are separated by 400 mm. The scale indicating the principal angle
orientation of multiunits in maps is given on the right.
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Visuotopic Organization

The visuotopic organization of the visual cortex has been studied by many investiga-

tors (Hubel and Wiesel, 1962; Tusa et al., 1978; Dow et al., 1985), but these studies

have been complicated by problems of eye fixation and imprecision in the location of

recording electrodes. However, the UEA is particularly well suited to the task of

studying the visuotopic organization of the cat primary visual cortex. Because recep-

tive fields are measured simultaneously with this approach, any eye drift that occurs

during the course of the measurement is a common-mode interferent, and the conse-

quences of such eye drift are significantly reduced by di¤erential measurements of the

receptive field properties (Warren et al., 2001).

We have measured the visuotopic organization of area 17 by simultaneously

recording the responses of all multiunits to our ternary checkerboard stimulus. We

then used the spike-triggered averaging technique to determine the receptive field

properties of the multiunits recorded with each electrode. To analyze the visuotopic

organization of receptive fields, we collapsed the three-dimensional representation of

each receptive field (the two spatial dimensions and the strength of the excitation)

into a two-dimensional point in visual space by calculating the center of mass of the

region contained within its boundary. We then applied a least-mean-squared-error fit

to a linear transformation of the electrode loci to their respective representation in

visual space.

Figure 3.7A illustrates the results of this visuotopic mapping procedure. The rect-

angle of small, filled circles represents the outline of the UEA as mapped in visual

space, with each symbol indicating the location of an electrode along the periphery

of the UEA. The filled diamond and squares represent the electrode sites at the most

rostral-lateral and rostral-medial corners of the UEA, respectively. The visual space

representations of electrode sites having reliable receptive fields are represented by

crosses. Each of these crosses is connected to an open square that represents the lo-

cation in visual space of the center of the mass of the receptive field mapped at the

electrode site. The vectors connecting these sets of points are the result of performing

a least-mean-squared-error fit that minimizes the root-sum-squared length of these

vectors.

The global visuotopic organization of this region of area 17 is in general agree-

ment with the findings of Tusa (Tusa et al., 1978) and Albus (1975). We have deter-

mined the global magnification of this region of the cortex by measuring the area in

visual space that is represented by the multiunits recorded by our electrode array.

This value, 16 degree2/13 mm2 or 1.2 square degree per square millimeter on the cor-

tex is also in approximate agreement with these previous studies for the particular re-

gion of visual space addressed by the array.

It is clear from figure 3.7A that the visuotopic map of the cat primary visual

cortex is not conformal. Electrodes that are adjacent to each other can record from
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multiunits with receptive fields that can be separated by as much as 2 degrees, while

electrodes that are separated by as much as 1.4 mm can have virtually overlapping

receptive fields. We have attempted to quantify the degree of this visuotopic non-

conformality in figure 3.7B, which shows the residual errors from the least-mean-

squared-error fit of the electrode positions to their respective receptive fields. This

was done by translating all electrode sites to the origin of this plot, and plotting all

receptive field sites with respect to this point. The resulting map of residual errors

shows no apparent bias along any preferred direction. Figure 3.7C is a histogram of

the residual length. The continuous curve is a plot of the estimated distribution of

residuals that would result from errors in the measurement of the receptive field po-

sition. It is clear that the 0:53G 0:31-degree (SD) mean error in the residuals reflects

an inherent nonconformality in the visuotopic map.

Response to Moving Bars

One unique capability of monitoring cortical activity with microelectrode arrays is

visualizing ensemble responses to simple patterned stimuli. We used the UEA to vi-
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(A) The visuotopic map of area 17, measured from simultaneous recordings of multiunit activity on 98
of the 100 electrodes of the UEA (note that only 67 electrodes had su‰ciently well-defined receptive
field properties to be included in this plot). Activity was evoked by checkerboard stimulation and spike-
triggered averaging. (B) Plot of residuals (vectors of A) with the electrode sites superimposed on the origin.
(C ) Distribution of residuals (histogram), and predicted distribution of residuals based on estimates of the
error in our measurement technique (solid curve, scaled to fit the histogram).
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sualize the neural pattern associated with bars of light moving through the global re-

ceptive field of the ensemble at each of four orthogonal orientations. The results of

these experiments are illustrated in the activity ‘‘movies’’ of figure 3.8. The speed

and width of the bar used in this experiment, 8 degrees/s and 2 degrees, respectively,

and the 4-degree spatial window sampled by the UEA (figure 3.7), suggests that the

activity pattern should be present for about 0.75 s. To allow the visual system to re-

cover from each sweeping bar, we initiated a new sweeping bar every 4 s.

In this figure, each frame shows the summated firing at all 98 electrode sites for

a 100-ms period. Above each column is the time, in milliseconds, of the frame where

time zero was selected to maximize the activity in the 100-, 200-, and 300-ms frames.

The bar to the left of each movie shows the orientation of the moving bar, and the

arrow indicates its direction of motion through the visual field. Close inspection of

the movies reveals the following patterns: For the 0-degree orientation (top movie),

there is a wave of activity that appears at the left for the 100-ms frame and pro-

gresses to the right. In the 90-degree orientation (second movie from the top), there

is a subtler wave of activity that starts at the bottom of the frames and moves up-

ward. In the 180-degree orientation (third movie from the top), there is a wave of

activity that enters from the right and moves to the left. Finally, in the 270-degree

-300 0 100 200 300 400 700

Figure 3.8
The multiunit activity, recorded at 98 sites in area 17, evoked by a single passage of a bar at four di¤erent
orientations, moving through the receptive fields of the recording sites. Each frame is a 100-ms sum of the
multiunit activity on each electrode. The numbers above each column indicate the time of the frame when
time zero was selected to maximize the activity in the 100-, 200-, and 300-ms frames. Each movie (row)
shows a total of 1s of cortical activity.
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orientation (bottom movie), there is a wave of activity that enters from the top and

progresses downward. This wave of activity, like that for the 90-degree orientation, is

subtler. Each of these frames was made using the spatiotemporal activity pattern for

only a single passage of the bar.

The activity patterns shown in figure 3.8 were made by normalizing the activity for

each orientation. That is, the firing rate at each electrode was normalized to the max-

imum firing rate over the 4-s period of the passage of the bar. Thus the maps indicate

that the multiunits recorded on each electrode generally modulate their firing activity

as the bar sweeps through the receptive fields of the recorded units, regardless of the

orientation of the bar and the principal angle orientations of the units.

Discussion

The goals of this chapter are twofold: to demonstrate the use of microelectrode

arrays to achieve high-resolution, spatiotemporal imaging of the activity patterns of

neural ensembles in the sensory cortex, and to use an electrode array to record the

activity patterns that are produced by single presentations of simple, moving visual

stimuli. We are using these maps and activity patterns to model how patterned visual

stimuli could be encoded by the firing properties of cortical neurons (Normann et al.,

2001), but this analytical focus goes beyond the scope of this chapter.

The Functional Architecture of the Cat Visual Cortex

Before one can model encoding strategies that could be used by the vertebrate visual

system to represent spatiotemporal patterns of retinal illumination, one needs to

characterize the receptive field properties of the units upon which the models are

built. The three organizational maps described in this chapter provide such a func-

tional characterization. The maps also extend the one-dimensional descriptions of

the functional organization made with single-electrode ‘‘tracks’’ to two-dimensional

maps. Because the 98 parallel measurements from which the maps have been made

were performed simultaneously, any distortions in the maps that are due to eye drift

or uncertainties in electrode position are significantly reduced. Furthermore, because

the maps were made directly from multi- and single-unit activity, they did not require

the inferences of causality that are necessary with some optical techniques.

However, one significant limitation of this multielectrode technique is the spatial

sampling imposed by the 400-mm spacing of the electrodes in the UEA. This is con-

trasted with the optical visualization techniques that provide a virtually continuous

image of the cortex, with spatial optical sampling on the order of 10 mm (Shtoyer-

man et al., 2000). The recently introduced method of electrophysiological imaging

(Diogo et al., 2003) allows the electrophysiologist to begin to study the regions left

unsampled. The low-pass filtering associated with the interpolation of a single condi-
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tion map is justifiable only in the context of the low spatial frequency periodicity of

the columnar organization of the cortex.

As was shown in the early work of Hubel and Wiesel (1962), single-electrode

tracks of the orientation sensitivity of complex cells in monkey area 17 show an or-

derly progression of preferred orientation with distance across the cortex. Cells sepa-

rated by approximately 20 mm will have their orientation sensitivity changed by 5 to

10 degrees. Thus, a trajectory approximately 1 mm long will encounter a set of units

that encompasses a full 360 degrees of orientation sensitivity. When this architecture

has been studied with optical visualization (Blasdel, 1992; Arieli et al., 1995), or with

various histological techniques using visual stimulation with only horizontal or verti-

cal lines (LeVay et al., 1975), one observes a set of stained orientation bands in a

field of unstained cortex (much like stripes on a zebra’s coat). The periodicity of these

stripes is on the order of 1 mm. Based upon the Nyquist sampling theorem, the min-

imum spacing required to sample this spatial information is half of this spatial

period, or 0.5 mm. Thus, the 0.4-mm spacing of the UEA would seem to be just

barely adequate to sample the orientation and functional architecture of ocular dom-

inance. Clearly, more closely spaced electrodes would provide an even better sam-

pling of these architectures, and work is underway in our laboratory to develop

electrode arrays with closer spacing.

Multiunit Activity Patterns Produced by Moving Bars

The second goal of this chapter is to demonstrate the neural activity pattern pro-

duced by simple visual stimuli. While optical techniques with extrinsic dye-enhanced

signal-to-noise ratios can begin to reveal single-trial-evoked activity patterns, the

recording of single- and multiunit activity with an electrode array directly enables

the visualization of such single-trial-evoked activity. This capability is particularly

important in light of the variability that has been described in cortical responses

(Abeles, 1991; Rieke et al., 1997). In figure 3.8 we illustrated the activity patterns

produced by the movement of a single bar of light in front of the animal. The bar

was oriented in one of four orthogonal directions. We stress that these data were

obtained from single passes of the bar and that the 98 single-unit responses have not

been temporally averaged over multiple passes of the bar to enhance the signal-to-

noise ratio of the measurement. While a subsequent report will focus on our ability

to use these firing patterns to estimate the nature of the visual stimulus that evoked

the patterns, we show these response patterns to make a few simple points regarding

spatial information processing by the visual cortex.

First, the nonconformal visuotopic organization of area 17 shown in figure 3.7A,

and the complex distribution of orientation sensitivities of the units that make up the

map (figure 3.6), result in a complex firing pattern in area 17 to even a simple pat-

terned stimulus such as a moving bar. While the activity pattern does not directly
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resemble a moving bar of evoked activity, careful observation of the four movies

indicates that each bar produces a di¤use wave of activity that generally moves

across the cortex in a pattern consistent with the gross visuotopy of the cortex (Tusa

et al., 1978).

Second, the movies of figure 3.8 indicate that the response patterns to vertical bars

moving either to the left or to the right are more robust than the response patterns

evoked by horizontally oriented bars moving either up or down. This is most likely

a manifestation of the larger number of multiunits with a preferred vertical orienta-

tion sensitivity seen in the histogram of figure 3.4 and reported by others (Leventhal,

1983).

Finally, it is noted that while most recorded units manifested a preferred orienta-

tion (see figure 3.4), most units also responded to each of the four moving bars. The

movie for each moving bar was not composed exclusively of activity evoked in units

with a preference for that particular orientation. This observation, and the data of

figure 3.6 showing that the principal angle orientation generally di¤ered for ipsi-

and contralateral stimuli, suggest that the visual cortex may not primarily decompose

images incident on the retina into a set of oriented line-basis vectors (Hubel, 1988).

Implications for a Visual Prosthesis

The data presented in this chapter have relevance for the emerging field of sensory

and motor neuroprosthetics. While most work in this area is still focused on animal

experimentation, researchers are beginning to use electrode arrays to selectively ex-

cite and record from neural ensembles in human volunteers as a means to restore

lost sensory or motor function (Veraart et al., 1998; Humayun et al., 1999; Grumet

et al., 2000; Kennedy et al., 2000). One example of a sensory application that would

use an array of penetrating electrodes such as the UEA is a visual neuroprosthesis.

The electrodes in the UEA could provide the means to selectively excite large num-

bers of neurons in the visual cortex of individuals with profound blindness. A com-

plete cortically based visual neuroprosthesis would consist of a video camera in a

pair of eyeglasses and signal-processing electronics to convert the output of the video

camera into a signal that could be delivered transdermally to an implanted very large

scale integrated stimulator that would be directly interfaced to an electrode array

implanted in the visual cortex.

While each of the elements in such a visual neuroprosthesis o¤ers significant design

challenges to the electrical, mechanical, and bioengineer, we believe that there are

two main issues that must be resolved before this approach to restoring sight can be

entertained seriously. First, the safety of the implanted electrode array and the im-

plantation procedure must be rigorously demonstrated in animal studies, and second,

the e‰cacy of this implant system must be demonstrated in human volunteers. Spe-

cifically, it must be shown that patterned electrical stimulation of the visual cortex
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via an array of implanted, penetrating electrodes does evoke discriminable patterned

percepts.

Much of the animal experimental work we have conducted to date has focused on

the former issue. Colleagues have implanted the UEA in the motor cortex of pri-

mates that have been trained to play a simple video game. For periods up to 3 years,

we have been able to record the single- and multiunit responses of the neurons in

the hand representation of the motor cortex as the animal ‘‘plays’’ the video game

(Maynard et al., 1999). This 3-year recording capability provides a proof-of-concept

that the UEA can be implanted safely in the primate cerebral cortex and that it can

perform stably over extended periods. We have yet to conduct long-term electrical

stimulation experiments to document that neither the electrode materials nor the cor-

tical tissues are significantly a¤ected by chronic current injections, but work in other

laboratories indicates that current injections into neural tissues can be performed

safely. McCreery has shown that currents that are expected to evoke sensory percepts

when injected into the sensory cortex through penetrating electrodes can be delivered

with little consequence on neural tissues (McCreery et al., 1995).

We have conducted short-term chronic experiments with intermittent current injec-

tions via UEAs implanted into the auditory cortex (Rousche and Normann, 1999).

These experiments, and additional acute experiments conducted in sciatic nerves

of cats (Branner et al., 2001), have allowed us to measure the current thresholds

required to evoke a behavioral or motor response. We find that as little as 5 to 10

mA of current injection (delivered in a 200-ms, biphasic pulse) can evoke behavioral

responses or muscle twitches. These current levels are regarded as modest, and pro-

vide further evidence of the potential safety and e‰cacy of the UEA as a chronic

neural interface. When detailed animal experiments have been performed, we will

be in a position to use the UEA in basic human experimentation.

Thus, the major barrier to the development of a cortically based visual neuropros-

thesis is the demonstration that patterned electrical stimulation of the visual cortex

evokes patterned, discriminable percepts. Evidence suggesting that this might be

expected to be the case dates back to the early work on cortical electrical stimulation

by Brindley (Brindley and Lewin, 1968), and Dobelle (Dobelle and Mladejovsky,

1974). Schmidt and his co-workers (Schmidt et al., 1996) have more recently con-

ducted a series of experiments in which they stimulated the visual cortex of a blind

human volunteer with currents passed through an assortment of small penetrating

electrodes. They demonstrated that stimulation of a sequence of five electrodes in a

line evoked the percept of a line. Clearly, this is a rather primitive pattern, but it sup-

ports the hypothesis.

On the other hand, the organization of the primary visual cortex into numerous

superimposed maps makes it di‰cult to fully embrace this hypothesis without more

detailed experimentation. Because the visual cortex contains both ‘‘on’’ and ‘‘o¤’’
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center cells, if injected currents excite an ensemble of cells containing an equal num-

ber of ‘‘on’’ and ‘‘o¤’’ center cells, one might expect that this current might not

evoke an apparent percept. Another possibility is that patterned current injections

might evoke general ‘‘blobs’’ of light, and not be useful in generating patterned per-

cepts. Much basic experimentation will have to be conducted with human volunteers

before these basic issues can be resolved.

If patterned current injections do evoke discriminable patterned percepts in human

volunteers, then significant engineering problems must still be resolved. The problem

of converting a video signal into patterns of electrical stimulation that evoke appro-

priate percepts must be addressed. The results described in this chapter (and previ-

ously demonstrated by others), allow us to anticipate two potential problems. First,

the visuotopic organization of the primary visual cortex illustrated in figure 3.8 is

quite nonconformal. This suggests that the phosphene space evoked by an implanted

electrode array is also not likely to be conformal. If this were the case, then in order

to evoke the percept of a line, a complex pattern of electrode excitation would have

to be e¤ected. This in turn would require that the signals produced by the video cam-

era be remapped to produce a phosphene perceptual space that was conformally re-

lated to the visual world encoded by the video camera (Eckmiller, 1997). Of course, if

the perceptual nonconformality were not large, then the plasticity of the visual path-

ways might be su‰cient to recreate a conformal perceptual space with time and

training of the implanted subject.

Finally, in order to produce useful visual percepts, one might be required to

decompose a recorded video image into an image composed of sets of oriented lines

located at specific points in the visual space. This possibility is suggested by figures

3.4 and 3.6, which show that the visual cortex is composed of cells that manifest ori-

entation sensitivity. Once the input images are decomposed, a visual percept could be

recreated by stimulating the neurons with the correct visuotopic location and the ap-

propriately oriented receptive field.

This notion has been suggested by a number of basic visual neuroscientists and

researchers working in the area of visual neuroprosthetics. However, there is little ev-

idence to suggest that such a complex signal-processing scheme would be needed to

evoke patterned percepts. First, in all the studies done to date on intracortical micro-

stimulation, it has generally been observed that microstimulation evokes point per-

cepts, not percepts of lines (Brindley and Lewin, 1968; Dobelle and Mladejovsky,

1974; Bak et al., 1990; Schmidt et al., 1996). Second, the suggestion is based upon

the character of receptive fields, where the receptive field of a neuron reflects its pre-

synaptic organization. While it is indisputable that the optimum stimulus to excite a

cortical complex cell will be a line of a particular orientation, such a line will also

excite a complex pattern of activity in the visual cortex. It is this pattern of activity

that will be interpreted by higher visual centers, not simply the firing pattern of the
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single recorded neuron. We believe that this question, as well as the feasibility of this

approach to restoring lost visual function, can be fully answered only with human

experimentation. We believe that the development of new arrays of penetrating elec-

trodes, like the UEA, can provide the tools that will make this new class of psycho-

physical experiments possible.
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II NEURAL REPRESENTATIONS





4 Brain Parts on Multiple Scales: Examples from the Auditory System

Ellen Covey

What Is a Brain ‘‘Part’’?

Before considering the possibility of replacing defective parts of the brain with

analog or digital hardware, transplanted neural tissue, or hybrid devices that include

both hardware and biological tissue, we first need to have a clear and specific idea of

what ‘‘part’’ is being replaced, what function that part serves, and whether that part

is a stand-alone item or a component of a larger integrated system. To date, the most

successful case in which a nervous system-related structure has been replaced by

hardware is the cochlear implant. It is likely that this technology is successful partly

because the cochlear hair cell array is a discrete and relatively independent structure,

and we have a good idea of what the cochlear hair cells are designed to do. Perhaps

the biggest factor contributing to the success of the cochlear implant, however, is the

fact that all of the neural structures in the auditory system remain intact, starting

with the peripherally located ganglion cells, and the brain continues to do its job as

usual.

Once we enter the domain of the brain, it is no longer apparent exactly what con-

stitutes a brain ‘‘part,’’ or what function any part by itself might serve. In reality, the

brain operates as a single dynamic integrated system that could be subdivided into

‘‘parts’’ using a variety of di¤erent temporal, anatomical, and functional criteria,

with each criterion yielding a di¤erent set of putative ‘‘parts.’’ In order to successfully

replace a part of the brain, it would presumably be necessary to integrate the pros-

thetic part with other parts, starting with the appropriate neural inputs and outputs.

The replacement part would probably also need to be adaptable, changing its prop-

erties in response to the overall state of the organism, the sensory or behavioral con-

text, or other factors.

The subcortical portion of the central auditory system (figure 4.1) contains a

highly complex network of cell groups and fiber pathways. The success of the coch-

lear implant can probably be attributed to the exquisitely adaptable operation of

this system, which can take the highly artificial, impoverished, and distorted input



provided by patterned electrical stimulation of ganglion cells using one or a few elec-

trodes and interpret it in a way that is useful for the organism. This chapter uses the

central auditory pathways to illustrate some of the many ways in which we can sub-

divide the brain into ‘‘parts,’’ and considers the utility of each viewpoint for concep-

tualizing and designing technology that might someday replace brain structures or

other functional units within the central nervous system.

Molecules as Brain ‘‘Parts’’

If we choose to take a bottom-up approach and start with the smallest brain ‘‘parts’’

that are practical to consider, a logical place to begin would be with the molecules

that make up the brain and the genes that code for these molecules. A great deal is

known about the function of brain molecules, especially those involved in neuro-

Figure 4.1
Schematic diagram showing the main brainstem pathways of the central auditory system. Crossed monau-
ral pathways are shown in black; binaural pathways are indicated in gray. CN, cochlear nucleus; DNLL,
dorsal nucleus of the lateral lemniscus; IC, inferior colliculus; SOC, superior olivary complex; INLL, inter-
mediate nucleus of the lateral lemniscus; VNLLc, ventral nucleus of the lateral lemniscus, columnar divi-
sion; VNLLm, ventral nucleus of the lateral lemniscus, multipolar cell division (from Covey, 2001).
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transmission and neuromodulation. These classes of molecules include neurotrans-

mitters, receptors, second messengers, ion channel subunits, etc. Although perhaps

not directly relevant to the theme of this book, replacement of brain molecules

through pharmacology, transplantation of cells, or gene therapy is clearly an area in

which the strategy of replacement has met with considerable success and is likely to

be a major area of research and development for therapeutic treatments in the future.

Although the molecular level might appear to be the smallest common denomina-

tor when it comes to brain ‘‘parts,’’ it could also be considered one of the largest,

since a given neurotransmitter, ion channel, or other molecule is likely to be found

throughout large regions of the brain, or even throughout the brain as a whole.

Thus, replacement of a molecule is likely to a¤ect global aspects of brain function

as well as specific ones. Here we will consider just two examples of molecules that

are distributed rather ubiquitously within the central nervous system but that are es-

sential for proper auditory system function on a cellular, circuit, and global level.

Inhibitory Neurotransmitters, g-Aminobutyric Acid and Glycine

Throughout the central auditory system, a large number of neurons synthesize and

release g-aminobutyric acid (GABA). Below the level of the midbrain, there are not

only many GABAergic neurons, but also many neurons that synthesize and release

glycine (e.g., Mugnaini and Oertel, 1985; Peyret et al., 1987; Fubara et al., 1996).

Thus, cells in structures up through the auditory midbrain center, the inferior col-

liculus (IC), may receive two di¤erent types of inhibitory input, each of which pre-

sumably serves a di¤erent function. Moreover, the same neurotransmitter may serve

both a specific and a global function at any given neuron. The function of GABA in

the IC provides a good example of this principle.

The mammalian IC contains a higher density of GABAergic terminals and recep-

tors than any other part of the brain except the cerebellum (e.g., Fubara et al., 1996).

The nature of GABA’s action on cells depends on the type of receptors present on

the postsynaptic membrane. The IC contains both GABAa receptors, which provide

rapid, short-acting inhibition, and GABAb receptors, which provide delayed, long-

acting inhibition. Activation of these two receptor types by GABA release may be

one of the factors that provide a restricted temporal window during which ongoing

excitatory input can depolarize a cell to threshold, with GABAa activation limiting

the early part of the response and GABAb activation limiting the late part of the re-

sponse. The characteristics of the window during which excitation may occur would

be expected to vary as a function of the relative proportions of the two receptor types

on the cell membrane.

There is evidence that individual IC neurons not only possess GABAa and

GABAb receptors in di¤erent ratios, but that they also receive varying amounts of

glycinergic inhibition. Moreover, electrophysiological studies show that the di¤erent
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sources of inhibition act together to create specialized response properties of IC cells,

including the ability to select for behaviorally relevant features of sound. Studies of

IC neurons in which GABAa receptors are blocked by bicuculline show that the

magnitude and duration of sound-evoked responses greatly increase, suggesting that

long-lasting GABAergic input normally suppresses a long-lasting excitatory input

to the cell. In the same neuron, blocking glycinergic input with strychnine typically

causes first-spike latency to decrease and total spike count to increase, but the dura-

tion of the response remains short (Casseday et al., 2000; figure 4.2). These findings

suggest that glycine acts mainly to suppress responses to the early part of a pro-

longed sound-evoked excitatory input, whereas GABA suppresses responses to a

large portion of the sound-evoked excitation, especially the later part. These findings

Figure 4.2
Responses of a neuron in the IC of the bat before and during local application of bicuculline, a blocker of
GABAergic inhibition, and strychnine, a blocker of glycinergic inhibition. (Top) In response to a 5-ms tone,
the neuron discharged a short burst of spikes at a latency of approximately 20 ms. (Middle) During appli-
cation of bicuculline, the latency shortened to about 15 ms; firing rate increased; and the period during
which action potentials were fired increased to more than 40 ms, far outlasting the duration of the stimu-
lus. (Bottom) During application of strychnine, latency shortened to less than 15 ms and spike rate
increased, but there was no lengthening of the response period (adapted from Casseday et al., 2000).
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are consistent with the idea that there is a narrow temporal window within which the

cell can respond to a sustained excitatory input.

Because di¤erent inputs to the IC neuron have di¤erent thresholds, rate-intensity

functions, frequency tuning, spatial tuning, and other properties, the temporal

relationship among the multiple excitatory and inhibitory inputs to an IC neuron

changes parametrically as a function of physical parameters of the sound, such as

its intensity or duration. This variable relationship is important for creating selectiv-

ity to behaviorally relevant sound features such as its duration (e.g., Casseday et al.,

1994, 2000; Covey et al., 1996; Ehrlich et al., 1997) or the location from which the

sound originates (e.g., Vater et al., 1992; Park and Pollak, 1994).

There is a large body of evidence indicating that inhibitory neurotransmitters are

involved in the specific processing mechanisms that allow auditory midbrain neurons

to select specific types of information for transmission to the thalamocortical system

and/or motor systems (e.g., Casseday and Covey, 1996). However, it is likely that the

massive amount of inhibition in the IC also serves some more global functions. One

of these has to do with slowing the cadence of processing from that of the inputs

from lower centers that are time locked to the fine structure of the stimulus to a

slower rate that is matched to the rate at which motor actions are performed (Casse-

day and Covey, 1996).

A second global function has to do with keeping the amount of excitation that

reaches the IC in check. In the lower brainstem, the auditory nerve diverges to create

a number of di¤erent parallel pathways, all of which then converge at the IC (figure

4.1). If the outputs of all of these pathways were excitatory, the activity arriving via

the auditory nerve would be amplified many times over. It seems reasonable to sup-

pose that inhibition helps maintain the amount of neural activity at a relatively con-

stant level while allowing the IC to integrate many streams of information processed

in parallel.

Evidence to support this idea comes from studies of audiogenic seizures, which can

occur when there is an abnormally high amount of activity in the IC that is due to a

pharmacologically or genetically induced deficit in GABAergic inhibition (e.g., Frye

et al., 1983, 1986; Millan et al., 1986, 1988; Faingold and Naritoku, 1992). Clearly,

this is a case in which a brain ‘‘part’’ at the molecular level, that is, GABAergic inhi-

bition at the IC, has a global e¤ect that it might be possible to mimic by a uniform

increase in GABA across space and time. However, GABA also plays a specific role

at each neuron that depends on the precise ratio and timing of GABAergic input rel-

ative to other inputs, as well as the adjustment of this ratio and timing according to

the physical parameters of the stimulus. This specific function would be di‰cult

to duplicate in a ‘‘replacement’’ system without knowing in detail the mechanisms

and outcomes of stimulus-specific processing. To some extent this information can

be obtained by considering individual neurons as brain ‘‘parts.’’
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Single Neurons as ‘‘Parts’’

With few exceptions, the groups of cells and fibers that we typically think of as

anatomically distinct brain structures such as the hippocampus, neocortex, inferior

colliculus, or cochlear nucleus, are all made up of multiple neuron types, each of

which performs a di¤erent class of function. It is quite clear from electrophysiologi-

cal studies that single neurons throughout the brain function as complex computa-

tional, decision-making devices and could therefore be thought of as brain ‘‘parts.’’

In the auditory system, the response to sound by a neuron at any level is deter-

mined by a number of interactive factors. The factors that determine a neuron’s

sound-evoked response start with the neuron’s intrinsic properties, as determined by

the subset of receptor sites for neurotransmitters and neuromodulators expressed

on its cell membrane, and the subset of ion channels and second messenger systems

expressed by the neuron. Responses to sensory stimuli are also determined by the

number, morphology, location, chemical makeup, and temporal properties of synap-

tic inputs from di¤erent sources, and the spatiotemporal pattern of activity of those

synaptic inputs. A few good examples of the ways in which auditory neurons trans-

form and integrate synaptic inputs include sharpening of the temporal precision of

phase-locked responses in some classes of neurons in the anteroventral cochlear nu-

cleus, comparison of input from the two ears to provide an estimate of the location

of a sound source along the horizontal plane in neurons in the superior olive, and

tuning to a specific duration of sound in one population of neurons in the IC.

Intrinsic Properties and Temporal Precision

As the auditory nerve enters the brain, each of its component fibers branches to inner-

vate three major subdivisions of the cochlear nucleus, creating three separate represen-

tations of the frequency organization produced by the cochlea. Within each of these

central representations of the cochlea are multiple cell types, each with a characteristic

morphology and biochemical makeup (for review, see Oertel, 1991; Trussell, 1999).

The input transmitted by the branches of a given auditory nerve fiber to the di¤er-

ent types of neuron is essentially identical, consisting of an initial high frequency

burst of action potentials followed by steady-state sustained firing at a rate that, at

least over the fiber’s dynamic range, is proportional to the intensity of the sound. In

response to a low-frequency tone or amplitude-modulated sound, auditory nerve fi-

ber responses are phase-locked (i.e., correlated in time) with a specific point in each

cycle of a low frequency pure tone or each peak in an amplitude modulation pattern.

It has been shown that ‘‘bushy’’ neurons in the cochlear nucleus take this infor-

mation and sharpen its temporal precision so that phase locking is greatly enhanced

(e.g., Frisina et al., 1990; Joris et al., 1994a, b). An example of this enhancement is

shown in figure 4.3.
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Intracellular recordings from neurons in the cochlear nucleus have shown that the

intrinsic properties of those types of neurons that preserve fine timing information or

provide temporal enhancement di¤er in some respects from the intrinsic properties

of other cell types in the cochlear nucleus (e.g., Smith and Rhode, 1987; Manis and

Marx, 1991; Trussell, 1997). When depolarizing current steps are applied to bushy

cells, they typically discharge only one or two action potentials in response to the on-

set of the current step, after which a voltage-gated outward current is activated that

brings the cell’s membrane potential to an equilibrium value just below the threshold

for spike generation, as shown in figure 4.4. This means that the cell does not fire

again as long as the depolarization step is maintained. Hyperpolarization typically

results in a rebound and spike at the o¤set of the current step (e.g., Oertel, 1983;

Manis and Marx, 1991).

These same cells also exhibit a low-threshold outward current that greatly reduces

the excitatory postsynaptic potential (EPSP) time constant, limiting to less than a

millisecond the time window over which successive EPSPs can sum (e.g., Oertel,

1983, 1985; Manis and Marx, 1991). Given these properties, the bushy cells are able

to follow high frequency input with great temporal precision. Because these cells re-

ceive synaptic endings from multiple auditory nerve fibers (Oertel, 1999), they receive

multiple estimates of the onset time of a sound or other auditory event. Because of

Figure 4.3
Dot rasters (right) and plots of spike count and synchronization coe‰cient as a function of sound level
(left) to illustrate enhancement of the auditory nerve’s temporal precision by a neuron in the cochlear
nucleus of the cat. The top panels illustrate the phase-locked response of an auditory nerve fiber to a low
frequency tone. The bottom panels illustrate the responses of a fiber in the trapezoid body, originating in
the cochlear nucleus, to the same low frequency tone (adapted from Joris et al., 1994a).
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the bushy cell’s limited integration window, it will fire at the temporal peak of the

input distribution, thus providing a high degree of temporal enhancement. The out-

put of the bushy cells is subsequently used for tasks that require fine timing analysis,

including the measurement of phase di¤erences between low-frequency sounds at the

two ears.

The bushy cell provides an example of a neuron in which much of the processing

is accomplished through an excitatory input interacting with the cell’s intrinsic prop-

erties. However, there are many other neurons whose processing depends on the in-

teraction of excitatory and inhibitory synaptic inputs. One of the simplest examples is

provided by neurons in the pathway for comparison of sound at the two ears.

Interaction of Synaptic Excitation and Inhibition Leading to Simple Computation

Inputs from the two cochlear nuclei first come together at the superior olivary com-

plex, located in the lower brainstem (figure 4.1). The lateral superior olive (LSO) is

one component of the pathway that computes the location of a sound source based

on a comparison of the physical properties of the sound that reaches the two ears.

Each neuron in the LSO receives excitatory input directly from the ipsilateral coch-

lear nucleus. It also receives inhibitory input indirectly from the contralateral coch-

lear nucleus via a synapse in the medial nucleus of the trapezoid body (MNTB), a

group of glycinergic neurons with properties similar to those of bushy cells in the

cochlear nucleus (Brew and Forsythe, 1994). Figure 4.5A shows the details of the

LSO circuitry.

Figure 4.4
Responses of two types of cochlear nucleus neurons to depolarizing and hyperpolarizing current steps.
Intracellular recordings were obtained in guinea pig brain slices. (A) This neuron fires a regular train of
action potentials throughout the duration of the depolarizing step. (B) This neuron, characteristic of
‘‘bushy’’ cells, fires one or two action potentials at the beginning of the depolarizing step and maintains a
membrane potential just below threshold for the remainder of the step. Following a hyperpolarizing step,
there is a rebound accompanied by an action potential. After hyperpolarization, there is no overshoot
(adapted from Manis and Marx, 1991).
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Figure 4.5
(A) Inputs to the lateral superior olive (LSO) in the mustached bat as seen in a schematic frontal section
through the lower left side of the brainstem. The left anteroventral cochlear nucleus (AVCN) contributes
ipsilaterally evoked excitatory input to the left LSO. The right cochlear nucleus provides contralateral exci-
tatory input to the left medial nucleus of the trapezoid body (MNTB), which in turn provides inhibitory
input to the left LSO. The vertical dashed line indicates the midline. (B) Examples of seven di¤erent LSO
neurons’ responses as a function of interaural level di¤erence (ILD). To facilitate comparison among neu-
rons, the response magnitude is normalized to the maximal response. The response of all of the neurons is
maximal when the ipsilateral sound is louder than the contralateral one. As the ILD approaches zero
(equal sound amplitude at the two ears), the response of all the neurons declines, starting at di¤erent
ILDs, but with similar slopes. When the amplitude of the contralateral sound exceeds that of the ipsilateral
sound by about 30 dB, all of the neurons’ responses have declined to a spontaneous rate. (A and B adapted
from Covey et al., 1991.)
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For sounds with wavelengths shorter than the distance between the ears, the head

creates a sound shadow that is more or less pronounced, depending on the azimuthal

location of the sound source. As a result, there is an interaural level di¤erence (ILD)

that varies from zero (both sides equal) when the sound source is straight ahead, to

maximal (ipsi louder than contra) when the sound source is located 90 degrees to the

right or left. Consequently, a sound source 90 degrees to the right provides strong ex-

citation and weak inhibition to a neuron in the right LSO, so the neuron will re-

spond. When the sound source is straight ahead, the sound level at the two ears is

equal, so excitation will equal inhibition and the neuron will respond weakly or not

respond. When the sound source is anywhere on the left, then inhibition to the right

LSO will exceed excitation, and the neuron will not respond.

In reality, di¤erent LSO neurons appear to have slightly di¤erent weights of exci-

tation and inhibition. This can be seen by plotting the responses of LSO neurons as a

function of ILD (figure 4.5B). Each neuron’s response is maximal when the ipsilat-

eral sound is much louder than the contralateral, but at some point it begins to de-

cline as the ILD approaches zero. LSO neurons typically have dynamic ranges that

correspond to a range of ILDs produced by sound sources within the 45-degree space

just ipsilateral to the midline. As figure 4.5 shows, di¤erent LSO neurons’ dynamic

ranges di¤er somewhat, suggesting that the relative weights of excitation and inhibi-

tion di¤er. Each LSO neuron functions as a computational device that provides an

output proportional to the location of a sound source relative to the midline, but

the response of each neuron declines over a slightly di¤erent range of ILDs.

The fundamental mechanism by which an LSO neuron performs its computation

is quite straightforward since it essentially involves only the algebraic summation

of simultaneous excitatory and inhibitory inputs. Neurons that act as analyzers of

the temporal structure of sound, duration, for example, need an added temporal di-

mension in their processing. The convergence of inputs from multiple sources at the

midbrain provides an ideal substrate for a temporal analysis of sound.

Complex, Multicomponent Computation and Duration Tuning

Neurons in the midbrain auditory center, the inferior colliculus, receive direct projec-

tions from the cochlear nucleus as well as from subsequent stages of processing,

including the cell groups of the superior olivary complex and the nuclei of the lateral

lemniscus (figure 4.1). Because each stage of processing introduces a time delay of

a millisecond or more, even a brief stimulus such as a click that lasts a fraction of

a millisecond can cause a cell in the IC to receive a complex series of excitatory and

inhibitory inputs that extend over many tens of milliseconds (e.g., Covey et al., 1996;

Covey and Casseday, 1999). Since each input neuron has its own sensitivity profile

and repertoire of response properties, the magnitude and time course of synaptic in-

put from each source will vary systematically, but in a di¤erent pattern, in response
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to parametric changes in the auditory stimulus. Thus, the IC neuron functions as a

sort of ‘‘readout’’ of activity across the population from which it receives input

(Covey, 2000, 2001). This integrative function is especially obvious in intracellular

recordings in which it is possible to follow the changes in synaptic inputs that occur

as a stimulus parameter is varied (e.g., Nelson and Erulkar, 1963; Covey et al., 1996;

Kuwada et al., 1997).

Many neurons in the IC exhibit bandpass tuning to sound duration (figure 4.6) in

that they fail to respond if the sound is too short or too long and respond best to a

specific duration (Pinheiro and Jen, 1991; Casseday et al., 1994; Ehrlich et al., 1997;

Chen, 1998; Fuzessery and Hall, 1999; Brand et al., 2000). Duration tuning is largely

independent of sound intensity (Fremouw et al., 2000; Zhou and Jen, 2001). The

finding that blocking synaptic inhibition eliminates duration tuning (Casseday et al.,

2000) indicates that this form of response selectivity is created through the interac-

tion of excitatory input with inhibitory input. Intracellular recordings (figure 4.7)

show that duration-tuned neurons always receive some inhibition regardless of

stimulus duration, that the inhibition is sustained for the duration of the stimulus,

Figure 4.6
Two examples of duration-tuned cells in the IC of the big brown bat. The response magnitude is plotted as
a function of stimulus duration, showing that there is a specific duration at which the response is maximal
and that the neuron’s response declines to a spontaneous rate at longer durations. (Adapted from Ehrlich
et al., 1997.)
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and that it arrives with a relatively short latency. These recordings further suggest

that a transient, onset-related excitatory input is partially cancelled and rendered

subthreshold by the sustained inhibition, and that the cell only responds when the

duration of the sound is such that the transient onset excitation coincides in time

with a rebound from inhibition correlated with stimulus o¤set. Figure 4.8 shows

how a model neuron with these characteristics would respond to di¤erent sound

durations.

Duration-tuned neurons thus appear to depend on an intrinsic property—rebound

from inhibition—for part of their processing capability and on temporally distrib-

uted patterns of excitatory and inhibitory synaptic inputs for another part of their

processing capability. Although the basic function of a duration-tuned neuron is

clear, the mechanism underlying this function depends on a highly structured spatio-

temporal pattern of inputs. If the characteristics of even one of these inputs is altered

Figure 4.7
Sound-evoked postsynaptic currents recorded intracellularly from a duration-tuned neuron in the IC of
the big brown bat. The neuron’s best duration was about 10 ms. The recordings were obtained in voltage-
clamp mode using whole-cell patch-clamp recording in an awake, intact animal. In this and figure 4.11, the
outward current, indicative of an inhibitory postsynaptic current (IPSC), is an upward deflection of the
trace and the inward current, indicative of an excitatory postsynaptic current (EPSC), is a downward de-
flection. At each duration there is a long-lasting IPSC locked in time to stimulus onset and a short EPSC
or rebound associated with the o¤set of the stimulus. (From Covey et al., 1996.)
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(e.g., by blocking GABAergic transmission), the neuron ceases to perform its func-

tion. On a more subtle level, if the spatiotemporal pattern of inputs is faulty, the

output of the neuron will also be faulty even though its internal mechanism is func-

tioning perfectly. Thus, for any brain part, including a single neuron, it is essential to

have the right information going in, in the right format, if an appropriate output is to

result.

Clearly, neurons do not act in isolation since they require patterned input from

multiple sources and in turn typically provide divergent input to multiple other neu-

rons. However, before considering multilevel neural systems as brain ‘‘parts,’’ it is

useful to consider the function of populations of neurons at a single level.

Bandpass Duration Tuned Cell

Figure 4.8
A hypothetical model for bandpass duration tuning, based on data from duration-tuned neurons in the IC
of the bat. The cell’s output in response to three di¤erent durations of sound is shown in the top trace of
each group. The cell receives a sustained, onset-evoked inhibitory postsynaptic potential with a depolariz-
ing rebound at sound o¤set (middle trace of each group). It also receives a short excitatory postsynaptic
potential evoked by the onset of the sound, but rendered subthreshold by the simultaneously occurring
IPSP (lower trace of each group). The cell reaches threshold only if the onset EPSP coincides with the o¤-
set rebound. In response to a 2-ms sound (upper group of three traces), the rebound occurs before the
EPSP, so the stimulus is too short to elicit a response. In response to an 8-ms sound (middle group of three
traces), the rebound and EPSP coincide, causing the cell to fire a burst of action potentials. In response to a
20-ms sound (bottom group of three traces) the EPSP occurs before the rebound, so the duration is too
long to elicit a response. (From Casseday et al., 2001.)
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Morphologically Distinct Cell Groups as ‘‘Parts’’

Probably the most common definition of a brain ‘‘part’’ is an anatomically dis-

tinguishable group of cell bodies and associated fibers within the brain. In their sim-

plest form, brain structures are homogeneous groups of cells such as the glycinergic

‘‘bushy’’-type neurons that comprise the MNTB or the columnar subdivision of

the ventral nucleus of the lateral lemniscus in echolocating animals (e.g., Covey and

Casseday, 1986, 1991). In their most complex form, brain structures consist of many

di¤erent cell types and connectional relationships, and perform multiple functions.

Examples include the hippocampus, cerebral cortex, and inferior colliculus. We will

begin by considering a small homogeneous group of neurons in the lower brainstem

of echolocating bats, the function of which is relatively straightforward.

The Columnar Subdivision of the Ventral Nucleus of the Lateral Lemniscus as a Set

of Time-Marking Frequency Filters

In the auditory brainstem of all mammals, ‘‘bushy’’-type neurons are not confined to

the cochlear nucleus; they are also present in the MNTB and the ventral nucleus of

the lateral lemniscus (VNLL). In the MNTB and VNLL, these neurons stain for gly-

cine, indicating that their output is inhibitory. In the VNLL of most mammals, the

‘‘bushy’’-type neurons are intermingled with other cell types, but in echolocating bats

they are segregated and neatly arranged in columns (figure 4.9). This part of the

VNLL is referred to as the columnar subdivision, or VNLLc (Covey and Casseday,

1986). Connectional and electrophysiological studies have shown that the VNLLc

contains a complete tonotopic map of the cochlea projected onto the height of

the columns, each of which contains about 20–30 cells (Covey and Casseday, 1986,

1991). When presented with pure tones, neurons in the VNLLc respond over a broad

range of frequencies. Each neuron responds with one spike that is tightly locked in

time to the onset of the stimulus. The latency of response remains constant across

sound frequency and amplitude (Covey and Casseday, 1991). Each isofrequency

sheet within the columnar organization of the VNLLc projects heavily throughout a

broad frequency range within the IC (Covey and Casseday, 1986). VNLLc neurons

respond best to downward frequency sweeps that are similar to the echolocation calls

that the bat emits, firing one spike that is tightly locked in time to the point at which

the frequency enters the upper border of the neuron’s response area and remaining

silent for the remainder of the sweep (Hu¤man et al., 1998).

Given these characteristics, it seems likely that the population of VNLLc neurons

together function as a set of broadband frequency filters that apportion the echolo-

cation call into approximately 25–30 discrete frequency segments. Each time the

emitted vocalization or the echo reflected from an object reaches the bat’s ear, neu-

rons in the isofrequency sheets of the VNLLc are successively activated, starting with
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the highest frequencies and progressing to the lowest ones, transmitting a precise

time marker for the onset of each frequency segment. Because VNLLc cells appear

to be glycinergic, it may be that the function of the time marker is to ‘‘initialize’’ the

IC cells that encode information within a frequency segment, preparing them to re-

ceive information within that band. It is known that in at least some auditory neu-

rons, the discharge patterns and latencies of responses to a given stimulus can vary

greatly, depending on what the membrane potential of the cell is when it receives

the stimulus (e.g., Kanold and Manis, 1999). Therefore, for precise time-coding tasks

such as the measurement of the time between the vocalization and the echo, it might

be advantageous to have uniform starting conditions that are replicated from one

measurement to the next.

A second function for the VNLLc output might be to provide a rebound from

inhibition evoked by one stimulus (e.g., the vocalization) that would coincide with

excitation evoked by a second stimulus (e.g., the echo), allowing the IC neuron

Figure 4.9
Drawing of cells in the VNLLc of the big brown bat illustrating columnar organization and tonotopic rep-
resentation within a column as seen by anterograde transport of tracer from tonotopically characterized
sites in the cochlear nucleus and retrograde transport from tonotopically organized regions of the IC.
Each column contains a highly organized sequence from low to high frequencies that spans the extent of
the bat’s audible range. (From Covey and Casseday, 1986.)
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to respond when the two stimuli are separated by a specific time interval. Neurons

tuned to the delay between two stimuli are found in the IC, and their delay tuning is

eliminated when inhibition is blocked (Portfors and Wenstrup, 2001), suggesting that

VNLLc neurons may indeed play a role in the circuitry that computes the distance of

an object relative to the bat.

In the auditory system, tonotopic organization is a ubiquitous feature of brain

structures. Not only does it provide a way of segmenting a complex auditory stimu-

lus into discrete frequency bands, each of which is analyzed in a separate channel, it

also provides a substrate upon which other parameters can be represented and com-

pared across frequency channels. The LSO provides a simple example of how such a

system might work.

The LSO as a System of ILD Maps

Complex sounds typically consist of multiple frequency components mixed together.

Often di¤erent sets of frequency components originate from di¤erent locations in

space. The LSO of all mammals is tonotopically organized with regard to its inputs,

outputs, and electrophysiological response properties. As described earlier, the popu-

lation of LSO neurons is relatively homogeneous; nevertheless, individual LSO

neurons have dynamic ranges that span somewhat di¤erent ranges of ILDs, corre-

sponding to di¤erent regions of azimuthal space. Although it has not been demon-

strated conclusively, it is likely that each isofrequency sheet within the LSO contains

neurons with di¤erent ILD functions, so that the population activity within an isofre-

quency sheet would provide an accurate estimate of the azimuthal location of the

source of that frequency component, which could then be compared with popula-

tion activity in other isofrequency sheets to ultimately provide a profile of which fre-

quencies belong together.

The VNLLc and LSO are both relatively easy to characterize in terms of tasks that

their constituent neurons might perform together as a population. For a nonhomoge-

neous structure such as the IC, where there is a large amount of convergent input

from other structures as well as large numbers of interneurons, the tasks that they

perform are not as easy to characterize.

The IC as an Integrative Center

The IC receives ascending input from virtually every one of the lower brainstem au-

ditory nuclei as well as descending input from the auditory cortex, crossed input from

the opposite IC, and internal connections from other neurons within the IC. It also

receives input from motor-related structures such as the substantia nigra and globus

pallidus. The dendrites of some of its neurons are confined to an isofrequency sheet,

whereas the dendrites of other neurons span many frequency sheets. The main out-

puts of the IC are to the thalamocortical system and motor-related systems, including
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the superior colliculus and cerebellum, via the pontine gray (for a detailed review of

IC connections, see Covey and Casseday, 1996; Casseday et al., 2000). Because of the

structural and connectional complexity of the IC, it is di‰cult to assign it a single

function on either a specific or a global level. In fact, the IC, like any system with

highly divergent output, may perform multiple functions, depending on which output

path we consider, with the same output taking on very di¤erent and even unrelated

‘‘meanings’’ that are determined by the other information with which it is combined

(Covey, 2001).

Because the IC receives input from so many sources, ranging from monosynaptic

input from the cochlear nucleus to polysynaptic pathways from the neocortex, the

input in response to a single ‘‘instantaneous’’ stimulus onset could be spread over a

hundred milliseconds or even more. Because the time scale of the fine structure of

auditory stimuli is on the order of a millisecond or so, this means that IC neurons

integrate information about fine structure over a time window that is roughly com-

parable to the rate at which motor activity occurs. For speech sounds, for example,

the integration performed by IC neurons could accomplish the transition from anal-

ysis of fine structure to analysis on the time scale of phonemes, syllables, or even

words.

There is considerable evidence that certain populations of IC neurons are selective

for sound features that are behaviorally relevant to the species. For example, the

range of durations to which IC neurons in bats are tuned corresponds closely to the

range of durations of their echolocation signals (Ehrlich et al., 1997). Analysis of

sound patterns on a scale of tens or even hundreds of milliseconds obviously requires

integration of information over time. As a consequence, the neurons performing the

analysis do not respond until the integration period is over and the proper conditions

have been met. This lengthening of the analysis period is reflected in IC neurons’

wide range of response latencies and inability to respond to stimuli presented at a

rapid repetition rate (Casseday and Covey, 1996).

The IC contains multiple populations of neurons that are tuned to di¤erent aspects

of sound and apparently perform di¤erent types of analysis. Parameters to which IC

neurons are sensitive include duration, amplitude (Casseday and Covey, 1992), direc-

tion, depth and slope of frequency modulation, repetition rate of periodic amplitude

or frequency modulation (Langner and Schreiner, 1988; Casseday et al., 1997), and

the interval between two sounds (Mittmann and Wenstrup, 1995). These forms of

sensitivity are not mutually exclusive and are usually accompanied by other forms

of sensitivity, such as frequency tuning and sensitivity to the location of a sound

source in space. Because of the heterogeneity and complexity of the IC, we still have

a long way to go before we fully understand its function either in terms of the opera-

tion of its individual neurons in sound analysis or its role as a population of neurons

in providing outputs to sensory and motor systems.
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Although a population of neurons that forms a visual grouping for the neuroana-

tomist is the most obvious brain ‘‘part,’’ it is also possible to think of ‘‘parts’’ in

strictly functional terms that transcend the anatomical boundaries of nuclei or other

cell groupings based on proximity.

Functional Modules or Channels as ‘‘Parts’’

Because the auditory system is tonotopically organized at all levels, there must be a

close functional relationship between a given isofrequency contour in one cell group

and the same isofrequency contour in the cell groups to which it sends information

(figure 4.10). Thus, the representation of a specific frequency range across brain

levels, starting at the cochlea and progressing through the auditory cortex, could be

thought of as a cohesive brain ‘‘part.’’ In this sense, a person with a hearing loss

restricted to a specific frequency range could be thought of as missing a ‘‘part’’ of

the auditory system that could be replaced by supplying the missing frequency-

specific input.

Multicomponent Loops as ‘‘Parts’’

No part of the brain functions in isolation. Cell groups are connected with other cell

groups, not just in a feedforward pattern of hierarchical processing, but also in feed-

back loops. The inferior colliculus is a good example of a structure that not only

receives a massive amount of ascending input which it processes through the intrinsic

properties of its cells, through convergence of ascending inputs with one another, and

through internal circuitry, but also through the action of descending inputs from

some of the same structures to which it sends output. For example, the range of

latencies in the auditory cortex of the bat is about 4–50 ms. The range of latencies

in the IC is about the same, 3–50 ms (Simmons et al., 1995). This means that feed-

back from short latency neurons in the auditory cortex could reach the longer latency

neurons in the inferior colliculus and influence their responses to the same sound that

evoked the cortical feedback. If the longer latency IC neurons also project to the feed-

back neurons, this would create a reverberation that could persist for some time and

influence the responses of neurons in both the IC and cortex to subsequent sounds.

Intracellular recording shows that sound can evoke long-lasting oscillatory activity

in IC neurons (figure 4.11), but the origin of the oscillations is not known. Recent

evidence suggests that cortical stimulation or inactivation can influence the responses

of IC neurons on a stimulus-by-stimulus basis, but it is not known to what extent

cortical input contributes to shaping the responses of IC neurons.

What is clear is that the IC does not function alone. It is a the hub of a highly

distributed and interactive system. It requires multiple inputs, including ongoing
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Figure 4.10
Diagram showing a multilevel isofrequency module that includes direct input from the cochlear nucleus
(CN) to the inferior colliculus (IC); input from the CN to the lateral superior olive (LSO) and thence to
the IC; ascending input from the IC to the medial geniculate nucleus of the thalamus (MG) and thence to
the cortex; descending input from the cortex to the MG and IC. All of these connections and others that
are not shown remain within their frequency channel or module.
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feedback from the auditory cortex, as well as multiple outputs to sensory and motor

structures. The highly interdependent and interactive nature of the IC, its inputs, and

its outputs, suggests that perhaps the entire central auditory system could be thought

of as a brain ‘‘part,’’ and that any attempt to reduce it to smaller components is

unrealistic.
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5 A Protocol for Reading the Mind

Howard Eichenbaum

A major overall goal of neuroscience is the development of prostheses that can in-

terpret neural signals in a way that helps individuals with disorders accommodate

their limitations of perception or action. This chapter considers the long-range goal

of ‘‘reading the mind,’’ or more specifically, the development of devices that may al-

low us to interpret the brain activity associated with conscious recollections and the

formulation of explicit intentions. Imagine a situation where a patient has severe lim-

itations in the capacity to express behavior overtly, while retaining perception, mem-

ory, and cognition—the condition of cerebral palsy is a particularly striking case.

Wouldn’t it be wonderful if we could develop a means for interpreting the patients’

recollections and plans so that artificial speech and other robotic devices could ex-

press his memories and intentions? Such a development is not practical at present,

but it is not too soon to begin thinking about the design requirements for a device

that could perform this function.

In my view, we now have su‰cient data on the anatomy and physiology of the

brain to encourage optimism that such a device could be developed. Furthermore,

the findings allow us to set the goals and identify the challenges that have to be met

as we look forward to this sort of development. These data fall into three main

domains, each of which addresses a major question about the relevant brain circuitry

and operation. First, what is the brain system that mediates conscious recollection

and explicit expression of intentions? Specifically, what brain structures are involved

in these functions, how are they connected, and what are the individual roles of each

structure involved? Second, what are the coding elements in these brain structures?

Specifically, what kind of information is reflected in the firing patterns of individual

neurons in each component of this functional system? Third, what do we know about

the functional organization of the neural networks in these brain areas? That is, how

do the neural elements act in concert beyond merely the sum of their independent

information-coding properties? We now have preliminary answers to each of these

questions. How these findings can be extended toward the development of a future

‘‘mind-reading’’ prosthetic device will be my final consideration in this chapter.



The System: A Brain Circuit for Conscious Recollection and Explicit Memory

Expression

There are now considerable convergent data indicating that the brain system that

mediates conscious recollection as well as the explicit expression of intentions is com-

posed of widespread cortical areas acting in concert with the hippocampus and

neighboring cortex of the medial temporal lobe. In particular, the hippocampal re-

gion has been identified as central to conscious recollection, and the prefrontal cortex

as central to the higher-order cognitive functions associated with the development of

intentions and plans. This section considers the brain system that encompasses the

hippocampal region and prefrontal cortex, as well as other cortical areas, specifically

with regard to their interactions in memory functions.

The Hippocampus and Conscious Recollection

Scoville and Milner’s (1957) initial report of memory loss in humans following re-

moval of the hippocampal region demonstrated that this area is dedicated to memory

independently of other cognitive functions. Early observations suggested that the

involvement of the hippocampal region was ‘‘global,’’ that is, critical to the media-

tion of all kinds of memory. However, it has become clear that there are multiple

memory systems in the brain, of which the hippocampal system is only one (Eichen-

baum and Cohen, 2001).

As Cohen and Squire (1980) first recognized, the hippocampal region plays a selec-

tive role in declarative memory. Although the terminology used to characterize this

kind of memory has varied, there is consensus on the phenomenology of declarative

memory as being composed of our capacity for episodic and semantic memory and

our ability for conscious recollection and ‘‘flexible’’ memory expression (Schacter

and Tulving, 1994). By contrast, the hippocampal region is not required for the ac-

quisition of a variety of skills and biases that can be expressed unconsciously through

alterations in performance on a broad variety of tasks. These kinds of memory are

instead mediated by pathways through the neostriatum, cerebellum, amygdala, and

other brain areas.

Through the use of animal models, we are beginning to characterize the neural

circuitry and information-processing mechanisms that mediate the capacity for con-

scious recollection. Recent studies have shown that the general pattern of memory

deficits and spared capacities following damage to the hippocampal region in mon-

keys and rats parallels the phenomenology of amnesia in humans (for a full review,

see Squire, 1992; Eichenbaum, 2000). Sensory, motor, motivational, and cognitive

processes are intact following hippocampal damage, confirming that this region

serves a selective role in memory in animals as it does in humans.
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In addition, as in humans, the scope of memory that depends on the hippocampal

region in animals is broad but selective to a particular type of memory processing. It

is impossible to assess in animals some aspects of declarative memory, such as con-

scious recollection. Nevertheless, several studies have been successful in demonstrat-

ing a selective role for the hippocampal region in mediating other central features of

declarative memory, including the linking of memories within a network of semantic

knowledge and flexible, inferential expression of memories, as outlined later. By con-

trast, there is abundant evidence that other brain systems in animals mediate other

types of learning (for reviews, see McDonald and White, 1993; Eichenbaum and

Cohen, 2001). These findings validate the use of animal models to study memory

and set the stage for a detailed neurobiological analysis aimed at identifying the rele-

vant pathways and functional mechanisms of the declarative memory system that

mediates conscious memory.

A Brain System for Conscious Recollection

The full system of brain structures that mediate conscious recollection is composed of

three major components: cerebral cortical areas, the parahippocampal region, and

the hippocampus itself (figure 5.1; Burwell et al., 1995; Suzuki, 1996), and the major

pathways of the system are very similar in rats and monkeys. The cerebral cortical

areas consist of diverse and widespread ‘‘association’’ regions that are both the
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Figure 5.1
The cortical-hippocampal system. (A) Flowchart of two-directional connections between the cortex and
hippocampus. (B) Outline of a horizontal rat brain section illustrating the locations and flow of informa-
tion between components of the hippocampus, parahippocampal region, and adjacent cortical areas. DG,
dentate gyrus; EC, entorhinal cortex; FF, fimbria-fornix; Hipp, hippocampus proper; OF, orbitofrontal
cortex; Pir, piriform cortex; PR, perirhinal cortex; Sub, subiculum.
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source of information to the hippocampal region and the targets of hippocampal out-

put. They project in di¤erent ways to the parahippocampal region, a set of intercon-

nected cortical areas immediately surrounding the hippocampus that in turn project

into the hippocampus itself. The main outputs of the hippocampus return to the para-

hippocampal region, which sends back projections broadly to the same cortical asso-

ciation areas that provided the inputs to the parahippocampal region. This pattern of

anatomical organization complements the findings from studies of amnesia, leading

to the working hypothesis that the parahippocampal region and hippocampus make

their contributions to memory by altering the nature, persistence, and organization

of memory representations within the cerebral cortex.

There is emerging evidence that neocortical association areas, the parahippo-

campal region, and the hippocampus play distinct and complementary roles in this

memory system. The roles of these areas may be best contrasted in the results of

studies on a simple recognition memory task, called delayed nonmatch-to-sample

(DNMS), where subjects must remember a single stimulus across a variable memory

delay.

The prefrontal cortex plays an especially important role in the acquisition and im-

plementation of task rules. For example, in rats performing an odor-guided version

of the DNMS task, damage to the orbitofrontal cortex resulted in a deficit in the ac-

quisition of the task when the memory delay was minimal, suggesting an important

role in perceptual processing or in learning the nonmatching rule (Otto and Eichen-

baum, 1992; Ramus and Eichenbaum, 2000). Consistent with this conclusion, many

other studies on humans, monkeys, and rats have led to a broad consensus that the

prefrontal cortex performs a critical role in ‘‘working memory,’’ the capacity to hold

items and manipulate them in consciousness. The prefrontal cortex is parcellated into

several distinct areas that have di¤erent inputs and whose functions can be dissoci-

ated according to di¤erent modalities of stimulus processing. However, they share

common higher-order functions in working memory and strategic processing, which

is reflected in perseveration and other common strategic disorders following damage

to any of the subdivisions (Eichenbaum and Cohen, 2001; Miller, 2000; Fuster, 1995;

Goldman-Rakic, 1996).

The parahippocampal region plays a di¤erent role. In contrast to the e¤ects of

prefrontal damage, rats with damage to the parahippocampal region acquired the

DNMS task at the normal rate and performed well at brief memory delays. How-

ever, their memories declined abnormally rapidly when the memory delay was ex-

tended beyond a few seconds, indicating a selective role in maintaining a persistent

memory of the sample stimulus (see also Young et al., 1997). Little if any deficit in

nonspatial DNMS is observed following damage to the hippocampus or its connec-

tions via the fornix, indicating that the parahippocampal region itself mediates the

persistence of memories for single items needed to perform the DNMS task.
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Parallel results have been obtained in monkeys performing visually guided versions

of the DNMS task. Similar to rats, monkeys with damage to the parahippocampal

region perform well when the memory delay is brief. However, when the memory

demand is increased by extending the delay period, severe deficits in DNMS are

observed (Meunier et al., 1993; Zola-Morgan et al., 1989), and these impairments

are much more severe than those following damage to the hippocampus (Murray

and Mishkin, 1998) or its connections via the fornix (Ga¤an, 1994a). The parahippo-

campal region may also play a role in the intersection of perception and memory, in

situations where perceptual processes depend on learned associations among com-

plex stimulus elements (Eichenbaum and Bunsey, 1995; Murray and Bussey, 1999).

The Role of the Hippocampus Itself

It is notable that memory mediated by the hippocampus itself contributes very little

to performance in standard DNMS tasks, in that the deficits observed are modest at

most compared with the e¤ects of damage to the cortex or parahippocampal region.

However, the hippocampus may play an essential role in other types of simple recog-

nition memory tests (Zola et al., 2000; Rampon et al., 2000; see later discussion) and

in recognition memory for configurations of items within scenes or places (Ga¤an,

1994b; Wan et al., 1999; Cassaday and Rawlins, 1995).

Instead, the findings from studies using animal models point to a critical role for

the hippocampus itself in central aspects of declarative memory. To understand this

role, it is important to consider the fundamental properties of declarative memory,

as introduced by Cohen and Squire (1980) and subsequently elaborated by many

investigators. We acquire our declarative memories through everyday personal expe-

riences, and in humans the ability to retain and recall these ‘‘episodic’’ memories is

highly dependent on the hippocampus (Vargha-Khadem et al., 1997). But the full

scope of hippocampal involvement also extends to semantic memory, the body of

general knowledge about the world that is accrued by linking multiple experiences

that share some of the same information (Squire and Zola, 1998). For example, we

learned about our relatives via personal episodes of meeting and talking about family

members, and then weaving this information into a body of knowledge constituting

our family tree. Similarly, we learned about the geographies of our neighborhood

and home town by taking trips through various areas and eventually interconnecting

the information in cognitive maps.

In addition, declarative memory for both episodic and semantic information is

special in that the contents of these memories are accessible through various routes.

Most commonly in humans, declarative memory is expressed through conscious,

e¤ortful recollection. This means that one can access and express declarative memo-

ries to solve novel problems by making inferences from memory. Thus, even without

ever explicitly studying your family tree and its history, you can infer indirect
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relationships, or the sequence of central events in the family history, from the set

of episodic memories about your family. Similarly, without ever studying the map

of your neighborhood, you can make navigational inferences from the synthesis of

many episodic memories of previous routes taken. Family trees and city layouts are

but two examples of the kind of ‘‘memory space’’ proposed for mediation by the hip-

pocampal system (Eichenbaum et al., 1999). Within this view, a broad range of such

networks can be created, with their central organizing principle the linkage of epi-

sodic memories by their common events and places, and a consequent capacity to

move among related memories within the network.

These properties of declarative memory depend on the functions of the hippocam-

pus itself. Several experiments have shown that the hippocampus is required in situa-

tions where multiple and distinct, but overlapping experiences must be combined into

a larger representation that mediates expression of flexible, inferential memory. For

example, in one experiment, rats initially learned a series of distinct but overlapping

associations between odor stimuli (Bunsey and Eichenbaum, 1996; figure 5.2). On

each trial one of two odors was initially presented, followed by a choice between

two odors, one of which was baited as the assigned ‘‘associate’’ for a particular initial

odor (A goes with B, not Y; X goes with Y, not B). Following training on two sets of

overlapping odor-odor associations (A-B and X-Y, then B-C and Y-Z), subsequent

probe tests were used to characterize the extent to which learned representations

could be linked to support expression of inferential memory. The control rats learned

paired associates rapidly and hippocampal damage did not a¤ect the acquisition rate

on either of the two training sets. The intact rats also showed that they could link the

information from overlapping experiences and employ this information to make in-

ferential judgments in two ways. First, normal rats showed strong transitivity across

odor pairings that contained a shared item. For example, having learned that odor A

goes with odor B, and B goes with C, they could infer that A goes with C. Second,

control rats could infer symmetry in paired associate learning. For example, having

learned that B goes with C, they could infer that C goes with B. By contrast, rats with

selective hippocampal lesions were severely impaired, showing no evidence of transi-

tivity or symmetry.

A similar characterization accounts for the common observation of deficits in

spatial learning and memory following hippocampal damage. For example, in the

choice following each sample. Right: Performance on learning the two lists of paired associates. (C) Tests
for inferential memory expression. For both tests a preference score was calculated as ða� bÞ=ðaþ bÞ,
where a and b were the digging times in the appropriate and alternate choices, respectively. Left: In the
test for transitivity, rats are presented with one of two sample cues from the first training set (A or X)
and then required to select the appropriately matched choice cue from the second set (C or Z, respectively),
based on the shared associates of these items. Right: In the test for symmetry or ‘‘reversibility’’ of the asso-
ciations, rats are presented with one of two choice cues from the second set (C or Z) and required to select
the appropriate sample cue from that set (B or Y, respectively).
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Morris water maze test, rats or mice learn to escape submersion in a pool by swim-

ming toward a platform located just underneath the surface. It is important to note

that training in the conventional version of the task involves an intermixing of four

di¤erent kinds of trial episodes that di¤er in the starting point of the swim. Under

this condition, animals with hippocampal damage typically fail to acquire the task

(Morris et al., 1982). However, if the demand for synthesizing a solution from four

di¤erent types of episodes is eliminated by allowing the animal to repeatedly start

from the same position, animals with hippocampal damage acquire the task almost

as readily as normal rats and use the same distant spatial clues in identifying the

escape site (Eichenbaum et al., 1990). Nevertheless, even when rats with hippo-

campal damage are successful in learning to locate the escape platform from a single

start position, they are unable to use this information for expression of flexible, infer-

ential memory. Thus, once trained to find the platform from a single start position,

normal rats readily locate the platform from any of a set of novel start positions.

However, under these same conditions, rats with hippocampal damage fail to readily

locate the platform, often swimming endlessly and unsuccessfully in a highly familiar

environment.

The view that has emerged from these and many other studies is that the hippo-

campus plays a central role in the creation of a broad range of memory networks,

with their central organizing principle the linkage of episodic memories by their com-

mon events and places, and a consequent capacity to move among related memories

within the network. The scope of such a network reaches to various domains relevant

to the lives of animals, from knowledge about spatial relations among stimuli in an

environment, to categorizations of foods, to learned organizations of odor or visual

stimuli or social relationships.

The Elements: Memory-Coding Properties of Cortical and Hippocampal Neurons

Parallel electrophysiological studies that involve recording from single cells through-

out this brain system have provided a preliminary understanding of the neural coding

mechanisms that underlie di¤erent aspects of memory performance that contribute to

conscious recollection and explicit expression of memory. In particular, many studies

have focused on simple recognition tasks, such as delayed nonmatch-to-sample, which

allow analysis of the neural firing patterns associated with perception, maintenance

of memory representations, and cognitive judgments and actions based on memory.

These studies have examined the firing patterns of neurons in several cortical areas,

including the prefrontal cortex, inferotemporal cortex, and parahippocampal region,

as well as the hippocampus.

In a variety of cortical areas, and in both monkeys and rats, three general

responses have been observed (figure 5.2; Brown and Xiang, 1998; Desimone et al.,
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1995; Fuster, 1995; Suzuki and Eichenbaum, 2000). First, many cells exhibited selec-

tive tuning to sample stimuli during the initial perception of the stimulus, indicating

that these areas encode specific stimulus representations. Second, some cells contin-

ued firing in a stimulus-specific fashion during a memory period when the cue was

no longer present, indicating the persistence of a representation of the sample. Third,

many cells showed enhanced or suppressed responses to the familiar stimuli when

they reappeared in the memory test phase of the task, indicating involvement in the

match-nonmatch judgment.

All three types of representations have been found in prefrontal areas and in

the parahippocampal region, suggesting that information about all aspects of the

task is shared among these areas. However, it is likely that each area makes a distinct

contribution to the performance of the task. For example, in rats we found that more

cells in the orbitofrontal area exhibited stimulus-selective match enhancement or

suppression, whereas more cells in the parahippocampal region exhibited sustained

stimulus-specific activity during the delay (figure 5.3; Ramus and Eichenbaum,

2000; Young et al., 1997). In monkeys, a greater proportion of cells in the lateral

prefrontal region showed sustained responses during the delay and conveyed more

information about the match-nonmatch status of the test stimuli than the perirhinal

cortex in a task where the memory delay was filled with interpolated material (Miller

et al., 1996). By contrast, more neurons in the perirhinal cortex and inferotemporal

cortex showed greater stimulus selectivity. Furthermore, in a recognition task where

the memory delay was not filled with interpolated material, a large fraction of tem-

poral neurons showed sustained stimulus-specific delay activity (Miyashita and

matchnonmatchMatch
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Figure 5.3
Examples of firing patterns of cells from animals performing the delayed nonmatch-to-sample (DNMS)
task. (A, left) An orbitofrontal cell that fires robustly to an odor when it is a nonmatch and barely fires
when it is a match. Right: An orbitofrontal cell that fires robustly when an odor is a match and barely fires
when it is a nonmatch. (B) An entorhinal cell that fires selectively for one odor late in the odor-sampling
period (left panel) and throughout the delay period (right panel).
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Chang, 1988). In addition, neurons in perirhinal and inferotemporal cortex areas

showed long-lasting decrements in responsiveness to highly familiar stimuli, which

could provide signals about familiarity for extended periods (Brown et al., 1987;

Miller et al., 1991).

It is di‰cult at this time to directly compare the data across species from studies

that use di¤erent experimental strategies, focus on di¤erent components of the pre-

frontal and temporal cortices, and use di¤erent variants of recognition memory tests.

However, the evidence is generally consistent with the notion that several neocortical

and parahippocampal areas serve distinct functions in recognition memory. Neocort-

ical areas play specific roles in the perceptual or cognitive processing required to per-

form the task, and are su‰cient to mediate some aspects of working or short-term

memory; these functions are localized in the processing by the prefrontal cortex.

The parahippocampal region makes a di¤erent contribution. This region appears to

be critical in extending the persistence of memory for single stimuli over brief periods

in the absence of interference, and in maintaining information about stimulus famil-

iarity for prolonged periods, even with interference.

Memory Coding in the Hippocampus

Neurons in the hippocampus also fire in response to a broad range of stimuli and

events. Indeed, research on hippocampal neuronal firing patterns has generated con-

siderable controversy with regard to the correct characterization of the functional

coding properties of these neurons. However, recent observations from extracellular

recordings in behaving animals suggest a reconciliation of various views, implying

that hippocampal neuronal networks may represent sequences of events and places

that compose episodic memories (Eichenbaum, 1993; Eichenbaum et al., 1999). The

content of information encoded by the firing patterns of these neurons includes both

specific conjunctions of events and places unique to particular experiences, and fea-

tures that are common to overlapping experiences. Indeed, there is now evidence that

the hippocampus creates separate and linked episodic-like representations even when

the overt behaviors and places where they occur are the same, but the events are

parts of distinct experiences.

Hippocampal principal cells exhibit firing patterns that are readily related to a

broad range of events that occur during sequences of behavior in all tasks examined.

For example, as rats perform spatial tasks where they are required to shuttle between

a common starting location and one or more reward locations, hippocampal ‘‘place’’

cells fire during each moment as the animal traverses its path, with each neuron acti-

vated when the animal is in a particular place and moving toward the goal (figure

5.4A). A largely di¤erent set of cells fires similarly in sequence as the rat returns to

the starting point, such that each cell can be characterized as an element of a network

representing an outbound or inbound part of the episode (Gothard et al., 1996;
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McNaughton et al., 1983; Muller et al., 1994; Wiener et al., 1989). One can imagine

the network activity as similar to a videoclip of each trial episode, with each cell cap-

turing the information about where the rat is and what it is doing in each sequential

‘‘frame’’ of the clip.

Similarly, in both simple and complex learning tasks, hippocampal cells fire at vir-

tually every moment associated with specific relevant events (e.g. Berger et al., 1976;

Hampson et al., 1993). For example, in an experiment where rats performed an odor

discrimination task, hippocampal cells fired during each sequential event, with dif-

ferent neurons firing during the approach to the odor stimuli, sampling of odors, ex-

ecution of a behavioral response, and reward consumption (Wiener et al., 1989;

figure 5.4B). Again, it is as if each hippocampal cell encodes one of the sequential

trial events, with its activity reflecting both aspects of the ongoing behavior and the

place where that behavior occurred. In all of these situations, some cells fire during

common events or places that occur on every trial, whereas the firing of other cells is

associated with events that occurred only during a particular type of episode, such as

sampling a particular configuration of two odors presented on that trial.

In an extension of these studies, we were recently able to distinguish hippocampal

neurons that encoded both specific combinations of events and places that were

unique to particular experiences as well as particular features that were common

Approach Odor sampling Reward retrieval

Cup 2

Cup 1

Cup 3

Cup 4

A. Spatial Working Memory B. Odor Guided Memory

Figure 5.4
Idealized neuronal firing patterns of an ensemble of hippocampal neurons. (A) Firing patterns of place
cells from a rat performing a spatial working memory task in an open arena (from Wiener et al., 1989).
The arrows indicate the directionality of each place cell. (B) Nonspatial firing patterns of cells from a rat
performing an olfactory discrimination task (from Eichenbaum et al., 1987). Each panel illustrates the
increased firing of a cell at a particular time during the trial. The filled and open curves indicate cells that
fire only during the presentation of a particular odor configuration. The thick arrow at the right of one
curve indicates a cell that encodes the sequence of odor sampling and the behavioral response.
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Figure 5.5
Firing patterns of hippocampal neurons associated with performance in the delayed nonmatch-to-sample
task. (A) Illustration of trials in the continuous delayed nonmatch-to-sample task. On trial n the odor was
di¤erent from that on the previous trial (a nonmatch), so the rat dug in the cup and found a reward. On
trial nþ 1, the odor was the same as on the previous trial (a match), so no reward was available and the rat
appropriately turned away. On trial nþ 2, the odor was a nonmatch, and the rat dug for and found the
reward. (B) Analyses of the firing patterns of two hippocampal neurons in rats performing an odor-guided
recognition memory task. The stimuli were nine di¤erent odors (O1–O9) and they appeared randomly at
nine di¤erent positions (P1–P9). In addition, each odor could appear as a match or nonmatch with the
odor on the previous trial.
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across many related experiences (Wood et al., 1999). In this experiment, rats per-

formed a variant of the DNMS task at several locations in an open field (figure 5.5).

Again, di¤erent cells fired during each sequential trial event. Some cells were acti-

vated only by an almost unique event, for example, when the rat sni¤ed a particular

odor at a particular place and it was a nonmatch with the odor presented on the

previous trial. Other cells fired in response to features of the task that were common

across many trials. Some cells fired as the rat approached the odor stimulus, or as it

sni¤ed a particular odor, regardless of where the trial was performed, and other cells

fired as the rat performed the trial at a particular location regardless of what odor

was presented.

Finally, there is emerging evidence of coding for information specific to particular

types of episodes, even in situations where the overt behavioral events and the loca-

tions in which they occur are identical for multiple types of experience. For example,

as rats performed a spatial DNMS task, some hippocampal cells were activated when

the rat pressed one of two levers only during the sample phase or only during the test

phase of the task (Hampson et al., 1999). These cells can be characterized as elements

encoding one temporally, spatially, and behaviorally defined event in the network

representation of a particular trial type. The firing of other cells was associated with

common events—a particular lever position regardless of trial phase, or during the

sample or test phase regardless of location; these cells could be used to link the sepa-

rate representations of di¤erent trial phases or episodes, and these codings were topo-

graphically segregated within the hippocampus.

More direct evidence of episodic-like coding was found in a recent preliminary

study in which rats performed a spatial alternation task on a T-maze. Each trial

began when the rat traversed the stem of the T and then selected either the left- or

the right-choice arm (Wood et al., 2000). To alternate successfully, the rats were

required to distinguish between their left-turn and right-turn experiences and to use

their memory for the most recent previous experience to guide the current choice.

Di¤erent hippocampal cells fired as the rats passed through the sequence of locations

within the maze during each trial. Most important, the firing patterns of most cells

depended on whether the rat was in the midst of a left- or right-turn episode, even

when the rat was on the stem of the T and running similarly on both types of trials.

Minor variations in the animal’s speed, direction of movement, or position within

areas on the stem did not account for the di¤erent firing patterns on left-turn and

right-turn trials (figure 5.6). Also, most of these cells fired at least to some extent

when the rat was at the same point in the stem on either trial type, proving that a

degree of coding for the set of locations is shared between the two types of episodes.

Thus, the hippocampus encoded both the left-turn and right-turn experiences using

distinct representations, and included elements that could link them by their common

features. In each of these experiments, the representations of event sequences, linked
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Figure 5.6
Firing patterns of hippocampal neurons associated with performance in the T-maze alternation task. (A)
The maze was composed of a T-shaped stem and choice arms, plus return arms that allowed the rat to re-
turn to the beginning of the stem on each trial. (B) Examples of a hippocampal cell that fired almost exclu-
sively as the rat performed left-turn trials as it traversed the last sectors of the stem of the T-maze. The left
and middle panels show the paths taken by the animal for both types of trials. The location of the rat when
individual spikes occurred is indicated separately for left-turn trials (on the left panel), and right-turn trials
(middle panel). The far right panel shows the mean firing rate of the cell for each of four indicated sectors
of the stem, adjusted for variations in firing associated with the animal’s speed, direction, and horizontal
location. **p < 0:01, ***p < 0:001.
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by codings of their common events and places, could constitute the substrate of a

network of episodic memories that could mediate performance on this kind of mem-

ory task.

The Network: Functional Organization of Cortical and Hippocampal Neural

Networks

The foregoing review summarizes the brain structures and pathways that mediate

conscious recollection and cognition of intentions, the distinct roles of di¤erent com-

ponents of this system, and the coding properties of its neural elements. Additional

information that will be critical to the development of a device that interprets neural

activity in this system includes a consideration of the functional organization of the

network properties. E¤orts to understand network properties in brain structures are

still in their infancy. Nevertheless, considerable information has been acquired about

ensemble activity in cortical and hippocampal brain areas, much of which is covered

in other chapters in this book. Here I will summarize a few aspects of network cod-

ing, particularly focusing on the issue of the organization of the neural networks in

the cortex and hippocampus that mediate memory.

Considerable preliminary progress has been made in outlining the organization of

coding by populations of cells in cortical areas, and there has been recent progress in

the hippocampus as well. Cell populations in sensory and motor cortical areas in-

volve a succession of sequential (as well as parallel) areas constituting a hierarchy of

processing stages in which early encoded detail is combined (or filtered) in successive

stages to achieve the identification of complex objects at the highest stages. In the

earliest stage of cortical processing, the main principles for the population code are

the specificity of single-cell responses characterized as feature detection or filtering,

and topographical organization of these representations along multiple orthogonal

dimensions. This scheme breaks down at higher stages of cortical processing where

elemental features are not identifiable and topographic organization is lost. Instead,

single-cell firing patterns reflect a coarse encoding of complex but meaningful objects

or combinations of features, and the organization involves a ‘‘clustering’’ of cells

with similar response properties (Tanaka, 1993; Perret et al., 1982).

Ultimately, the outputs of all the cortical modalities converge on the hippocampal

region, where the response properties of the cell population are strikingly di¤erent.

In the hippocampus, cellular activity can reflect quite complex conjunctions of multi-

ple cues and actions, and specific or abstract relationships among them relevant to

ongoing behavior. At the same time, hippocampal cellular responses change dramat-

ically whenever the animal seems to perceive any change in the environment or task

demands, and during di¤erent experiences associated with the same behaviors and
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places (see earlier discussion). Whether or not the functional characteristics of hippo-

campal cells have a systematic organization is currently being investigated.

Early evidence suggested that hippocampal cells with similar response characteris-

tics tend to ‘‘cluster’’ as they do in the a¤erent cortical areas (Eichenbaum et al.,

1989). A recent study has extended this finding and has indicated a clear topograph-

ical organization that accommodates both distinct task demands and spatial features

of the environment (Hampson et al., 1999). The activity of multiple neurons in a

broad area of the hippocampus was monitored in rats performing a version of

the delayed nonmatch-to-sample test using spatial cues. On each trial, the animal ini-

tially pressed a sample lever presented in one of two positions in a test chamber, then

maintained the memory for several seconds, and then finally demonstrated the mem-

ory by choosing the alternative lever when both were presented in the nonmatch

phase of the trial. The activity of some hippocampal neurons was associated with

the position of the lever being pressed, regardless of whether this occurred during

the sample or nonmatch trial phase. Conversely, other cells fired during the trial

phase, independent of the lever position. Yet other cells fired when there were con-

junctions of lever position and trial phase (e.g., left-match), or multiple events that

composed a specific type of trial (e.g., right-sample then left-nonmatch). So, hippo-

campal neuronal activity represented both the relevant aspects of space and the rele-

vant nonspatial features of the task, which is consistent with the mixture of spatial

and nonspatial coding observed in other situations described earlier.

Moreover, by collapsing the data across several animals, Hampson et al. (1999)

found a set of regular anatomical patterns. Lever position codings were segregated

so that alternating longitudinal segments of the hippocampus contained clusters of

‘‘left’’ or ‘‘right’’ codings. Also, trial phase codings were segregated in alternating

longitudinal clusters of ‘‘sample’’ and ‘‘nonmatch’’ responses. The two topographies

were interleaved so that each lever position cluster contained clusters for both trial

phases. Furthermore, the clusterings of lever position and trial phase specificity fol-

lowed the known anatomical organization in which neurons are more closely inter-

connected within cross-sectional segments.

An additional finding provided by Hampson et al. (1999) o¤ers a further clue that

may relate the organization of these networks to their operation. Hippocampal neu-

rons that encoded combinations of the lever position and trial phase were localized at

the borders of appropriate codings for position and trial phase. Considering the

‘‘linking’’ role for the hippocampus outlined earlier, it is possible that these conjunc-

tive cells represent events unique to particular types of trial episodes, whereas the

lever position and trial phase cells encode events that are common to the representa-

tions of di¤erent episodes and therefore might serve to link them. A memory network

based on these linked episodic codings could mediate the rat’s ability to remember

recent past trials based on present events. Of course, this is the critical memory de-
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mand in the task. The same kind of functional organization could mediate the link-

ing of episodic memories, and access to them via present cues, across many domains

of memory in humans as well as in animals.

The Future: How to Proceed in Developing a Device for Mind Reading

A major guiding theory for information-processing and memory in neural networks

was proposed by Hebb in 1949. In his treatise on brain function and behavior, Hebb

proposed the existence of ‘‘cell assemblies,’’ groups of cells linked to subserve the

representation of specific stimuli and behavioral events. He conceived of single cells

as having unique coding properties, not as feature detectors, but more as distinct

in their di¤erential encoding of a variety of features of information. His proposals

about higher-order behavior focused on two closely related properties. One property,

widely known as the Hebb learning rule, is that coactivity strengthens existing synap-

tic connections between neurons.

The other property, following from the first, is that such coactivities and enhanced

functional connectivities lead to networks, or assemblies, of cells that fire coopera-

tively in similar contexts. Thus, complex real-world stimuli come to activate a large

assembly of cells whose coactivity constitutes the representation of that stimulus

event. Within this framework, each cell can represent only small bits of the total in-

formation and fire maximally for a highly specific configuration of information. This

property of sparse coding is complemented by the participation of large numbers of

cells in any particular assembly. Each cell may represent many dimensions of infor-

mation while it is coarsely tuned; that is, it contributes only a little accuracy to any

one of them. At the same time, many such cells can participate in a variety of assem-

blies that involve the domain of information that particular cells encode.

In addition, Hebb suggested, once constructed, these assemblies have the ability to

show persistent ‘‘reverberatory’’ activity even after the stimulus has turned o¤, and

can reactivate the entire assembly when only part of the input is re-presented. These

properties address all of the limitations of the single cell as a feature detector and sat-

isfy the demands for representation of nearly infinite amounts of information. Hebb

even speculated further on the possibility that overlapping cell assemblies could be

the basis of insightful behavior, supporting logical inferences from only indirectly re-

lated experiences.

This review indicates that we can indeed describe superficial aspects of important

biological neural networks, and these descriptions are generally consistent with

Hebb’s account of cell assemblies. In addition, the earlier characterization of a brain

circuit that mediates conscious recollection also indicates that the details of the infor-

mation contained in this system are distributed among systematically organized

networks in widespread brain regions, each of which makes a distinct functional
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contribution. Therefore, future analyses of conscious recollection must include the

simultaneous monitoring of activity in multiple brain areas.

This chapter provides some valid reasons for optimism when we can record a good

sampling of brain cells in the functionally distinct components of this system. First,

we are beginning to understand the contributions of the di¤erent parts of the system.

Second, single neurons in each area contain specific information that the brain area

contributes, and there is considerable sharing and coordination of information among

all these areas. Third, there are guiding principles for the sampling of cells in these

areas—they all use a kind of topography to segregate the relevant dimensions of in-

formation processing. Combining all of these observations, it seems reasonable to ex-

pect that simultaneous sampling of the topographic representation from each area

can provide a basis for ‘‘mind reading’’ in this brain system.
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6 Cognitive Processes in Replacement Brain Parts: A Code for All Reasons

Robert Hampson, John Simeral, and Sam A. Deadwyler

There are very few topics that are more provocative in modern neurobiology than

the notion that the nervous system not only possesses enough plasticity to repair it-

self, but that when it cannot, such repair can be accomplished by replacing cells or

structures with manmade devices. The theme of this book addresses the feasibility

of replacement specifically with reference to the ‘‘substitution’’ of missing cells or

even entire brain regions, with neural ‘‘components’’ manufactured and programmed

according to specification. This contrasts with more traditional approaches to the re-

covery of neural function in that such repair is not e¤ected by stimulating neurons to

either regenerate or grow new connections (i.e., through administration of growth

factors). Rather, this theme takes a more or less ‘‘mechanical’’ perspective, confront-

ing the issue of whether a missing a cellular element in a neuronal circuit (i.e., one

that cannot be reestablished neurally), can be replaced by a synthetic component.

Neural Function Is What Must Be Repaired

It is not by chance that neurons evolved the way they did; they were designed by na-

ture to transmit information, and they accomplish this in a superb manner. What this

entails in the simplest of circumstances is the neuron detecting a change on one part

of its surface and then transmitting that information to another part. As an extension

of this basic operation, a connection formed between two of these units would pro-

vide the means of transmitting the information over large distances, depending upon

the number of units serially connected and the ability of each unit to regenerate the

signal at each connection. From this basic premise we know that it is possible for

neural systems not only to pass on information but also through these connections

to perform elaborate computations. The possibility exists that we may never be capa-

ble of understanding some of these computational processes, which are performed at

relatively high speeds and completely without our awareness. Perhaps the best we

can hope for in this respect is to relate the information processed by these networks

to a functional outcome, a movement, a visceral reaction, or a verbal report. The issue



of replacing brain parts therefore is reduced to the challenge of making a device or

devices that perform similar detectable or observable ‘‘functions’’ given that the

same information is supplied.

Potential Approaches: Duplication versus Simulation

This mission can be addressed with di¤erent degrees of certitude, depending upon the

system in which the neural components are to be replaced. ‘‘Repairing’’ a limb so

that it can touch a keyboard or press a button may be somewhat easier than a repair

to recover one’s golf swing. Can recovery be e¤ected by substitution with lots of the

same types of devices (neurons) all of which perform similarly with respect to even-

tually generating a useful code, or must certain devices perform one type of compu-

tation and others di¤erent sets of operations on the same data?

In the case of moving a limb from point A to point B, it might be appropriate to

build a device that simply duplicates the set of commands from the replacement

‘‘neurons’’ in the motor cortex to the motor neuron pool innervating the appropriate

muscles for moving the arm. However, as the functions that the replacement neurons

perform become more complex (i.e., initiating the pattern of impulses to the muscles

during a golf swing), the number of interactions and units within the device (inter-

neurons, higher-order connections, etc.) make straightforward ‘‘duplication’’ of bio-

logical neurons much less feasible as a means of repair.

A di¤erent approach would be to ‘‘simulate’’ the movements in a golf swing by us-

ing an algorithm that initiates this action in a way that is di¤erent from that of nor-

mal neural connections. This ‘‘prosthetic’’ device would solve the problem externally,

bypassing the neural systems involved in the computations and substituting a real-

time computer-based program to ‘‘drive’’ or activate the muscles in a particular pat-

tern (cf. Chapin et al., 1999; Nicolelis, 2001). While this approach may be feasible in

many applications that are indeed more complex than simply moving a limb, such

as walking upstairs or getting into a wheelchair, it is still rather unlikely that in our

example a person would ever ‘‘break a hundred’’ on the golf course using this

approach.

Component Requirements: Size and Computational Power

The two approaches described above (duplication and prosthetics) lack appeal be-

cause it is clear that neither can restore the richness and fluidity of movement inher-

ent in the original system. For that matter, is it reasonable, given our current state of

knowledge, to expect a damaged neural system to be fully repaired? This outcome

requires components that would simulate the function of damaged neurons in the cir-

cuit but would not require an external prosthetic ‘‘loop’’ to accomplish movement.
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Could the capacity to transmit the necessary information to the various stages in the

circuit be contained in a replacement component? In order for this to happen, two

major problems must be solved. First, a device has to be built that can perform

real-time computations within physical dimensions that allow implantation in the

central nervous system (CNS). Second, the device must contain the appropriate

code for translating information between the units that it replaces. In this chapter

we discuss the second issue, namely, what codes might be required for replacement

devices to work e‰ciently.

We have obtained some idea of these requirements from recordings of populations

of neurons and assessing how information is ‘‘packaged’’ within these populations

and how ensembles encode information during the performance of complex tasks

that require moment-to-moment processing of information on a trial-by-trial basis.

In the following sections we provide a list of computational rules we believe are crit-

ical for translating information between replacement components that interact with

existing biological neurons. To accomplish this, it is reasonable that we explore

methods of condensing the computational operations required by such units into a

format that mimics the functional characteristics of the elements being replaced.

Ensemble versus Functional Codes: Are They Di¤erent?

It is obvious that the type of code that will have to be imbedded in a replaceable

brain part that participates in cognitive processing will depend upon the role the

damaged area played in transmitting information from one region to the next. At

the individual neuron level, encoding of relevant events seems to be a feature of cor-

tical neurons, while modulation of firing rate is more associated with encoding of

sensory events and motor responses (Carpenter et al., 1999; Christensen, 2000; Furu-

kawa, 2000; Singer, 2000; Freedman et al., 2001). The information encoded by neu-

rons is a function of the divergence or convergence of their respective synaptic inputs

(Miller, 2000), and the timing of those inputs, as in the mechanisms involved in syn-

aptic enhancement (van Rossum et al., 2000).

Cortical neurons by definition receive inputs that have been heavily ‘‘filtered’’ with

respect to other relays within their particular circuits. Thus encoding by cortical neu-

rons may be di¤erent at each stage, even though the neurons are part of a common

circuit. It is also possible that the codes that individual neurons carry may be ‘‘read’’

not only by the next set of neurons in the circuit, but may be a part of a larger, more

complex code transmitted by many di¤erent neurons that encode only single ‘‘com-

ponents’’ of an overall pattern (Bell and Sejnowski, 1997; Deadwyler and Hampson,

1995; Laubach et al., 1999). In this case, information is transmitted as a ‘‘population

code’’ in which individual neuronal activity does not reflect the functional code

within the total ensemble. This is true of even the simplest convergent networks,
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such as those that represent ‘‘face cells’’ in the visual system (Rolls, 2000) or ensem-

bles that process ‘‘intention vectors’’ in the motor system (Schwartz, 1999; Georgo-

poulos, 1999). In each of these cases it is the pattern of activation that is critical to

the representation of information.

Although it is not necessary that such encoding have emergent properties, it is nec-

essary that the transferred pattern be precise enough to trigger the next set of neurons

tuned to read that pattern. In other words, the code that is utilized within the popu-

lation has to have a functional basis with respect to how it preserves information

from its input as representative of the outside world. It is not di‰cult to understand,

given the necessary degree of resolution, that the functional ‘‘links’’ between struc-

tures using such codes are often better achieved by population rather than single neu-

ral codes. In the case of cortical neurons, this is probably the only way to encode

complex information relevant to cognitive processes.

Cognitive Neural Codes Are Dichotomies of Referent Information

Feasible encoding for replacement brain parts will require an extraction of features

encoded at the neuronal as well as the population level. Codes can be extracted from

single neurons only by analyses of individual spike trains, which requires detailed tem-

poral characterization to determine whether increased or decreased rates are signifi-

cant. A high degree of control over situational variables is necessary to ‘‘discover’’

the features that cause a change in firing rate. Codes can also be extracted from neural

populations by statistical procedures that identify sources of variances in firing across

neurons within a given set of circumstances. These sources need not be identified at

the individual neuron level since a given component of the variance might reflect a

pattern of firing that is only represented by several neurons firing simultaneously.

Once the sources of variance have been identified, the next step is to determine

how the underlying neuronal population contributes to those variances. Since a par-

ticular component of variance can arise from several di¤erent underlying neuronal

firing patterns (Deadwyler et al., 1996), finding the factors responsible may not be a

trivial task. First, there will be at least some neurons that encode the input features

to the ensemble, especially in cases where the identified source(s) reflect prominent

dimensions of the stimulus or task (i.e., direction or location and time or phase di¤er-

ences). However, other components of the ensemble may reflect interactions between

dimensions, such as the occurrence of a particular response at a particular time in a

particular direction. Because there could be more than one way in which the popula-

tion could encode such information, it is necessary to understand how individual

neurons fire with respect to relevant dimensional features of the task.

The three-dimensional (3-D) ensemble histogram in figure 6.1 shows 24 neurons

recorded from the rat dorsal hippocampus during performance of a delayed
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nonmatch-to-sample (DNMS) task (Deadwyler et al., 1996). Each neuron responds

with an increased firing rate to di¤erent features or events within the trial. No single

neuron is capable of encoding the total information in the task, nor does straightfor-

ward examination of the ensemble firing rate lead to derivation of the encoded infor-

mation, since each neuron does not always fire during all trials. However, by

combining statistical extraction methods applied to the total population of recorded

neurons with categorization of individual cell types, the nature of the encoding pro-

cess is gradually revealed. Figure 6.2 illustrates the extraction of the largest variance

component, or discriminant function (DF1), which di¤erentially represents the phase

of the DNMS task. The 3-D histograms illustrate several neurons with either sample

or nonmatch phase selectivity. The trials were divided according to whether the sam-

ple response was to the left (left trial) or right lever (right trial), but there was no dis-

tinction in phase responses of these neurons with respect to position. The raster

diagram at the top right shows a single, nonmatch, cell with elevated firing only at

the nonmatch response, irrespective of response position. This encoding of the

DNMS phase by single neurons underlies the di¤erential encoding of the task phase

by the ensemble, as shown by the discriminant scores at the bottom right.

Further allocation of variance revealed a complementary set of neurons that

encoded response position irrespective of DNMS phase. Figure 6.3 illustrates these

Neurons

F
iri

ng
 R

at
e 

(H
z)

10

5

0

SR
10 sec

20
30 NR

Delay

Figure 6.1
Ensemble of neurons recorded from the rat hippocampus during performance of a delayed–nonmatch-to-
sample (DNMS) task (Deadwyler et al., 1996). The three-dimensional graph shows individual neurons
(horizontal axis at left), versus time during a DNMS trial. The firing rate is depicted by vertical deflection.
The mean firing over 100 trials is shown for 24 neurons. The phases of the DNMS trial are SR, response
on the sample lever; NR, response on the nonmatch lever. The seconds indicate the delay interval after the
sample response. Note the diversity in individual neuron responses at the DNMS events.
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Figure 6.2
Derivation of the source of variance in a DNMS task phase. Ensembles of 10–16 neurons were recorded
from the rat hippocampus and analyzed via canonical discriminant analysis (Deadwyler et al., 1996;
Hampson et al., 1996). The greatest percent of variance (42%) was contributed by a discriminant function
(DF1) that di¤erentiated the sample from the nonmatch phase. The graph at the bottom right shows the
maximum separation of discriminant scores for DF1 at the sample response (SR) and nonmatch response
(NR) events, with scores near zero during intertrial interval (ITI), delay, and last nosepoke during the de-
lay (LNP). There was no significant di¤erence in firing at left (left trial) or right (right trial) lever positions.
The three-dimensional histograms at the left depict the firing of 12 neurons, 6 sample (toward the lower
right) and 6 nonmatch (toward the upper left). Note that the same neurons were active during sample or
nonmatch phases on both trial types. The rastergrams (top right) show the activity of a single nonmatch
cell. The trials are represented by rows, with each dot indicating a single action recorded potential. Firing
is shown forG1.5 s around sample and nonmatch responses on the left (L) and right (R) levers.
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‘‘position neurons’’ identified by the second discriminant function (DF2). Note that

the same neurons were active during the sample phase of one trial, but also during

phase of the other. Since the animals were required to ‘‘nonmatch,’’ responses were

necessarily at the position opposite to the sample; thus, ‘‘right position’’ cells would

fire during the sample phase of a right trial, as well as during the nonmatch phase of

a left trial. The single trial rasters at the top right show the firing of a single left posi-

tion cell during both sample and nonmatch responses at the left, but not the right,

position. The discriminant scores therefore also selectively reflected ensemble encod-

ing of response position in the DNMS task.

Note that the variance sources contributing to this ensemble activity clearly

encoded information consistent with the features or events of the DNMS task. This

is not a necessary outcome of the discriminant analysis because there may be sources

of variance encoding other sensory, attentional, or motivational features of the task.

However, in each case, once a source of variance is identified, it should be possible to

identify single neurons that contribute to that variance, and hence demonstrate the

same encoding features. If there are variance components that cannot be accounted

for by the identification of individual cell types responding during the task, it is likely

that some encoded features of the task are ‘‘out of control,’’ suggesting an element of

the experiment that the animal responds or attends to that is not controlled by the

intended task variables. The existence of such unexplained components can be a

helpful indicator of the task-relevant firing correlates within a particular behavioral

paradigm.

Deciphering the Code

When neurons interact, they inevitably form multiple contacts, making an analysis of

functional characteristics of the network at the level of reconstructing individual syn-

apses (weights) di‰cult, if not impossible. Another approach is to assume that the

individual connections themselves are not important and let an artificial neural net

‘‘settle’’ into the state defined by the weights of the synaptic inputs that develop as

the input patterns are fed into the net. The problem is that certain input patterns

may predominate that are in fact irrelevant to information a prosthetic network is

required to process. Therefore, it cannot be assumed that the network will process

the information necessary to perform the task unless some preassessment is utilized

to limit the manner in which information is to be dichotomized.

The identification of neurons that encode di¤erent features of a task which com-

prise a neural network is diagrammed in figure 6.4. Inputs to the network consist of

the salient sensory features of the task, such as phase and position, as well as other

features not yet determined. If the network is allowed to settle into a ‘‘winner-take-

all’’ state, it is inevitable that outputs of the net would take that form of combi-
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Figure 6.3
Derivation of source of variance in DNMS response position. The second largest source of variance (15%)
discriminated the left from right response position. The discriminant scores at the bottom right indicate
a positive score for right and a negative score for left sample responses; however, on the same trial, the
scores reversed, since responses during the nonmatch phase were at the opposite position. The 3-D histo-
grams at left show the same 12 neurons, 6 left (toward lower right on cell axis) and 6 right (toward upper
right on cell axis) encoded reciprocally on left and right trials, irrespective of DNMS phase (see figure 2).
The rastergrams indicate the firing of a single left position cell.
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nations or ‘‘conjunctions’’ of these features. The more a network receives broad

descriptive inputs, the more it is capable of encoding discrete behavioral events.

Multiple parallel networks would allow for a whole population of neurons capable

of encoding all relevant events within a given task or behavioral context. Figure 6.5

illustrates these ‘‘conjunctive’’ neurons recorded from the rat hippocampus as

described earlier. Individual neurons were identified that encoded single DNMS

events that were combinations of task phase and response position (e.g., left non-

match as illustrated by the rastergrams at the right). Note that these neurons were

not identified by one distinct source of variance, since conjunctive neurons are influ-

enced equally by identified phase and position components. Thus conjunctive neu-

rons most likely represent the operation of a network (figure 6.4), which generates

event encoding within a population of neurons by extended processing of other fea-

tures already encoded by the population.
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Figure 6.4
Example of neural network encoding DNMS task features. The network is diagrammed as a three-layer
perceptron, with the phase and position encoding cells in the input layer. Additional unspecified task fea-
tures can be input as indicated by ‘‘??.’’ Not all neurons encoding task features would be active at a given
time, since several features would be incompatible (e.g., a response cannot be left and right at the same
time). However, a convergence of inputs onto hidden and output layers would produce neurons that selec-
tively encode specific combinations or ‘‘conjunctions’’ of task features. For example, a convergence of
sample and right features would produce a ‘‘conjunctive’’ neuron that encoded the specific right sample
event of the DNMS task.
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Conjunctive neurons recorded from the rat hippocampus. Neurons encoding discrete events were not iden-
tified by a separate source of variance, but contributed to the encoding derived by DF1 and DF2. The
three-dimensional (3-D) histograms depict 12 neurons, 3 each of right nonmatch (RN), left nonmatch
(LN), right sample (RS), and left sample (LS) plotted left to right on the cell axis. Note that none of the
neurons fires in more than one trial or phase. The rastergrams show an example of a left nonmatch cell
that does not fire on any sample or right position response. The schematic at the bottom right depicts
how conjunctive firing can result from a convergence of inputs from phase (sample, S or nonmatch, N)
and position (left, L and right, R) neurons.
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The types of encoding by populations or neurons described here operate according

to what can be considered relatively straightforward rules. In the hippocampus,

many encoding schemes reflect the categorization of stimuli into representations

of task-relevant features (Deadwyler and Hampson, 1995; Deadwyler et al., 1996;

Hampson and Deadwyler, 2001). This can be verified by reclassification procedures

that score the relevance of the encoding on a trial-by-trial basis (Deadwyler and

Hampson, 1997; Hampson and Deadwyler, 1999). One important feature of this

scheme is that the encoded task-dependent features are ‘‘incompatible’’ temporally

and spatially. For instance, the more specific the code (i.e., firing that occurs only if

there is a combined or conjunctive set of elements), the more likely that encoding will

be incompatible with a di¤erent conjunctive code in another set of neurons.

An extension of the above are the ‘‘trial-type’’ neurons shown in figure 6.6. These

neurons appear to combine the codes of two distinct types of conjunctive neurons to

represent two associated behavioral responses. The codes are spatially incompatible,

since the response obviously cannot be on the left and right levers at the same time.

Hence the codes are also temporally incompatible (i.e., sample versus nonmatch

phase). However, these combinations of events represent two compatible responses

that can occur within a single DNMS trial. This code corresponds to a third source

of variance that discriminated between the two possible trial types in the task. Thus,

a left sample response is paired with a right nonmatch response (left trial), and a

right sample response is paired with a left nonmatch response (right trial).

The presence of incompatible codes within a population provides a means of

ensuring that only certain cells will be active at the appropriate times. Ensemble

firing is unique in that firing across the ensemble is ‘‘sculpted’’ out in a spatiotempo-

ral manner via sets of conjunctive elements tuned to particular combinations of task-

relevant events. Therefore the ensemble, unlike individual neurons, must continually

change its activity to reflect the change in cognitive or behavioral context, which can

be done by continuously activating di¤erent sets of conjunctive neurons (figures 6.1

and 6.4).

This is illustrated in hippocampal neurons by the transition from ‘‘sample’’ to

‘‘nonmatch’’ phase firing during performance of the DNMS task in which the state

of the ensemble completely changes (see figure 6.1). There are many ways in which

this transition could take place, but in the hippocampus it occurs in a relatively

straightforward manner. After the neurons that encode the sample event produce a

peak discharge, they revert to background firing levels for approximately 5–10 s.

Since hippocampal neurons are not firing during this time, they cannot ‘‘represent’’

information during that time of the trial. The code must therefore be present in

some other brain region in a set of neurons that are active during this period. We

have shown that the subiculum is a likely candidate (Hampson and Deadwyler,

2000). After 15 s on long-delay trials, firing resumes in the hippocampal ensemble,
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Variance associated with type of DNMS trial. The third largest source of variance (11%) was consistent
across trials that were initiated with a given sample lever. Hence, discriminant scores (bottom right)
remained positive on left trials, and negative on right trials. Specific hippocampal neurons were identified
that encoded this discrimination, firing on both responses of right trials (right sample and left nonmatch)
or left trials (left sample and right nonmatch). The 3-D histograms depict the same 12 neurons, 6 left trial
(toward lower right on cell axis) and 6 right trial (toward upper left on cell axis) on left and right trials.
Note that the same neurons are active in both sample and nonmatch phases, but only for a given trial
type. The rastergrams (top right) show that firing for a given neuron is incompatible with respect to a single
feature of the DNMS task (i.e., phase or position), but occurs at separate times. Trial-type neurons thus
represent a further convergence of input from conjunctive neurons.
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but in a completely di¤erent set of neurons. Firing in this set of neurons increases un-

til the occurrence of the nonmatch response, at which point the nonmatch response is

executed. Since this transition between sets of neurons within the ensemble occurs

spontaneously, it could reflect a di¤erence in input patterns to di¤erent cells, or trig-

gering of a principal set of conjunctive cells within the ensemble by the initial sample

phase firing.

Programming Replacement Brain Parts

Since functional neuronal codes are the essence of useful information to be pro-

grammed into replacement brain parts, replacement elements will have to provide

the missing features of the population code. One approach would be to allow the

replacement device to respond to the input pattern in a manner dictated by a neural

network, with ‘‘synaptic weights’’ being determined by connectivity and input pat-

terns (figure 6.7). However, in many brain regions the pattern of inputs will have

already been ‘‘filtered’’ in some manner, and the dichotomy of information that the

network parcels may not be appropriate for that stage of processing. The network

diagrammed in figure 6.7 would be appropriate for simulating the phase, position,

conjunctive, and trial-type neurons recorded in the hippocampus, as shown earlier.

Allowing additional inputs to represent features not yet identified in the task would

provide a measure of flexibility to the network. However, if the network or algorithm

in e¤ect at a particular processing stage is not tuned to extract the same rank order of

firing variances as the original population, what is encoded from the same inputs

may not be compatible as a useful behavioral correlate. It would therefore be valu-

able to know the categorization principles used by the population of neurons that are

to be replaced (figure 6.7). Programming the replacement parts to derive those fea-

tures would avoid problems associated with deriving inappropriate features by limit-

ing computation to ‘‘functionally’’ relevant codes.

Clearly the types of categorization of neuronal firing (conjunctive neurons) are

di¤erent within di¤erent structures. The approach described here has marked advan-

tages for providing ‘‘customized’’ sets of networks for di¤erent brain regions by using

statistical evaluations to determine which factors in specific neural populations are

the most relevant. It is therefore possible to limit categorization within replacement

devices to a smaller set of features than would be necessary if the population vari-

ances were not known. By tuning such replacement networks to recognize features

extracted by statistical assessment of intact, i.e., remaining, populations, the impor-

tant information categories would be maintained and recognized at the appropriate

stages of processing.

This approach need not eliminate the ability of the replacement network to orga-

nize di¤erentially (i.e., to change the categorization rules) when the input patterns
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di¤er; it merely requires the network to represent features along dimensional lines

and to ignore computed consequences that fall outside a given categorization frame-

work. The latter facet is important because it retains the flexibility of the replacement

network to alter its weighting of representations within the set of appropriate task

dimensions. As an example, two major sources of variance within a population code

for arm movement might be location and direction. For a given circumstance, mov-

ing the arm from location x to y defines a particular trajectory (i.e., for removing

one’s hat). Neurons in the motor cortex will encode this so that the peak firing within

the population occurs as the arm is moved along this trajectory. However, if in an-

other context the arm is to be moved in a di¤erent trajectory, the firing variances

w1,0 w1,1
w1,M

wj,0 wj,m
wj,M wK,0

r1
rj rK

y1 y2 y3

z1

wK,M

X0 X1 Xm XM

Neural Network for Trial Encoding

Input Layer:
Task Features

Hidden Layer:
Event Encoding

Output Layer:
Trial Encoding

Figure 6.7
Schematic for a neural network that encodes DNMS trial information. The network is built from multiple
parallel copies of the three-layer model shown in figure 6.4. Each copy of the smaller model produces
a single conjunctive neuron. Multiple conjunctive neurons then project to a trial-type neuron. Note that
only three parallel networks are shown although an actual network would most likely consist of thousands
of input neurons (Xn) and hundreds of parallel sheets of event encoding neurons (Yn), converging on a rel-
atively sparse number of trial-encoding neurons (Zn). A complex network is thus formed, with task fea-
tures on the input layer, discrete task events encoded by hidden layers, and encoding of trials or complex
task correlates on the output layer.
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across the population may di¤er with respect to speed and directional firing, but the

two categories to which the neurons respond (location and direction) will not di¤er.

Thus the same population can compute trajectories within di¤erent contexts, but the

circumstance of having the replacement network inadvertently encode an irrelevant

feature (i.e., the type of hat that is taken o¤) is avoided.

What Do the Codes Mean?

The spatiotemporal patterns generated within ensembles across time would appear to

incorporate all the necessary components of the code if there is a high correlation

with behavior. However, this is not necessarily the case. Discriminant analyses such

as principal components, independent components, or even canonical types will ex-

tract whatever sources of variance are present in the data, not necessarily those that

are task related. This provides a good check on the appropriateness of the paradigm,

but it also indicates to what degree a given code reflects task-relevant information.

When there are sources of variance that are unaccounted for, it is likely that neurons

within the ensemble are either categorizing the task-specific information in a di¤erent

manner or are ‘‘dimensionalizing’’ the task in a di¤erent way.

In some cases information will be revealed in the discriminant analysis by the pres-

ence of components that are not obviously directly related to the behavioral out-

comes. For instance, the presence of ‘‘trial-type’’ cells in the hippocampus (figure

6.5) reflects firing to one set of events in the sample phase (left-sample) and another

set in the nonmatch phase (right-nonmatch). By definition these cells cannot repre-

sent or encode a single feature of the task within the trial since they fire equivalently

to conjunctions of events. However, these same cells do not fire when the opposite

trial type is present, even though the animal responds to the same levers as before,

but in a di¤erent sequence (i.e., right sample-left nonmatch). This di¤erential firing

of neurons with respect to coded type of trial suggests an extended, hierarchical set

of connections between conjunctive neurons to provide a level of code signifying a

completely abstracted dimension.

The New Prosthetics

The advent of population recording has provided a means of establishing a new

approach to the design of neural prostheses. Recent breakthroughs in this area by

Chapin, Nicolelis, Schwartz, and others (Georgopoulos, 1994; Chapin et al., 1999;

Nicolelis, 2001; Wessberg, 2000; Georgopoulos, 1999; Isaacs, 2000) have provided

the first concrete examples of how population recording methods can have profound

implications for rehabilitation of peripheral neural damage limbs and, potentially,

other neural functions. The approach utilizes the ability to extract population codes
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for particular movements from the motor and sensory cortices that provide the basis

for algorithms that can be applied to devices that mimic limb movements. It thus

bypasses the necessity for the neuronal code to be translated into specific ‘‘instruc-

tions’’ to move individual muscles, while preserving the functional consequences of

the movements in terms of intent and direction. Such algorithms derived from popu-

lation firing code(s) are su‰ciently explicit to allow incorporation into devices that

operate in the real world, so that a person could initiate a movement by ‘‘thinking’’

it instead of having to initiate the action physically (Nicolelis, 2001). By successfully

closing the ‘‘loop’’ between the outcome of the movement and the neural activity

that generates it, the procedure provides a means of translating neural codes into

actions.

The possibilities of these new and exciting findings for rehabilitation and neural

prostheses are obvious; however, they also have significance in the context of replace-

able brain parts. The codes that are utilized to generate algorithms for a particular

action could also be used to ‘‘teach’’ or ‘‘train’’ replacement brain parts. For in-

stance, an algorithm generated from the population code to move an object may

also be used as a basis for training an implanted device to activate the muscles nor-

mally responsible for a particular movement. This essentially amounts to using one

population code to train another population of artificial neurons. An encouraging

outcome of the work in neural prosthetics as it relates to replacement brain parts is

the discovery that relatively small number of recorded neurons are needed to con-

struct successful algorithms. If the e¤ective code can be extracted from as few as 24

simultaneously recorded neurons (Schwartz, 2000), it indicates that the task is being

accomplished by the method cited earlier, namely, a broad categorization of neurons

di¤erentially ‘‘tuned’’ to fire to conjunctions of events.

The relatively small sample of neurons required to predict events with a high

degree of accuracy suggests that the underlying means of partitioning information

in such networks is through segregation into functional categories. This is supported

by the fact that the most successful algorithms derived from population recordings

perform a principal components analysis extraction as the first step in modeling the

online process. The sources of variance in the population are therefore identified, and

as a result the critical firing patterns of neurons for performing the task can be

detected within the ensemble.

Summary

In summary, it can be stated that replacement brain parts need not mimic or process

information in exactly the same manner as the original circuits. However, one thing

is clear: Whatever their means of computation, the functional codes that are gener-

ated in those devices need to be compatible with the ensembles they represent are a
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component and with the behavior or cognitive processes they support. It is unlikely

that replacement processes as discussed here will provide the same degree of flexibil-

ity or accuracy of the original networks. However, there is no reason to assume that

algorithms developed to replicate the types of categorization of sensory and behav-

ioral events present in the original population will not go much further than what is

currently available to provide recovery of critical functions that are lost as a result of

injury or disease.
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7 Mathematical Modeling as a Basic Tool for Neuromimetic Circuits

Gilbert A. Chauvet, P. Chauvet, and Theodore W. Berger

A Mathematical Approach versus an Analogical or Computational Approach

The analysis of the nervous system, or any part of it, as an integrated system requires

a mathematical formalization that itself calls for an appropriate representation. This

raises two basic questions: First, why do we need a mathematical formalization?

Second, what kind of representation should we use and which techniques are best

adapted for the integrated solution of the problem posed? Finally, in the case of neu-

romimetic circuits, would it be better to use an analogical, that is, a computational

method, or a mathematical method?

In addition to the rigorous nature of mathematics, based on definitions commonly

accepted by all members of the scientific community, the power of the derived prop-

ositions, and quantitative physical laws, a mathematical model incorporates relation-

ships among state variables, which are the observables describing the elementary

mechanisms of a system. Each of these mechanisms is mathematically described as

a set of di¤erential or algebraic equations, and the mathematical integration of these

sets will provide the global solution of the observed phenomenon resulting from the

mechanisms. Mathematical modeling thus has two advantages. First, it simplifies the

behavior of a system that is experimentally observed over time and space. Second, it

numerically reveals the consequences of some constraints that are di‰cult to observe

experimentally, for example, the removal of couplings between subsystems.

Mathematical modeling corresponds to a certain reality; that is, the complicated

integration of known mechanisms with physical, chemical, or other constraints

(Koch and Laurent, 1999). Equations show how the mechanisms operate in time

and space, and, what is crucial in this approach, a mathematical development based

on these mechanisms leads to nonobvious, specific natural laws. As will be shown

in the following sections, ‘‘emerging’’ laws may appear in an appropriate represen-

tation, which in the present case corresponds to a hierarchical representation. Be-

cause of the generally complicated mathematical treatment required by complex



equations, the final step will be the numerical resolution of these equations on a

computer. We may observe that this resolution, based on the rigorous methods of

numerical analysis, occurs only in the terminal phase of the modeling process. This

approach is rather di¤erent from the computational approach, in which the numeri-

cal resolution is made a priori by considering ‘‘analogical’’ neurons generally repre-

sented by resistive-inductive-capacitive (RLC) circuits (Bower and Beeman, 1995). In

the best case, these neurons correspond to a preliminary discretization of space. If

each neuron is an elementary circuit, then discretization is done at each point in

space where a given neuron exists. In contrast, with mathematical modeling, the

resolution of equations is carried out in a continuous space, and discretization does

not depend on the position of neurons, only on the mathematical constraints of

resolution. In simple cases, the two techniques may give the same results. However,

as we will see, with more complicated models, only the mathematical approach is

appropriate.

Indeed, mathematical modeling does more than establish relationships between

observables. In a correctly adapted representation, not only simplifications, but also

a certain type of organization, a functional order, may appear. Let us consider an

example. Determining the space, that is, the eigenvectors, in which a matrix is trans-

formed into a diagonal matrix (in which only the diagonal numbers, the eigenvalues,

are not null) puts the response of the system in a direct relationship to the input. By

using this mathematical transformation, the state variables are kept distinct. There is

a decoupling in the subsystems, each of them being represented by a single state vari-

able. Similarly, when the matrix is reduced to diagonal blocks, several state variables

describe the subsystem. Their number corresponds to the size of the submatrix. As

we see in this simple case, the new representation has led to new properties for the

couplings between subsystems. More generally, with this type of representation we

may obtain a new interpretation and discover new properties specific to the phe-

nomenon observed. Of course, the objective is to obtain the correct and appropriate

representation that will lead to interesting new, coherent, ‘‘emerging’’ laws for the

working of the system.

We have chosen hierarchical structural and functional representations, which pro-

vide new laws for the functional organization of biological systems. In this chapter

we propose to present a ‘‘light’’ version of this theory by means of the basic concepts

and some elements of the formalism. Because the formulation calls for complex

mathematical techniques, the equations have been grouped in appendices. Here, the

interested reader will find part of the mathematical reasoning behind the theory. Two

kinds of neural networks, artificial and real, will be presented first, followed by the

theoretical framework. The method will then be applied to the cerebellum and the

hippocampus. In the concluding section, we discuss the technique appropriate for

neuromimetic circuits.
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What Is an Artificial Neural Network?

The field of artificial neural networks has been extensively developed in the past few

years. Each artificial neuron is a mathematical entity possessing two properties: (1)

the output Y is the sum of the inputs Xi, weighted by the synaptic e‰cacies mi; and

(2) the variation of the synaptic e‰cacy is proportional to the input signal Xi and the

output signal Y . In the case of a network of n neurons connected to a given neuron,

these properties are mathematically represented by a nonlinear dynamic system:

Y ¼ F
Xn
i¼1

miXi

" #

dmi
dt

¼ aiXiY ; i ¼ 1; . . . ; n;

ð7:1Þ

where F is a nonlinear, given, bounded function. The second equation of this system

is known as the learning rule of the neural network.

With a given connectivity between neurons, the problem is to determine the math-

ematical properties of the network related to the learning and memorization of pat-

terns. In fact, several characteristics of neural networks play an important role in

learning and memorization: the number of neural layers in the network, particularly

the inner or ‘‘hidden’’ layers, the number of neurons per layer, and the learning rule.

Since the construction of the ‘‘perceptron’’ by Rosenblatt in the 1950s, various other

neural networks have been developed, such as Hopfield’s supervised network (Hop-

field, 1982) with its internal dynamics, and Kohonen’s nonsupervised, self-organizing

network with its feedback and feedforward loops (Kohonen, 1978). All these net-

works possess specific mathematical properties that unfortunately do not correspond

to biological reality.

Another di‰culty arises from the nonlinearity of the mathematical systems and the

impossibility of finding an analytical solution for a dynamic system involving synap-

tic weighting. The true complexity of the problem will be readily appreciated when

we consider that the artificial neuron and its corresponding network are extremely

simple compared with the real neuron surrounded by nervous tissue.

What Is a Real Neural Network?

From the biological point of view, the complexity of the phenomena involved is es-

sentially the same whether we consider a real, isolated neuron or a network of artifi-

cial neurons. This idea stimulated the search for a representation incorporating the

properties of a real neural network (G. A. Chauvet, 1993a). Over the past few years,

much headway has been made in the mathematical description of a real biological
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system. The hierarchical organization of biological structural units from the cellular

to the organismal levels (cell organelles, nuclei, neurons, synapses, neural groups,

nervous tissue, and cerebral organs), naturally suggested a hierarchical representa-

tion of a system. However, the hierarchical aspect of the corresponding functional

organization is far from evident. The novel three-dimensional representation of a

biological system that one of us has proposed (G. A. Chauvet, 1996a), with axes for

space scales, time scales, and structural units, allows visualization of the coupling

between the structural and functional organizations. This representation is based es-

sentially on the determination of the time scales of the dynamic systems describing

physiological functions. This functional hierarchy is useful for determining the phys-

iological functions associated with nervous structures. In the case of real neural net-

works, there are at least two physiological functions: the propagation of membrane

potential on a time scale on the order of milliseconds, and the modification of synap-

tic e‰cacy on a time scale on the order of seconds or even hours. Thus, the func-

tional order has its origin in a functional hierarchy that is evidently a manifestation

of molecular mechanisms.

Typically, the artificial neural networks generally studied have several neuron

layers. Figure 7.1 shows a hierarchical neural network. The structure-function rela-

tionship is more evident in this representation than in any other one. The hierarchical

network is fundamentally di¤erent and, in particular, possesses specific emergent

properties, that is, properties that appear at a higher level in a new structure. An im-

Sensory
neurons

Hierarchical
circuit

Motor
neurons

Outputs
(behaviors)

Inputs

Figure 7.1
Hierarchical neural network. Properties emerge from a lower level and appear at a higher level inside a
new structure. This new structure is called a functional unit if, and only if, it has a specific function.
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portant advantage of the hierarchical representation is that it o¤ers a rigorous ap-

proach to the notion of a functional unit that may now be defined as a structural

unit with a specific function at a higher level of organization (G. A. Chauvet and

Chauvet, 1999).

The functional unit, possessing its own time scale, incorporates a new function that

can be derived mathematically from the lower levels of organization in a biological

system. For example, a neuromimetic circuit may be considered as a functional unit.

Hierarchical Representation of a Biological Theory of Functional Organization

Functional Interactions

In the course of our work on physiological models, ranging from the molecular to the

organismal levels (G. A. Chauvet, 1996b), some novel ideas specific to the study of

biology have been introduced, in particular the concepts of nonsymmetric and non-

local functional interactions in hierarchical space. These basic concepts emerged

from a bottom-up approach to living systems; that is, from a systematic study of iso-

lated physiological functions, followed by the integration of these functions at the

level of the organism. A significant consequence of this theory is that living organ-

isms can be given not only a double organizational representation that is simultane-

ously structural and functional but also a double mathematical representation that is

simultaneously geometric and topological.

What exactly is a physiological function? We may compare it to a mathematical

function in the sense that the action of one structure on another results in a certain

product. The physiological function would then be the action (the application, in

mathematical terms) and the product would be the result of the function (the value

of the function, in mathematical terms) that is often identified with the physiological

function itself. Although this definition is general, it is unfortunately not operational.

It is relatively easy to describe particular physiological functions such as vision, di-

gestion, memorization, and so on, but it is far more di‰cult to give an operational

definition of a physiological function in general. One possibility may be to define

a physiological function in terms of a combinatorial set of functional interactions

between structures. Such functional interactions are evidently specific since they de-

scribe the action (whatever its nature) of one structure on another or, more precisely,

the action of a source on a sink, after the action has undergone a transformation in

the source. This action clearly possesses the property of nonsymmetry. In addition, it

has another important property, that of nonlocality, a notion somewhat more di‰-

cult to appreciate since it stems from the structural hierarchy of the system (G. A.

Chauvet, 1993c); that is, certain structures are included in others.

This may be explained as follows: (1) From a mathematical point of view, in a

continuous representation, the action of one structure on another is necessarily the
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action of one point on another. This does not correspond to the action of one cell on

another in physical space since a cell contains regions with specialized functions and

therefore cannot be reduced to a point. (2) The interaction between one structure and

another has to operate across other structures, which we have called structural dis-

continuities, within which the processes follow a di¤erent course. Thus, other levels

of organisation in the hierarchical system contribute to the working of a given struc-

ture at a given level in the hierarchy. This is nonlocality, which is due to the choice of

the representation, here a hierarchical representation. Equations that represent pro-

cesses have then a di¤erent structure and must include nonlocal terms.

The same reasoning applies to the dynamic processes of functional interactions

operating, for example, between neural groups or between endocrine glands. In

more general terms, this can be extended to the entire activity of the organism,

provided that all the functional interactions involved are correctly represented. We

may then formulate a hierarchical theory of functional organization as follows: In a

multiple-level hierarchical system, each functional interaction is described by the

transport of an activating and/or inhibiting signal (in the form of an action potential,

a hormone, or some other type of interaction) between a source and a sink, and each

physiological function results from a combination of such interactions. This idea can

be conveniently expressed in terms of a field theory according to which an operator

transmits an interaction at a certain rate from a source to a sink situated in the space

of units, with the source and the sink each being reduced to a point. This representa-

tion constitutes the basis for the definition of a physiological function as the overall

behavior of a group of structural units within a hierarchical system.

From a mathematical point of view, a functional interaction is defined as the inter-

action between two of the p structural units ui and uj ði; j ¼ 1; pÞ of a formal biolog-

ical system (FBS). One of the units, for example, the source ui, emits a signal that

acts on the other, the sink uj, which in turn emits a substance after an eventual trans-

formation (figure 7.2). This interaction, called an elementary function, is represented

by cij and constitutes an element of the mathematical graph representing the orga-

nization of the formal biological system (O-FBS). The dynamics of the functional

interactions are then described by a system of equations of the type:

_ccij ¼ fijðc12;c13; . . . ; r1; r2; . . .Þ; i; j ¼ 1; . . . ; p; ð7:2Þ

where the rs are specific physical or geometric parameters.

The structural unit is defined as the set of anatomical or physical elements inter-

vening in the physiological function.

Thus, from a functional point of view, a system made up of a set of elements, such

as molecules, cellular organelles, cells, tissues, and organs, is represented by func-

tional interactions and structural units. This structural hierarchy is shown in figure

7.3.
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Structural Discontinuities Functional interactions may be identified by the pres-

ence of structural discontinuities. Suppose we have two structural units separated by

a structural discontinuity. The interaction is propagated from one unit to the other

across the discontinuity, which could, for example, be a membrane allowing active

transport. The membrane is at a lower level in the structural hierarchy than the two

interacting units. From the point of view of the dynamics of the functional interac-

tion, we may say that this interaction consists of a certain physiological process oper-

ating in the two units [located at r 0 and r in the space of units, that is, the r-space,

referred to as r 0ðx 0; y 0; z 0Þ and rðx; y; zÞ in the physical three-dimensional space],

with a di¤erent physiological process being executed at a lower level in the structural

discontinuity. Such a functional interaction may be represented in the form of a dia-

gram, as shown in figure 7.4. The equation governing the transport of the interaction

applies to a continuous medium and explains why the equation for the process is dif-

ferent at the lower level of organization. This observation constitutes the basis of a

new formalism (G. A. Chauvet, 1999, 2002) involving what we have called structural

propagators (S-propagators) as described later (see also appendix A).

Source

(a)

(b)

Sink

Functional
interaction

Structural
Discontinuity

Structure A Structure B

Non-local
functional interaction

ui
uj

Figure 7.2
(a) Nonsymmetric functional interaction. (b) The interaction between structures A and B occurs through a
structural discontinuity at a lower level (after G. A. Chauvet, 1996a, vol. II, p. 452).
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A Three-Dimensional Representation of a Biological System

A physiological function may be represented by a mathematical graph in which the

nodes correspond to the structural units and the edges correspond to the oriented,

nonsymmetric interactions. All physiological functions are intricately linked in a

hierarchical fashion. They are linked relatively to space, which is evident, but also

to time, which represents the decoupling of physiological functions with respect to

time. Probably the best way to realize this aspect of the hierarchy is to consider the

intricate time loops of the algorithm that represents the working of the function. We
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structure
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Cell substructures
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u3
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u8

u7

u7

u1

u2

u2

(a) (b)

Figure 7.3
Each hierarchical level is composed of structural units on the same space scale. The hierarchical system
is viewed (a) as an arborescence and (b) as a set of inclusions. Functional interactions are directed from
sources to sinks.

rr’ (u)(u)i
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ψss’
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Figure 7.4
A diagrammatic representation of the propagation of a functional interaction through a structural discon-
tinuity (1) at the higher level l (r-level) in the unit ui [volume (Vi) of figure 7.5], (2) then according to a new
functional interaction c s at the lower level l-1 (s-level) inside the structural discontinuity, and (3) at the
higher level l (r-level) in the unit u (volume V ).
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have therefore to consider not only the structural hierarchy but also the functional

hierarchy of the system. Then, each level of the functional organization will cor-

respond to a particular physiological function, that is, a process that occurs on a cer-

tain time scale. How do we define these two types of hierarchy? It is convenient to

consider the structural hierarchy as being organized along the space scales of a phys-

iological process while the functional hierarchy is organized according to the cor-

responding time scales. Moreover, it o¤ers the advantage of clearly separating the

structural and functional organizations, that is, the structure and the function of the

biological system studied.

This ‘‘separation’’ may be viewed as follows. Using axes for the space scales, the

time scales, and the space of structural units, we have a three-dimensional represen-

tation of a physiological function (figure 7.5), showing:

� the structural units in space for a given function and the hierarchical organization

of physiological functions for a given space scale

� the integration of physiological functions

The identification of the couplings between the functions requires determination of

the functional interactions at the di¤erent hierarchical levels involved. For example,
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Figure 7.5
Relation between structural and functional organizations. Functions defined by their time scales are shown
on the y-axis, and structures defined by their space scales are shown on the z-axis. At each of these levels,
structural units belonging to a given space scale for a given time scale are shown on the x-axis. It should be
noted that in this formal representation, the distances in natural space have no meaning (after G. A. Chau-
vet, 1999).
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the interactions at the molecular level between angiotensin and renin will be situated

at the lowest level of the hierarchical organization representing blood circulation,

and will themselves be coupled with the neural network. This complex task can only

be undertaken using the highly abstract and technically advanced mathematical

methods presented next.

Fields and Functional Interactions

With the theoretical hierarchical framework described here, we can represent a phys-

iological process, expressed by functional interactions related to the geometry of the

structure, in terms of the transport of a field variable submitted to the action of a

field operator. Let crðr; tÞ be the field variable defined in the r-space, e.g., the mem-

brane potential, and let H be the field operator that depends on c r and on successive

derivatives c r; ðnÞ with respect to time and space coordinates. The general form of the

field equation is given by:

½Hðcr;c r; ðnÞ; n ¼ 1; 2; . . .Þc r�ðr; tÞ ¼ Gðr; tÞ; ð7:3Þ

where G is the source term. In this equation, H describes the propagation of the field

variable c from r 0 to r, and the local transformation in r is represented by Gðr; tÞ.
Since the operator acts from one point in space on another, it must take into account

the distance between these two points, and thus include an interaction operator.

More generally, the influence of the location of the points, that is, the role of ge-

ometry on the dynamical processes, may be studied by means of a field theory.

The dynamical processes that express the behavior of the related functional interac-

tions occur continuously in space and time with a finite velocity. Thus, what is

observed at point ðr; tÞ results from what was emitted at point ðr 0; t 0Þ, where t 0 ¼
t� kr 0 � rk=vr and vr is the velocity of the interaction.

The finite value of the velocity vr of the transport of the interaction, that is, the

transport of molecules, potentials, currents, or parametric e¤ects, depending on the

elementary physiological function, has a major e¤ect on the behavior of the biologi-

cal system. This is particularly true of the delay in the response between units. These

e¤ects are included directly in the field interaction operator. Let us now determine

the specific operator that describes a physiological mechanism.

S-Propagator Formalism

The S-propagator formalism describes the dynamics in the structural organization.

The units ui and u are assumed to be at level r in the structural organization (space

scale k), and at level T in the functional organization (time scale T ) (figure 7.6). The

couple ðk;TÞ in the 3-D representation (figure 7.7) defines the organization of

the physiological function c r. There is a structural discontinuity between the two

units. Because of the hierarchy, ui and u are associated with a nonlocal functional
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Figure 7.6
Physiological interpretation of the generation of the field variable. Propagation of the field variable c r (S-
operator Pi) inside the hierarchical structural organization in ui from r 0 to s 0 [trans-propagator Pðr 0Þ],
propagation in the s-level (field variable c s, in-propagator C), and propagation of the field variable c r in-
side the hierarchical structural organization in u from s to r [trans-propagator PðrÞ]. The denomination of
the propagators stands for trans-levels or inside levels. The dynamics at the r-level result from the dynam-
ics at all the lower levels.
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Figure 7.7
Three-dimensional representation of the nervous tissue that is a particular case of the biological system
shown in figure 7.5. Two physiological functions are presented: activity and synaptic modulation.
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interaction represented by the field crðr; tÞ, where rðx; y; zÞ is the coordinate in the

space of units, itself depending on coordinates ðx; y; zÞ in the physical space. Using

operators, the local time variation may be expressed as

Hc r ¼ G with H ¼ q

qt
�D‘2 � HI ; ð7:4Þ

where HI is the nonlocal operator. What are these operators? As shown in figure 7.4,

in going from ui at r
0 to u at r, the functional interaction must cross the structural

discontinuity at the lower level, that is, it must use processes ‘‘outside’’ the level.

In appendix A, the S-propagator formalism has been summarized that leads from

Eq. (7.4) to the local time and nonlocal space equation (hierarchical field equation)

(A.8) for the dynamics of the field variable c r:

qcr

qt
ðr; tÞ ¼ ‘r½Dr‘rc

rðr; tÞ�

þ
ð
DrðrÞ

rrðr 0ÞPCðrÞPðr 0Þc r r 0; t� dðr 0; rÞ
vr

� �
dr 0 þ Grðr; tÞ; ð7:5Þ

where the sumation is on the domain DrðrÞ of the u-units connected with the units

at r. Here, Dr need not be constant because the medium may not be heterogeneous,

in which case the term may be space dependent. The time scale is T and dðr 0; rÞ is the
distance between r 0 and r in the space of units u. The S-propagator describes the

functional action of u 0 at r 0 onto u at r per unit of time, because the field variable

c r is emitted by u 0 at r 0 and is transported to u at r. Locally, the field variable

depends on the lower levels and is under three influences, which are shown by the

three terms in Eq. (7.5): the first is a local process of di¤usion between units through

the extra-unit space, that is, transport through the medium in which the units are

located, as defined by the di¤usion constant Dr; the second term is the S-propagator

PCðrÞPðr 0Þ1Pi½cs� ¼ PCPi represents the transport of the field variable through

‘‘homogeneous’’ structures at the lower level inside ui or u, that is, structures that

are homogeneous relative to the processes in a medium with locally identical prop-

erties, without structural discontinuities; and the third term is the generation of the

field variable at r as a result of local processes in physical space, represented by the

source term Gr, and possibly due to the higher levels.

Finally, the determination of the dynamics of physiological functions results from

the determination of the propagators P in the Eq. (7.5). This is shown in appendix A,

where the linear case is explicated. In the next section, this formalism is used for the

dynamics of the nervous system. These results are valid whatever the level of organi-

zation. Because the same formalism applies to each level of the hierarchy, it provides

a tool for the rigorous study of coupled biological systems in terms of elementary
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mechanisms. As shown in the next section, the mechanisms included in Eq. (7.5) pro-

vide the neural field equations.

Neural Field Equations Based on S-Propagators

Let us describe the neural network based on the hierarchical 3-D representation in

figure 7.5. There are two di¤erent time scales corresponding to the two following

functions: activity (milliseconds) and synaptic modulation (seconds). For each of

them, the structural hierarchy is given in terms of neurons (axon hillocks), synapses,

and channels (figure 7.7). Functional interactions are for activity, the membrane po-

tential c that propagates from one neuron at r 0 to another at r and for synaptic mod-

ulation, the postsynaptic potential F at s, or equivalently, synaptic e‰cacy m. Let the

density of neurons at r be rðrÞ and the density connectivity between the neurons at r 0

and the synapses at s 0 be pr 0s 0 . For synapses at s in neurons at r, the density connec-

tivity prs is determined by the connectivity in the postsynaptic neuron between spines

and soma where the membrane potential is measured. The diagram corresponding to

figure 7.4 is given in figure 7.8. A similar hierarchical structure in the synapses in

which the channels are distributed leads to a similar field equation for the functional

interaction at this level, say g, given the anatomy of the system.

Operators are determined by the explicit analytical relationship between input

and output: Pðr 0Þ applies to c; that is, it transforms the action potential c into the

postsynaptic potential f using the synaptic e‰cacy s in the activity time scale. The

structure of the field equation is such that these operators correspond to an input-

output block model, that is, a nonlinear transfer function. PCðrÞ applied to post-

synaptic potentials f, and then integrated over all the pathways gives rise to the

membrane potential at r. The same method applies to the synapses. These operators

may be developed as in Eq. (A.9) in appendix A. The neural field equations derived

using the S-propagator formalism for the c-field at ðr; tÞ in the time scale fTg, and
with the unknown factor Kðs 0; s; dÞ (in case of linearity for the propagators P) for the

f-field equation at ðs; tÞ in the time scale ftg, are given by Eq. (A.10):

rr’

s’ s

Presynaptic
neuron

φ

ψψ(r’,t’) ψ(r,t)

φ(s;r,t)φ(s’,t)

Postsynaptic
neuron

Figure 7.8
Diagram given in figure 7.4 for nervous tissue.
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In time scale fTg for activity (membrane potential):

qc

qt
ðr; tÞ ¼ ‘r½Dr‘rcðr; tÞ� þ

ð
DrðrÞ

ð
Dsðr 0; rÞ

ð
DsðrÞ

rðr 0Þpr 0s 0prs

ð7:6Þ
Ps 0; s½g�sðr 0; s 0ÞAðsÞc r 0; t� dðr 0; rÞ

nr

� �
dr 0 ds ds 0 þ Grðr; tÞ

In time scale ftg for synaptic modulation (postsynaptic potential):

qf

qt
ðs; tÞ ¼ ‘s½Ds‘sfðs; tÞ� þ

ð
DsðsÞ

r sðs 0ÞPFðsÞPðs 0Þfðs 0; t 0Þ ds 0 þ Gs½sðrÞ; t�; ð7:7Þ

where f is a function of c, so that synaptic e‰cacy m is given by the local internal

dynamics of synapses, that is, another coupled system of equations that represents

the dynamics in the other levels of structural organization. The kernel Kðs 0; s; dÞ in

Eq. (A.9) describes the nonlocal dynamics between synapses, and the coe‰cient A

describes passive propagation along the postsynaptic neurons’ dendrites.

Each of these equations corresponds to a level of functional organization. Equa-

tion (7.6) corresponds to activity (with a time scale on the order of a millisecond)

and Eq. (7.7) to synaptic modulation (with a time scale ranging from seconds to

hours). These two levels of functional organization are coupled by a relationship,

for example:

Et A ½ti; ti þ Dt�: sðtÞ ¼ sðtiÞ ¼ mðtiÞ or hsðtÞiDtðtiÞ ¼ mðtiÞ; ð7:8Þ

where Dt is the time unit defined experimentally and hsðtÞi denotes the average value

of sðtÞ taken over this time interval.

The ideas and some parts of the formalism presented here may now be applied

to the cerebellum to obtain an interpretation of the coordination of movement (con-

sidered as the ‘‘intelligence’’ of movement), and to the hippocampus.

Application of the Formalism

The Cerebellum and the Coordination of Movement

Clinical studies have established that the coordination of movement depends on

specific circuits in the cerebellar cortex and on highly organized interactions among

several nuclei in the brain (Thompson, 1986, 1990). Over the past few years, the

adaptive control of movement has been extensively investigated through mathemati-

cal studies of artificial as well as biological neural networks (Barto et al., 1999; Houk

et al., 1991). Much e¤ort has gone into determining the mechanisms of pattern learn-

ing and recall; in other words, toward defining the conditions of stability in dynamic

systems.
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The cerebellar cortex is a network of networks. An element of the cerebellar cor-

tex, called the Purkinje unit, consists of five types of cell: the Purkinje cell, which has

the largest number of dendrites; the granular cells; the Golgi cell; and the basket and

stellar cells. The geometry of the cortex allows us to define (approximately) a Pur-

kinje unit. Consider a granular cell (gc) belonging to the unit containing the nearest

Purkinje cell it is in contact with. Then (gc) may be considered to belong to a specific

unit labeled k if the following conditions are satisfied: (gc) synapses with at least one

Purkinje cell of unit k, the distance between (gc) and the Purkinje cells is the smallest

distance between (gc) and any Purkinje cell it is in contact with outside the unit, and

(gc) synapses with at least one Golgi cell of unit k. The basket and stellar cells

included in the unit are those that are in contact with the Purkinje cell of unit k.

This unit may be divided into two subsystems, the granular cell subsystem (GCS),

that is, the neural network composed of granular cells (figure 7.9a), and the Purkinje

cell subsystem (PCS) (figure 7.9b). The Purkinje unit, which is the repeating unit of

the cerebellar cortex, is thus the basic element of a hierarchical network.

Obviously, this geometric definition is somewhat incomplete. We know that the

function of the cerebellar cortex is the learning and recall of spatiotemporal patterns

(Thompson, 1994). Therefore, a satisfactory transformation of the cerebellum would
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(a) The granule cell subsystem is composed of the granule cell layer and the Golgi cell. Inputs come from
the mossy fibers and are denoted as Ui. Outputs are denoted as Xi. Output from the Golgi cell is Z. The
nonlinear transformation is F , and for signals before transformation, lower-case letters are used (e.g., z and
xi). The two other inputs for the Golgi cell are V (climbing fiber) and Xe, the ‘‘external context’’ that comes
from other Purkinje units. (b) The Purkinje cell subsystem is composed of a Purkinje cell and the basket
and stellate cell layer connected with the Purkinje cell. Inputs are the outputs Xi of the granule cell subsys-
tem (on the right). There are three other inputs: Xe 0 and Xd from the other Purkinje units (the ‘‘external
context’’ for the basket cells and the Purkinje cell), and V carried along the climbing fiber. The output of
the system is Y . The nonlinear transformation is F. Lower-case letters (e.g., z and xi) identify activities be-
fore transformation (after P. Chauvet and G. A. Chauvet, 1999).

Mathematical Modeling of Neuromimetic Circuits 143



require that the output of the system remain within physiological limits and that the

modifiable synaptic weights be asymptotically stable to ensure the learning process.

The conditions necessary for the stability of the observed function call for adequate

values of geometric and physiological parameters, that is, the number of cells in-

volved, the value of the synaptic weighting, and so on. These conditions thus con-

tribute to the determination of the Purkinje unit.

Using the earlier definition of a functional unit, the Purkinje unit associated with

the deep cerebellar nuclei, that is, the local circuit composed of one Purkinje cell and

its associated cells, can be considered as the functional unit of the cerebellar cortex.

This is supported by the following arguments:

� The definition of a Purkinje unit is geometric as well as functional. A set of Pur-

kinje units corresponds to a microzone (Ito, 1984), although it should be noted that

the definition of the microzone is not based on mathematical criteria.

� The stability of the function, which takes into account the internal dynamics that

are due to the time lag in the propagation within the unit and between two units

(P. Chauvet and Chauvet, 1995), determines the conditions for the definition of the

structural unit.

� Variational learning rules (VLRs) (G. A. Chauvet, 1995) deduced from neural

learning rules apply to Purkinje units and govern the coordination of movement

through excitatory and inhibitory interactions among the units. The hypothesis of

synaptic plasticity, applied to granular cells, reveals a wide range of learning be-

haviour. The same learning rules probably apply during the developmental period

as well as in adult life to ensure the convergence of signals carried by the climbing

fibers of the cerebellar cortex.

� The coupling between units increases the overall stability of the system, in agree-

ment with the general theory (G. A. Chauvet, 1993b).

Appendix B lists various structures of the cerebellum and the corresponding func-

tions, with their mathematically derived properties.

The Network of Purkinje Units Let us now consider the hierarchical network of

Purkinje units in which each unit is itself a neural network as defined earlier. The

interactions among the Purkinje units lead to new learning rules governing the co-

ordination of movement on the basis of the external context. Here we refer to the

learning mechanisms associated with circuits adjacent to the local circuit correspond-

ing to the individual Purkinje unit. These rules, which we have called variational

learning rules, allow the learning of patterns associated with the ‘‘unlearning’’ of

those of the context. The ‘‘unlearned’’ patterns are transformed in the local circuits

belonging to the external context. Basically, the dynamics of the coordination may

be explained by the hierarchy of the system of Purkinje units and by the granular
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cell subsystem associated with a Golgi cell. The learning rules then emerge at a

higher level of Purkinje units, if certain conditions are satisfied [see Eqs. (C.1) and

(C.2) in appendix C].

Applied to Purkinje units, these learning rules give the model a predictive value, at

least from a qualitative point of view. For example, it is su‰cient to know the sense

of the variation in cerebellar inputs to be able to determine the sense of the varia-

tion in the synaptic e‰cacies and the outputs. In the learning phase, the outputs

and the modifiable synaptic weights are given by the solutions of algebraic nonlinear

equations coupled with integral-di¤erential nonlinear equations. Here again, the con-

ditions of stability found [see Eqs. (B.1), (B.5), and (B.6) in appendix B] are con-

firmed by the field equations. The Purkinje network, because of its hierarchical

nature, may thus be conveniently investigated on a mathematical basis. This is the

preliminary condition necessary to implement the coordination of movement on a

computer.

The mathematical conditions for the stability of the network have been determined

by means of a Lyapunov function (P. Chauvet, 1993). Using the properties of inter-

connected neurons described earlier, the equations for coupled units, indexed ðlÞ, are
given by:

XðlÞðtÞ ¼ �GðlÞXðlÞðt� TGÞ þ X
ðlÞ
0 þ SðlÞU� hðlÞc V ðlÞ � X

ðlÞ
extðtÞ

ð7:9Þ
Y ðlÞðtÞ ¼ Y

ðlÞ
0 þ tmðlÞp XðlÞðtÞ � tgðlÞp XðlÞðt� TpÞ þ mðlÞc V ðlÞ þ Y

ðlÞ
extðtÞ

in which the notations [e.g., XðlÞ ¼ ðx1; . . . ; xgÞ] correspond to those of figures 7.9.

The hierarchical approach thus leads to the emergence of new properties at the

higher level. It should be noted that the learning rules have been mathematically

deduced from the natural rules operating at the neuronal level. This is a good illus-

tration of the e¤ects of the cerebellar hierarchical organization on its function, which

has been shown to be the ‘‘intelligence of movement’’ (G. A. Chauvet, 2003). In this

approach, intelligence of movement corresponds to the combination of the activities

of a set of Purkinje units. Figure 7.10 is a three-dimensional representation of this

physiological function. Defined on the basis of the contexts created by functional

units, coordination of movement is clearly a physiological function that can be im-

plemented on a computer. The n-level field theory also may be used to better charac-

terize these results because of the delays involved in the propagation between any

two neurons (Daya and Chauvet, 1999). Let us now examine the example of the

hippocampus.

The Hippocampus and Learning and Memory

The properties of the hippocampus have been mainly explored through experiments

with synaptically evoked population activity. Presynaptic neurons were stimulated

for various intensities and the extracellular field potential (EFP) recorded at various
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locations (Yeckel and Berger, 1998; Berger and Bassett, 1992). These EFPs are the

images of the variation in time of the fields at the corresponding points in the space.

The extracellular wave form can be viewed as the image of the number of synapses

that create an extracellular potential at a given time, that is, in relation to the number

of micropotentials created by the corresponding synapses at one point of the extra-

cellular space. Specifically, we may interpret an EFP wave form as resulting from two

processes: firing of stimulated neurons when the membrane potential c (the value

of the field variable) is over threshold, and synaptic activation that results from all

the ionic current variations in the recorded volume of granule cells. The first process

is completely determined by the resolution of the field equation [Eqs. (7.6) and (7.7)].

The second process reflects the time distribution of the summed excitatory post-

synaptic potential (EPSP) in this volume, owing to the large number of causes, such

as the orientation of currents in space, the location of dendrites and synapses, and

the distance between the synapse and the recording electrode. Because of these inde-

pendent influences on the extracellular potential measured at a distance, the central

limit theorem in the theory of probability establishes that this sum is a Gaussian
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146 G. A. Chauvet, P. Chauvet, and T. W. Berger



variable. Thus, we have a statistical interpretation of the extracellular wave form,

confirmed by the observed wave forms (G. A. Chauvet and Berger, 1996). Appendix

D summarizes the specific statistical method based on the meaning of the field vari-

ables that allows the deduction of the EFP behavior of a population of neurons from

the fields at all levels.

Because the state of a synapse is defined by two field variables, the postsynaptic

potential f (short time scale) and the synaptic e‰cacy m (long time scale), the theo-

retical results shown in appendix D apply. We have considered the distribution

function of the state variables f as the new time distribution function defined by

F ðt;c; mÞ ¼ N �ðtÞ=NðtÞ where N �ðtÞ is the sum of the micropotentials created by

the activated synapses at time t [NðtÞ is the number of synapses in the considered

volume]. Therefore, Fðc; m; tÞ will be interpreted as the time distribution of the

micropotentials ne created by the activated synapses. This method provides a means

to define the relation between the intracellular and the extracellular potentials us-

ing new parameters at the level of the neuronal population having a physiological

interpretation.

Following appendix D, the time distribution function of micropotentials includes

three kinds of variations representing: (1) the fraction QðtÞ of synapses that modify

their state as a consequence of an external stimulus; (2) the modification of the inter-

nal state of the cell and the corresponding synaptic states, either as a consequence

of stimulation that leads to firing (feedback from the action potential to the emit-

ting cell) or a spontaneous ‘‘relaxation,’’ that is, a modification of potential without

external stimulation but with internal modification fðcÞ (such as from a voltage-

dependent conductance); and (3) any long-term variation in synaptic e‰cacy. This

sum can be written as Eq. (D.3):

dF ðt;c; mÞ ¼ QðtÞF dtþ ðdFÞc þ ðdFÞm; ð7:10Þ

where the relationship fðcÞ is included. This equation joined to the field equations

(7.6) and (7.7) gives an expression of f; m, and F, that is, it determines the global

intracellular potential. The numerical simulations given in figure 7.11 show the role

of the macroscopic parameters that describe synaptic activation and the propagation

of activity for a given intensity.

Conclusion

The models described here are based on a general theory incorporating new con-

cepts: Any biological system may be represented as a combinatorial set of nonsym-

metric and nonlocal functional interactions in a specific, hierarchical representation,

in which the structures are distributed along space scales, and functions along time

scales. What leads to this theoretical framework?
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Figure 7.11
Extracellular field potential wave forms obtained by numerical simulation for three values of the parameter
included in the model. (a) E¤ect of the parameter QðtÞ, which represents the fraction of synapses that mod-
ify their state as a consequence of an external stimulus. (b) E¤ect of the source of the field equation, repre-
sented by a firing coe‰cient (after G. A. Chauvet and T. W. Berger, in Neurobiology, V. Torre and F.
Conti, eds., Plenum, New York, 1996).
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Applied to the nervous tissue, elementary physiological mechanisms, such as syn-

aptic molecular mechanisms, can be integrated at the level of a neuron, and neuronal

mechanisms at the level of the neural network. The crucial point is that the integra-

tion leads to new functional laws that can be simulated with a computer, using the

techniques of numerical analysis, and tested through specific experiments. This kind

of approach seems to be a necessary condition for the mimesis of a physiological

function by a neural prosthesis.

The theory proposed has been illustrated here by two examples: the cerebellum

and the hippocampus. First, the hierarchical organization of the cerebellum, proved

mathematically from the functional point of view, has led to the concept of the func-

tional unit. New learning rules have been shown to appear at the higher levels of

functional organization [Eqs. (C.3) and (C.4)], together with the necessary stability

of the dynamics that are demonstrably related to the hierarchy. We thus have, on

one hand, the functional hierarchy created by time scales [conditions (B.2)] and on

the other, the structural hierarchy created by space scales [conditions (B.5)]. Since

the conditions of stability originate in the nature of the hierarchy, the functional

unit, that is, the structure that has the desired function at a higher level, may be

derived.

Thus, the mathematical model appears to reveal properties that would not be ap-

parent without formalization (G. A. Chauvet, 2002). This approach, which consists

of making a profound mathematical study before using numerical computation,

is very di¤erent from the usual computational approach, which to a certain extent

could be considered as being analogical.

In the case of neural prostheses, the implant must simulate the physiological func-

tion of the neural network it replaces. Thus, functional integration must result from

the working of the implant, given that the neural network, which is hierarchical, inte-

grates the function of a large number of elements, for example, activity (P. Chauvet

and Chauvet, 2002). Moreover, the input of the system is a spatiotemporal pattern,

as is its output. The model must therefore be able to realize the spatiotemporal func-

tion that results in collective activity. This is the case of the cerebellar cortex, where

each element is itself a neural network. We have shown that the functional unit is the

Purkinje domain, an ensemble of Purkinje units associated with neurons of the deep

cerebellar nucleus. We now know how to simulate, by means of a mathematical

algorithm, the learning and memorization of the coordination of movements by an

ensemble of Purkinje domains.

In the same way, the cognitive function of the hippocampus must be a product of

the collective activity of its intrinsic neurons. The information represented in this col-

lective activity can only be understood if we consider the spatiotemporal distribution

of active cells, given the complexity of the representations for any one set of condi-

tions and the fact that the information represented in the activity of hippocampal

Mathematical Modeling of Neuromimetic Circuits 149



neurons changes dynamically according to the environmental conditions. In the two

cases we have considered in this chapter, it is clear that developing a model of the

coordination of movement by the cerebellum, or the learning and memory functions

of the hippocampus, will allow cognitive operations to be related to the spatiotempo-

ral distribution of activity in the cerebellum or hippocampus and the specific molec-

ular mechanisms of synaptic plasticity.

Would it be possible to make these transformations, which lead to the simulation of

cognitive functions, by using an ‘‘analogical’’ approach? We do not think so, for at

least two reasons. First, the size of the neuromimetic network would be immense, since

it has to correspond strictly to the number of elements of the real network. Second,

and more fundamentally, the specific functions provided by the global, nonlocal inte-

gration of structures would not be obtained. We have seen the example of the hippo-

campus, for which a statistical interpretation was needed. However, it is clear that

the implementation of the algorithm will have to be of an analogical, non-numerical

nature because of the necessarily adaptive nature of the learning and memory system.

Appendix A: Structural Propagators

In the most general case, the biological system is assumed to have:

� n levels of structural organization denoted as r; s; c . . . from the highest to the

lowest (equivalent to n; n� 1; . . . 1) indicating r-space, s-space, etc.;

� each level, except the lowest, represents a structural discontinuity;

� only one time scale for all the levels.

Phenomena are observed at the highest level, which means:

� The functional interaction c r traverses levels successively from the highest to the

lowest.

� At each level, the interaction cannot go directly from one point to another without

traversing the lower levels because each level represents a discontinuity; thus, at each

level, except the lowest, the field equation is nonlocal.

� At the lowest level (molecular level), the field equation is local (reaction-di¤usion

type).

In terms of operators, the local time variation may be expressed as

Hcr ¼ G with H ¼ q

qt
�D‘2 �HI ðA:0Þ

The discontinuity between spatial structures ui at r
0 and u at r is taken into account

by considering a discrete nonlocal operator:
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Pi : c
r r 0; t� dðr 0; rÞ

v

� �
! crðr; tÞ ðA:1Þ

which, in the linear case, leads to:

ðHIc
rÞðr; tÞ ¼

X
ui ADr

Pic
r r 0; t� dðr 0; rÞ

v

� �
ðA:2Þ

where Dr is the set of r
0-units connected with the r-unit. This corresponds to the dia-

gram below or (a) in Eq. (A.5)

r 0ðt 0Þ rðtÞ
� a a a � a a a � ðA:3Þ
ui Pi0 u

where dðr 0; rÞ is the distance between r 0 and r. We have called Pi½cs� the structural

propagator (S-propagator) since the propagation of the functional interaction occurs

in the structural organization for the space of units u, including the structural discon-

tinuities at level s with the field variable cs. Now, using the continuous notation for

r 0, the propagation of the field from r 0 to r occurs, at the lower level, along diðr 0Þ
from r 0 in ui to the border of the structural discontinuity denoted as s 0, then along

dðsÞ inside s, and finally from s to r along dðrÞ inside the unit u. This propagation

corresponds to the mathematical operation per unit time:

Pi½c s� ¼ PCPi 1PCðrÞPðr 0Þ ðA:4Þ

which is the product of the translevel propagator Pi in ui, i.e. Pðr 0Þ, the in-level

propagator C for field variable c s at the level s, which represents the transport

through the structural discontinuity, and the translevel propagator P in u, i.e., PðrÞ,
as shown by the diagrams:

(a) Field variables (b) Domains (c) Operators

r 0 A DrðrÞ

ðuiÞ r 0 cr r ðuÞ r 0 cr r ðuiÞ r 0 Pi r ðuÞ
cr

Pðr 0Þ PðrÞ
cs

s 0 cs s s 0 cs s s 0 C s

pr 0s 0 prs
s 0 A Dsðr 0; rÞ s A DsðrÞ pr 0s 0 prs

pr 0s 0 prs
ðA:5Þ
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where the dotted line shows that s 0; s belong to the unit at r. Note that:

� The product in Eq. (A.4) must be understood as

PCðrÞPðr 0Þ ¼ ½Pðr; sÞCðs; s 0; rÞ�Pðr 0; s 0Þ;

i.e., an operator ½Pðr; sÞCðs; s 0; rÞ� that acts on the result of the operation Pðr 0Þc r. It

is sometimes convenient (however confusing) to note in the same way the operator

and the field variable. If there is no discontinuity, then Cðs; s 0; rÞ ¼ dðs� s 0Þ where d

is the Dirac function. Thus, the passage from r 0 to r through s 0 gives

½Pðr; s 0ÞPðr 0; s 0Þ�1 ½PðrÞPðr 0Þ�:
� This relationship includes the density of units and their connectivity (a continu-

ous expression using a density connectivity function prs, i.e. the product of the den-

sity and the probability of connection for the specific units). The pathways in the

above diagram represent the action of the operators. Thus, the nonlocal term (A.2)

becomes

ðHIc
rÞðr; tÞ ¼

X
ui ADr

½PCðrÞ�Pðr 0Þcr r 0; t� dðr 0; rÞ
v

� �
ðA:6Þ

� With the density of the r 0-units denoted as rrðr 0Þ, this nonlocal term, which describes

the action from r 0 to r, through s 0 and s, may be written in continuous notation:

ðHIc
rÞðr; tÞ ¼

ð
DrðrÞ

rrðr 0Þ½PCðrÞ�Pðr 0Þcr r 0; t� dðr 0; rÞ
vr

� �
dr 0 ðA:7Þ

According to this definition, the S-propagator represents the operation of the

processes inside the units of the hierarchical structural organization from t 0 to t,

and includes all the processes integrated at the lower level. It gives the global

representation of the operation of the processes at each level of the hierarchy. The

S-propagator is a nonlocal field operator that transports the field variable c r from

point r 0 in the space of units at time t 0 to point r at time t. This represents the trans-

port in three sequential steps:

1. a propagation of the functional interaction c r inside the source (in this emitting

unit, the process is represented by operator Pðr 0Þ;
2. a transformation that is due to the structural discontinuity that provides a propa-

gation at the lower level owing to the functional interaction c s at this lower level (the

process is represented by operator C, i.e. the solution of the field equation for c s at

this level); and

3. a propagation of cr at the higher level in the sink [in this receiving unit, the

process is represented by the operator PðrÞ].
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To sum up, it is crucial to note that the S-propagator represents the operation of

the processes inside the units of the space of units. In some cases, transport is possible

through extra-unit space, inside the physical space. The nonlocal term [Eq. (A.7)]

inserted into Eq. (A.0) gives the hierarchical field equation that describes the dy-

namics at the highest level of structural organization:

In the nonlinear case:

qc r

qt
ðr; tÞ ¼ ‘r½Dr‘rc

rðr; tÞ� þ
ð
DrðrÞ

r rðr 0ÞPCðrÞPðr 0Þc r r 0; t� dðr 0; rÞ
vr

� �
dr 0 þ G rðr; tÞ

ðA:8Þ

The non-local term is also a source term because it provides the contribution to

the current compartment of a virtual compartment (i.e. from other levels of orga-

nization). The ‘‘factor’’ represented by the operator and the integral represents

the quantity of c brought per unit time into the current compartment. Because

operators are generally nonlinear, the operator that is applied to the input func-

tion c represents the specific local model, i.e., mechanisms that occur during a time

interval.

In the linear case, the operator may be replaced by a kernel. The result of each

operator, taking into account the interlevel connectivities, is:

Pðr 0Þcrðr 0; t 0Þ ¼
ð
DrðrÞ

pr 0s 0Bðr 0; s 0Þc rðr 0; t 0Þ dr 0

PCðrÞc sðs 0; t 0Þ ¼
ð
Dsðr 0; rÞ

ð
DsðrÞ

prsPs 0; s½cc�Aðs; rÞc sðs 0; t 0Þ ds ds 0 ðA:9Þ

where A and B are specific spatiotemporal functions that depend on the local physi-

ological mechanisms. The second equation involves the functional interaction at the

lower c-level, through the S-propagator Ps 0; s½cc�. In the same way, the given s is

connected to all c, each being connected to all s 0, and each of these being connected

to all r 0 in the corresponding spaces. Equation (A.8) then becomes:

qc r

qt
ðr; tÞ ¼ ‘rðDr‘rc

rðr; tÞÞ þ
ð
DrðrÞ

ð
Dsðr 0; rÞ

ð
DsðrÞ

rrðr 0Þprspr 0s 0Ps 0; s½cc�

� Aðs; rÞBðr 0; s 0Þc r r 0; t� dðr 0; rÞ
vr

� �
dr 0 ds ds 0 þ Grðr; tÞ ðA:10Þ

where the three levels and their connected units appear through the units at c; s 0; r 0.

The local mechanisms associated with the propagators are clearly represented for

the s 0-unit by the functions Bðr 0; s 0Þ, and for the s-unit by Aðs; rÞ. However, develop-

ment down to the c-level would require a nonlocal field equation for c s in the same
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functional organization, i.e., in the same time scale. Most often the field only exists at

the highest level.

Appendix B: Functional Organization of the Cerebellar Cortex

Structure Function Property

Purkinje cell Synaptic modifiability
between parallel fibers and
Purkinje cell, mp

Hebbian learning rules

Granule cells Synaptic modifiability
between mossy fibers and
granule cells, sm

Hebbian learning rules

Purkinje unit:
Local Purkinje circuit
including the
network of granule
cells, Golgi cell and
basket cells

Learning and memorization
of trajectories:
In time: sampling via the
Golgi cell–granule cells
circuit
In space: via the granule
cells–Purkinje cell circuits.

Condition for stability (unit k):

C1ðkÞ ¼
Xg
j¼1

h
ðkÞ
p; j

 !
max
1aiag

s
ðkÞ
G; i < 1 ðB:1Þ

where the time lag TG due to the Golgi cell is
involved.

Network of Purkinje
units:
set of Purkinje units

Learning
Learning and memorization
of coordinated trajectories
(time-space patterns)
Dynamic stability
Global stability

Functional organization: Time scale ) Condition
for VLR (see appendix C):

jdH0jg jdG0j
jdHjg jdGj

ðB:2Þ

where G;H;G0 and H0 are defined by

dXðtÞ ¼ dG0ðtÞ þ edH0ðtÞ
dYðtÞ ¼ dGðtÞ þ edHðtÞ
derived from

X ¼ F1ðU; smÞ � sGH0

Y ¼ F2ðX; mPÞ þH
ðB:3Þ

Structural organization: Space scale ) Condition
for stability of the network (condition between
units):

C2ðkÞ ¼
XN

l¼1; l0k

Xg
j¼1

h
ðklÞ
e; j

 !
max
1aiag

s
ðkÞ
G; i < 1 ðB:4Þ

C1ðkÞ þ C2ðkÞ < 1 ðB:5Þ
Network of Purkinje
domains:
Purkinje units
associated with the
cerebellar nuclei

Enhanced learning and
memorization of
coordinated patterns

Increased learning capacity

Sensorimotor system Integration of sensorial
signals and coordinated
patterns

Motor control
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Appendix C: The VLRs: An Example of an ‘‘Emerging’’ Property

With H and H0 being functions representing the external signals that converge from

the connected Purkinje units (the ‘‘context’’) to the current Purkinje unit, calculated

from the equations for the Purkinje cell subsystem and the granular cell subsystem,

the following conditions are always satisfied:

jdH0jg jdG0j; sgnðdH0Þ ¼ constant;

H0 bound and lim
t!y

dH0 ¼ 0 ðC:1Þ

jdHjg jdGj; sgnðdHÞ ¼ constant;

H bound and lim
t!y

dH ¼ 0 ðC:2Þ

Variational learning rules (applying to the sense of variation of activities as well as

synaptic weights):

dH0 > 0 ) dX < 0 with ðUi ¼ 1 ) ds i
m > 0 and Ui ¼ 0 ) ds i

m < 0Þ

or

dH0 < 0 ) dX > 0 with ðUi ¼ 1 ) ds i
m < 0 and Ui ¼ 0 ) ds i

m > 0Þ

ðC:3Þ

and

dH > 0 ) dY > 0 ) ðdX < 0 ) dm i
p > 0 and dX > 0 ) dm i

p < 0Þ

or

dH < 0 ) dY < 0 ) ðdX < 0 ) dm i
p < 0 and dX > 0 ) dm i

p > 0Þ

ðC:4Þ

for inputs V ;Xe represented by the function H0, and X 0
e represented by the function

H, and for the presented pattern U ¼ ðU1; . . . ;Ui; . . . ;UgÞT .

Appendix D: Statistical Equation of Field States

The distribution function of the state variables f nðc0;c1; . . . ;cnÞ from the 1-level to

the n-level gives the proportion of structural units that are in the state determined by

the field. It depends on specific parameters of the system, which describe the influence

of the units on the population of these units. This function may be obtained as the

solution of the equation that describes the balance of units submitted to numerous

and various independent influences, e.g. elementary physiological mechanisms. Two

classes of mechanisms are assumed such that:
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qf n

qt
¼ D f n

ext þ D f n
cn ðD:0Þ

The first class is an external influence on the system, e.g., an excitation from another

system in the biological system, or a stimulation, which changes the proportion of

units in a given state. Since each unit has an equal probability of passing from one

state to another, this process is similar to the change of states in a compartment:

the corresponding time variation D f n
ext of the distribution function is directly related

to the number of units at a given time. Let QðtÞ be the coe‰cient that expresses the

fraction of units that change their state. Then:

D f n
ext ¼

qf n

qt

� �
ext

Dt ¼ QðtÞ f nDt ðD:1Þ

The second is an internal transformation corresponding to the elementary mecha-

nisms described by the field variable: a state transition D f n
c n occurs as soon as there

is a transformation in the biological system, i.e., when a stimulation is applied to the

system. The formulation of this term depends on the mechanisms that cause changes

in the field variables represented by specific parameters not reducible to individuals,

i.e., on the field equations themselves:

D f n
c n ¼ qf n

qcn

� �
c n

Dt ðD:2Þ

The e¤ect of all the state transitions may be assumed to be additive, since each field

equation represents a process on a di¤erent time scale. Thus, using Eqs. (D.0) to

(D.2), the action of the fields on the population of a large number of structural units

may be described by a statistical distribution function of the states f nðc1; . . . ;cnÞ,
which is a solution of the equation

qf n

qt
¼ QðtÞ f n þ

Xn
i¼1

qf n

qt

� �
Dc i

ðD:3Þ
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8 Real-Time Spatiotemporal Databases to Support Human Motor Skills

Shahram Ghandeharizadeh

The term multimedia has a di¤erent meaning for di¤erent groups. The computer in-

dustry uses this term to refer to a system that can display audio- and videoclips. Gen-

erally speaking, a multimedia system supports multiple modes of presentation to

convey information. Humans have five senses: sight, hearing, touch, smell, and taste.

Thus, in theory, a system based on this generalized definition must be able to convey

information to all senses. This would be a step toward virtual environments that

facilitate total recall of an experience. This chapter explores touch and motor skills

as an extension of a multimedia information management system.

Driven by virtual reality applications, the early 1990s witnessed a growing interest

in haptic devices. By definition, a haptic interface is a force-reflecting device that en-

ables a user to touch, feel, and manipulate a virtual object. Its application ranges

from entertainment to education and patient rehabilitation. In education, for exam-

ple, the dental curriculum of almost all major universities dedicates a portion of its

program to training students on how to perform a procedure, such as a root canal.

The objective is to educate students on the dexterity required to perform the pro-

cedure at a very fine (millimeter) level. These programs typically require students to

observe the instructor and are followed by practice sessions. Haptic devices could

complement this curriculum by making it possible for students to experience the dex-

terity of the instructor (figure 8.1). The instructor could wear a haptic glove and per-

form the procedure. The haptic glove would be equipped with sensors that monitor

the movement of the instructor’s joints and the force exerted by each joint. Each

sensor would provide a stream of data that is stored in a multimedia database man-

agement system. Next, a student would wear the glove. This time, the multimedia

database management system would control the movement of the student’s hand by

streaming recorded data to the glove, enabling the student to experience the instruc-

tor’s dexterity. The glove could also be used to monitor the student’s learning prog-

ress and to provide feedback (which is almost identical to an instructor watching

and providing feedback). Wearing the glove, the student would perform a procedure

while the glove recorded his or her movements. Next, the underlying multimedia



database management system would compare this recording with a recording from

the instructor to provide the student with detailed feedback. For example, the stu-

dent might not be moving his or her hand at the right velocity and accuracy at cer-

tain corners; the index finger of the student might not be at the right position relative

to the other fingers, etc.

Haptic devices can also complement existing physical rehabilitation programs for

patients with either a transplant or a prosthetic device that restores a motor skill. As

an example, consider Mathew Scott, who was featured in the February 8, 1999 issue

of Newsweek as the first person in the United States to receive a hand transplant after

a 15-hr surgery at the Jewish Hospital of Louisville, Kentucky. He had lost his hand

to a fourth of July fireworks accident 15 years earlier. His operation involved a 17-

member surgical team that reattached multiple tissues: skin, muscle, tendons, bone,

nerves, and blood vessels. Haptic devices would be useful for rehabilitating patients

like Mathew. Once again, the idea would be to collect recordings from a haptic glove

worn by a trainer who is performing complex activities, such as dialing a telephone,

lighting a cigarette lighter, or using chopsticks. Next the patient would be provided

with the glove in order to experience the transplant and its stimuli to the nerves.

The multimedia database may transform the raw data into knowledge by associating

streams of data with di¤erent limbs and muscle groups. This would allow patients

to ask for activities related to a specific finger (say index) in order to experience and

exercise a single limb.

Both examples demonstrate that a haptic device extended with a multimedia data-

base management system (MDBMS) is a valuable tool. (Such a coupling does not
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Figure 8.1
Key components of a haptic training system.
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exist at the time of this writing.) While both examples illustrate the use of a haptic

glove, our research is envisioned to be general and applicable to other haptic devices

to support motor skills. However, in order to simplify the discussion, we use the

human hand and the haptic glove for the remainder of this chapter.

With a haptic glove, there are three modes of operation:

� Record: An instructor (or a physical trainer) performs a complex activity while

wearing the glove. Each sensor attached to the glove generates a stream of data that

is transmitted to a continuous media server for storage.

� Play: A student (or patient) experiences the motor skill required to support a spe-

cific activity by wearing the glove and playing back the recorded streams that consti-

tute the activity. During this mode, the MDBMS retrieves the streams to activate the

glove.

� Teach: The system analyzes the movements of a student (or patient) in a complex

activity by providing feedback as to what the user might be doing. If a student in-

forms the system that she (or he) wants to perform a specific procedure (say, a root

canal on a mannequin), the glove records the student’s actions. When the system

detects an error, it identifies which fingers were not in the right position and suggests

possible exercises to correct the movement.

At the time of this writing, components of an MDBMS (see e.g., Ghandeharizadeh

et al., 1997a) and a haptic glove, for example, the Cyber Grasp, exist independent of

one another. Combining these two components raises several questions:

� When the instructor and student’s hand have di¤erent dimensions, how can the

computer process the data to compensate for this di¤erence during the play mode?

� An activity, for example, dialing a telephone, might be performed in a slightly dif-

ferent way every time it is performed by the instructor or trainer during record mode.

How can the database management system process the data and extract the sense of

the motor-skill movement for the student or patient?

� When a student performs an activity in teach mode, how can the system process the

data to evaluate what the student might be doing wrong?

� In teach mode with a given student, how can the system build a profile of the stu-

dent to use in evaluating when learning is in progress and when it is complete?

Assuming that this is successful, how can the system propose other activities that

would help the student to move to the next level of dexterity?

Several key technological advances are making it possible to answer these ques-

tions. First, computer components are becoming faster and more reliable every

year. As predicted by Moore in 1965, central processing units (CPUs) nearly double

in speed of operation every 12 to 18 months. While some in the industry predict an

Real-Time Spatiotemporal Databases 161



end to this trend with compound semiconductors, there are alternatives, such as the

superconducting metal niobium that can support 100-GHz processors (Brock et al.,

2000; Bunyk et al., 2001). Second, the cost of storing data is dropping by approxi-

mately a factor of 2 every 12 to 18 months, with industry o¤ering smaller devices.

To illustrate, in 1980, IBM’s 3380 o¤ered 1 gigabyte of storage for $40,000. This

refrigerator-sized device weighed 550 pounds (250 kg). Twenty-four years later, in

2004, IBM’s Micro drive o¤ered the same storage capacity in a 1-inch device that

weighed 1 ounce (16 g) for $200. Another trend in the area of storage involves high-

density devices. At the time of this writing, 200-gigabyte disk drives are common-

place. With rapid advances in disk head technology that can pack magnetic disks

with a large amount of data per square centimeter (Comerford, 2000), magnetic disks

that o¤er terabytes of storage should be available in a few years. Third, rapid ad-

vances in both wire-based and wireless communication technology enable devices to

exchange data rapidly. One may observe bandwidths on the order of tens of megabits

per second from 802.11a/g wireless LAN cards. Fourth, the power consumption of

these devices decreases every year, in turn reducing the amount of heat produced.

These trends point toward powerful haptic devices with small footprints that can

gather a large volume of data from a person’s joints and reason about these data in

a fraction of a second.

One area that deserves greater scrutiny is the mechanical nature of haptic devices.

First, they should be designed to minimize the likelihood of physical injury to their

users. Second, they should become more reliable and user friendly in order to be

accepted for general use.

The rest of this paper is organized as follows. In the next section we describe tech-

niques to support data retrieval and the spatiotemporal characteristics of data. Then

we detail how these data are used for mining and query processing. The last section

contains some brief conclusions.

Continous Media and Haptic Devices

The data generated by each sensor of a haptic glove consist of continuous media with

a prespecified bit rate requirement. If a system delivers a movement more slowly than

its prespecified rate without special precautions, the user might observe logical errors

that result in undesirable behavior; for example, with chopsticks, either one or both

sticks might fall out of place. A second important characteristic of the haptic glove

is the temporal constraints that exist between multiple streams. These temporal con-

straints are computed during the record mode. Moreover, during the play mode, the

system must ensure that the retrieval and rendering of data respect these temporal

constraints. Otherwise, once again, the resulting motor activity might fail to perform

the required task, for example, causing one or both chopsticks to fall. Both types of
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logical errors are collectively termed hiccups (Ghandeharizadeh and Ramos, 1993).

In the following discussion, we start by describing a scalable server to store the

stream generated by a haptic glove and support hiccup-free displays. Next, we focus

on how to capture the temporal relationships between the di¤erent streams (i.e., sen-

sors) and how to ensure that the retrieval of data respects these constraints. Finally,

we explain how we intend to relate the di¤erent streams to the di¤erent joints and

muscle groups in a hand to facilitate query processing.

MITRA: A Scalable Continuous Media Server

From 1993 to 1999, we conducted pioneering research to support a multimedia

server that can store and retrieve continuous media. This research focused on multi-

user systems that (1) employ o¤-the-shelf hardware; (2) have a software architecture

that can scale as a function of the underlying hardware platform to support thou-

sands of simultaneous streams; (3) utilize hierarchical storage structures to minimize

cost; (4) use intelligent data placement techniques, disk scheduling algorithms, and

bu¤ering schemes to enhance either the cost-e¤ectiveness of a configuration (compet-

itive cost per stream) or experience by minimizing latency, that is, the amount of

delay incurred from the time a user requests a stream to the start of a display. This

research result is embodied in MITRA (Ghandeharizadeh et al., 1997a), an exper-

imental prototype developed at the University of Southern California. MITRA’s

original hardware platform consisted of a cluster of workstations using a UNIX

operating system. Currently, MITRA’s platform consists of a cluster of personal

computers (PCs) using a Microsoft Windows NT operating system. Attached to

each PC is an Adaptec small computer system interface (SCSI) card with several

magnetic disks. The system can show audio and video data encoded in di¤erent for-

mats, for example, Motion Picture Experts Group (MPEG).

Simultaneous with our implementation e¤orts, other investigators conducted

pioneering research on fault-tolerant techniques to support continuous media, for

example, Berson et al. (1994) and Brock et al. (2000). MITRA implements a simple

mirroring technique to ensure the availability of data when these are disk failures.

However, it can be extended to incorporate the more elaborate designs found in the

literature.

To minimize the cost of storage with large datasets, MITRA is designed to support

a hierarchical storage structure consisting of either one or multiple tertiary storage

devices, D disks, and M megabytes of memory (Ghandeharizadeh et al., 1994;

Hillyer and Silberschatz, 1996a,b; Sarawagi and Stonebraker, 1996). The database

resides permanently on the tertiary storage devices. Streams are materialized on the

disk drives on demand (and deleted when the disk storage capacity is exhausted). A

small fraction of a stream is staged in memory to support its display (see next para-

graph for details). We have analyzed pipelining algorithms that stage portions of a
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stream intelligently from the tertiary storage onto magnetic storage to minimize the

latency incurred when displaying a stream (Ghandeharizadeh et al., 1995; Ghande-

harizadeh and Shahabi, 1994).

At the file system level, each stream that constitutes a task is partitioned into a se-

quence of blocks. When the task is referenced, a block of each stream is staged from

disk into memory for display, assuming that they are resident on a disk; otherwise,

they must be either staged or pipelined from tertiary; see Ghandeharizadeh et al.

(1995) and Ghandeharizadeh and Shahabi (1994). Moreover, resources are scheduled

intelligently to prevent data starvation. This ensures the availability of the right

block at the right time for rendering (Ghandeharizadeh and Muntz, 1998; Gemmell

et al., 1995; Yu et al., 1992, 1993; Martin et al., 1996; Ozden et al., 1995, 1994,

1996b). Moreover, it maximizes the number of simultaneous streams supported by a

system configured with a fixed amount of resources. With D disks, the data blocks

that constitute a stream are dispersed across all disks to distribute the load imposed

by the retrieval of that stream evenly across the D disks (this is an important consid-

eration when scalability is an objective).

There are two ways to partition data blocks across disks (Ghandeharizadeh et al.,

1997b; Muntz et al., 1997): (1) deterministic, for example, a round-robin (Berson

et al., 1994); and (2) undeterministic, for example, random (Muntz et al., 1997). In

addition, there are a variety of ways to schedule resources and perform admission

control (Nerjes et al., 1997). In a nutshell, the tradeo¤ between these choices is one

of: (1) saving money versus saving time (Ghandeharizadeh and Muntz, 1998; Ghan-

deharizadeh et al., 1996b), (2) throughput versus latency (Ghandeharizadeh and

Muntz, 1998; Chang and Garcia-Molina, 1996), and (3) guaranteeing continuous dis-

play versus the possibility of a slight chance for data starvation and hiccups (Vin

et al., 1994; Nerjes et al., 1997). A system designer must understand the requirements

of the human motor skill in order to configure the system with the appropriate data

placement, scheduling, and admission control strategy.

Assuming that the available bandwidth is scarce, one may assign a di¤erent prior-

ity to the di¤erent streams that constitute an activity (based on the di¤erent joints

and fingers). Next, each stream is assigned a priority, starting with the least im-

portant stream. In essence, a stream with a higher priority is more important. There

are a host of scheduling techniques that strive to meet the deadline of as many low-

priority requests as possible while meeting the deadline of almost all high-priority

requests (Kamel et al., 2000).

Spatiotemporal Multimedia Objects and an Envelope of Limits

We use Allen’s temporal constructs (Allen, 1983) to capture the temporal constraints

that exist among multiple streams. Using these constructs, we can optimize both

the placement of data and scheduling of resources to maximize system performance
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(Chaudhuri et al., 1995). In the following paragraphs, we describe each in turn. In

passing, it is important to note that storage of streams is not currently supported by

the Cyber Glove; here we explain how we intend to capture this information.

During recording of a task, we use Allen’s (1983) starts and finishes constructs to

mark the beginning and end of those streams that constitute the task. This is accom-

plished by identifying one stream of 22 as the master and the remaining 21 as slaves.

Each of the slaves is synchronized with the master. Moreover, these temporal con-

structs can be periodically repeated in the recorded streams to prevent drifts during

playback.1 There are alternative ways of capturing this representation (Ghandehari-

zadeh, 1999). Currently, we plan to use an object-relational database and define a

composite object that keeps track of the master and slave streams, along with their

temporal constraints (detailed later). Each stream is termed an atomic object.

In Chaudhuri et al. (1995), we analyzed hiccup-free display of composite video and

audio streams by scheduling resources intelligently. That study focused on applica-

tions that construct composite objects on the fly; for example, CNN’s newsroom,

where an editor accesses an archive and constructs composite objects to narrate a

documentary. It assumed that the placement of data cannot be modified to enhance

the utilization of resources to minimize the delay incurred when a user requests the

display of a composite object. Based on this assumption, we identified intraobject

conflicts where retrievals of multiple streams that constitute the object compete for a

single disk of the D disk system, resulting in potential hiccups. Our study proposed a

novel framework to identify these conflicts and resolve them by perfecting data. This

framework is at the physical file system level and uses the individual blocks that con-

stitute the streams of a composite object. It defines a composite object as a triplet

ðX ;Y ; jÞ, indicating that the object consists of streams X and Y . The parameter j is

the lag parameter. It indicates that the start time of stream Y (i.e., display of Y1)

is synchronized with the display of block Xj. For example, to designate a complex

object where the display of X and Y must start at the same time, we use the notation

ðX ;Y ; 1Þ. Similarly, the composite object specification ðX ;Y ; 3Þ indicates that the

display of Y is initiated with the display of the third block of X . This physical defini-

tion of a composite object supports the alternative temporal relationships described

in Allen (1983). Table 8.1 lists these temporal relationships and their representation

using our notation of a composite object.

As detailed in Chaudhuri et al. (1995), our proposed techniques support all tempo-

ral constructs because they solve for (1) arbitrary j values, (2) arbitrary sizes for both

X and Y , and (3) placement of X and Y starting with an arbitrary disk (assuming a

round-robin placement of data).

The environment proposed here is di¤erent than that assumed by Chaudhuri et al.

(1995) in one fundamental way: Composite objects are static and not created on the

fly. With a cyber glove, the composite object may consist of 22 atomic objects
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(streams) and be created when the trainer or instructor performs a complex task.

During the recording of a composite object, we can control the placement of its

data blocks to prevent intraobject conflicts during its retrieval. With a round-robin

data placement technique, this is accomplished by starting the storage of each stream

with a di¤erent disk drive. If there are D ( 22 disks, then the storage of each stream

starts with a unique disk and its blocks are dispersed round-robin across all disks.

There will be no intraobject conflicts because this assignment ensures that a unique

disk supports the retrieval of each stream. When D < 22 disks, we can distribute

the load of the composite object evenly across the available resources by uniformly

assigning the streams to disks. Of course, the techniques detailed in Chaudhuri

et al. (1995) remain applicable whenever intraobject conflicts exhaust the available

bandwidth.

In addition to being continuous, these data are both multilevel and spatiotem-

poral. They are spatiotemporal because each sensor is a spatial point that moves as

a function of time. They are multilevel because the points can be combined to form a

region that moves in time. For example, a limb, say an index finger, is a region that

moves in time. This region consists of the sensors (points) that monitor the joints of

this finger. This is applied recursively to support higher representations; for example,

a hand is a region that moves in time. An activity performed by a trainer is one mul-

tilevel presentation. Moreover, a trainer performing an activity might do it slightly

di¤erently each time. This slight variation is important and should be captured as

part of an activity’s essence. It provides an opportunity to refine the system when it

is operating in either the play or teach mode. By capturing the variation, the system

might be able to develop a set of boundaries, or ‘‘envelope of limits,’’ termed EoL,

for the di¤erent fingers. An EoL is a continuous stream of data as a function of

time. Now, in the play mode, the system can control the movement of the novice’s

fingers based on the computed EoL. In essence, the EoL captures the statistically sig-

nificant boundaries across multiple repetitions.

Table 8.1
Representation of temporal relationships

Allen’s Construct Composite Object Representation

X before Y ðX ;Y ; jÞ where size ðXÞ < j

X equals Y ðX ;Y ; jÞ where size ðXÞ ¼ size ðYÞ and j ¼ 1

X meets Y ðX ;Y ; jÞ where j ¼ size ðXÞ þ 1

X overlaps Y ðX ;Y ; jÞ where 1 < j ( size ðXÞ
X during Y ðX ;Y ; jÞ where ð j < 1Þ and [size ðXÞ ( size ðYÞ � j ]

X starts Y ðX ;Y ; jÞ where ð j ¼ 1Þ and [size ðXÞ < size ðYÞ]
X finishes Y ðX ;Y ; jÞ where [ j ¼ size ðYÞ � size ðXÞ þ 1] and [size ðXÞ < size ðYÞ]
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With a novice, the system can enlarge the EoL during playback to prevent stress

and injury. In the teach mode, the recorded stream is a measure of the student’s

training progress. The same EoL is applied to see if the student has gained su‰cient

dexterity. Once the student satisfies the current EoL, the database can tighten the

EoL to train the student to the next level of dexterity. This process is repeated until

the EoL is tightened to correspond to that of the instructor. The EoL is similar to a

filter superimposed on the streams. Its logical representation and physical storage are

challenging topics that require further investigation.

The concept of EoL can also assist the users directly by making the teach mode

more interactive. The idea is as follows: Consider a novice who is making a specific

mistake consistently from time t1 to t2 relative to the start of the display of an activ-

ity; term this duration d1. The system can detect such errors and bring them to the

attention of the user (or trainer). Next, it may switch from the teach to the play

mode during d1 when the error is encountered. This special mode is termed active-

teach. In this mode, if the user does not make an error during d1, then the system

does not intervene and remains a passive observer. However, if the user starts to

make the same mistake, then the system becomes active by switching to the play

mode.

In order to detect repetitive errors that are consistent in nature, the system must

build an EoL for the student when operating in the teach mode. Next, it can build a

profile of errors as a function of time. Next, the system can cross-compare the stu-

dent’s EoL with that of the instructor to compute the spatial di¤erence during d1.

This spatial di¤erence can be minimized incrementally when the error is encountered

during d1.

This process builds a profile of a novice and his or her frequent errors. Based on

this, the system can analyze its library of activities and their associated EoLs to iden-

tify those activities with movements that match the frequent mistake of the students.

These can be brought to the students’ attention as potential practice activities to help

them improve the learning curve.

The concept of EoL as a filter can also compensate for the di¤erence between the

trainer’s hand and the student’s hand. Given the dimensions of two di¤erent hands,

the system can construct a filter, similar to an EoL, which would be applied to the

streams in the play mode. The design of this filter is expected to be simple because

it is spatial in nature. (The EoL is a spatiotemporal filter that can be viewed as a

stream in its own right.)

Metadata and Data Mining

Storage and retrieval of streams that constitute a composite object is a first step

toward information retrieval. It is important to make it possible for a patient or
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student to divide an activity into its subactivities to simplify the learning experience.

For example, with chopsticks, a patient such as Mathew might request the system to

display only the movement of the right index finger (with no chopsticks of course).

These metadata can also be used to enhance presentation. For example, not all five

fingers of a hand are as mobile as one’s thumb; in particular, stretching the second

finger entails the movement of adjacent fingers. To see this, form a fist with your

right hand. Now, while keeping the other fingers in the form of a fist, stretch your

thumb out. Put your thumb back to form a complete fist again. Next, proceed to

do this with your index finger. Repeat this with other fingers, moving one finger to

the right each time. As one approaches the second rightmost (the ‘‘ring’’) finger, it

becomes more di‰cult to maintain a fist with the other four fingers while stretching

this finger outward. (It is easy to maintain a fist while stretching the thumb, index, or

the rightmost finger.) Such knowledge is useful in designing a haptic glove because

it prevents the system from stretching the second finger while keeping the other

fingers in an uncomfortable position. This minimizes stress and possible injury. We

are investigating data-mining techniques on how to discover and represent this

knowledge. These tools analyze the streams and detect patterns of movements in

the instructor’s hand to compute the dependence between di¤erent fingers. They

can be made more application specific and powerful with triggers at the metadata

level that provide a framework to direct the data-mining tools toward the optimal

solution.

As indicated earlier, an activity performed by a trainer is one multilevel represen-

tation. We are analyzing tools that can process data at di¤erent levels to detect cor-

relations that represent constraints. To illustrate this concept, assume that for each

activity, one level of representation corresponds to the movement of di¤erent fingers

(regions). The MDBMS can scan all such data to build a profile of how the di¤erent

fingers move relative to each other. If two limbs always move with one another,

then it might be feasible to hypothesize that these two limbs are dependent on one

another. The objective here is to create a framework that can detect interesting

spatio-temporal patterns based on the underlying data. These patterns can serve as

a framework when activating the glove to move a single finger. They represent the

system’s belief about the operation of the human hand. They might be patterns that

communicate such simple concepts as ‘‘two fingers never occupy the same space’’

or ‘‘all fingers are mobile relative to a single plane.’’ A belief is almost identical to

a hypothesis. In Ghandeharizadeh et al. (1992, 1996a), we described how deltas as

first-class citizens could facilitate hypothetical query processing. In addition, we

introduced novel constructs, such as ‘‘merge,’’ ‘‘smash,’’ and ‘‘when’’ to facilitate hy-

pothetical query processing, assuming the relational data model. We are now inves-

tigating automated techniques that compute deltas.
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Query Processing

The database management system should be able to accept spatiotemporal input

from the user to retrieve all those spatiotemporal datasets that match the input

data. The input data constitute a query against the database. One example would be

for a patient to request retrieval of all those activities that involve the folding of the

index finger. Another example is an automated system that translates the hand signs

performed by a hearing-impaired individual into text to facilitate communication

(Murakami and Taguchi, 1991; Fels and Hinton, 1995; Sandberg, 1997; Nam and

Wohn, 1996; Lee and Yangsheng, 1996; Wu and Huang, 1999). In this example, the

hand signs are represented as spatiotemporal data. Each sign is labeled as either a

character or a word. Next, these characters are printed on a screen, conveying what

the individual is trying to say.

We have investigated a role for clustering techniques in supporting retrieval of

spatial data. Our objectives were to detect a hand sign from a continuous stream of

haptic data generated by a glove. For experimental purposes, we used ten subjects

performing ten di¤erent hand signs (nine corresponding2 to letters ‘‘A’’ through ‘‘I’’

plus the letter ‘‘L’’). We used an implementation of K-Means (MacQueen, 1967; Jain

and Dubes, 1988; Ng and Yang, 1994) and Adaptive (Martin-Bautista and Vila,

1999; Carrasco et al., 1999) provided by a package called numerical cruncher

(Galiano and Talavera, 1999) for experimental purposes. Our study assumed a sim-

plified environment consisting of two steps: training and data lookup. During train-

ing, a user issues a fixed number of hand signs and repeats them several times. The

system detects the di¤erent clusters that represent each class with no prior knowledge

of classes. The user then assigns a label to each cluster. During lookup, the user

repeats a hand sign, and the system compares it with the available clusters to identify

the best match.

The K-Means algorithm requires the user to specify the number of classes K,

where each class corresponds to a sign. It forms the cluster by minimizing the sum

of squared distances from all patterns in a cluster to the center of the cluster. The

pattern samples are constructed using the twenty-two sensors that pertain to the po-

sition of di¤erent joints that constitute a hand. An assumption of K-Means is that

clusters are hyperellipsoidal. Adaptive also determines the number of clusters based

on training data. It is more general than K-Means because it does not require a pri-

ori knowledge of K. It chooses the first cluster center arbitrarily. It assigns an input

training record to a cluster when the distance from the sample to the cluster is below

y� t where y is the distance threshold and t is a fraction between 0 and 1. Adaptive

does not create a new cluster when this distance is greater than t. Moreover, it does

not make a decision when the sample record falls in an intermediate region. Once the
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training ends, it assigns all patterns to the nearest class according to the minimum

distance rule, that is, Euclidean distance. It may leave some patterns unclassified

if their distances to all cluster centers are greater than t. With Adaptive, we used

y ¼ 0:8 and t ¼ 4:1. These values were chosen to guide Adaptive3 to construct ten

clusters. The results obtained demonstrate that both clustering algorithms are de-

pendent on the input training dataset, its size, and the order in which the data are

presented to the algorithm. Generally speaking, K-Means is the more sensitive, pro-

viding an accuracy that ranges between 55 and 83% (depending on the input data

and the order in which they are presented to the algorithm). Adaptive is less sensi-

tive, with its accuracy ranging between 66 and 77%. This is because Adaptive delays

the formation of clusters and does not assign a training set to one of them.

As a comparison, we used a classification algorithm, K Nearest Neighbor (termed

KNN), to compare with both K-Means and Adaptive clustering. For each data point

X , KNN constructs a hypersphere centered on X that is just big enough to include K

nearest neighbors (its similarity function is based on Euclidean distance). With

K ¼ 5, the results demonstrate that KNN provides the best accuracy compared with

both K-Means and Adaptive, providing 81 to 88% accuracy. With large training sets,

2000 samples (20 samples per sign per subject), the accuracy of KNN increases to

95%. However, the accuracy of KNN decreases as the value of K is increased from

1 to 15.

We are investigating hybrid techniques that combine clustering, classification, and

neural net techniques to query data with a higher accuracy. In particular, we are

studying a multilevel approach to data representation, with each abstract layer o¤er-

ing its own context to support query processing. A preliminary design of this system

is detailed in Eisenstein et al. (2003). This system employs multiple neural nets to de-

tect a vector of di¤erent hand postures that are present in a hand sign. This vector is

compared with prestored vectors of hand signs to detect a specific sign.

Conclusion and Direction of Future Research

This chapter has described research issues, some solutions, and some challenges of

real-time spatiotemporal databases to support human motor skills. It focused on

wearable haptic devices that produce spatiotemporal data for a motor skill, and ana-

lyzed techniques to facilitate data storage and retrieval. These spatiotemporal data

streams are almost always multidimensional, continuous, large in size, and noisy.

As indicated, we are investigating a multilayer framework that represents these data

at di¤erent levels of abstraction. The key characteristics of this framework are as

follows: First, in addition to raw data streaming bottom-up from sensors to layers

of higher abstraction, the framework streams context (whenever available) from the

higher layers down toward the sensors. The context is used to compensate for noise
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and improve accuracy. Second, intermediate representations produced by each layer

are maintained in temporary bu¤ers to support delayed decision making. This

enables a layer to delay detection of an uncertain pattern until further data are avail-

able from either sensors or context. Third, with those layers that can be incremen-

tally trained, the bu¤ers can be used to detect mistakes and retrain the layer. This

produces an adaptable framework that learns from its past mistakes and refines itself

over time. The metrics used to evaluate our framework are its accuracy in detecting

spatiotemporal features, robustness to noise, time and space complexity, extensibil-

ity, and adaptation to other devices. This in-progress activity is shaping our immedi-

ate research.
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Notes

1. With multiple streams being rendered simultaneously, it is important for the software to resynchronize
them periodically. Otherwise, over the course of a long display, the streams might drift apart. This phe-
nomenon was first observed with synchronized audio- and videoclips, where over a period of time the lips
of speakers were no longer synchronized with their spoken works.

2. The letter ‘‘J’’ was omitted because it is spatiotemporal. In Eisenstein et al. (2003) we focused only on
spatial data.

3. This is based on trial and error by manipulating y and t multiple times. It took us four trials to realize
ten clusters.
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III NEURON/SILICON INTERFACES





9 Long-Term Functional Contact between Nerve Cell Networks and
Microelectrode Arrays

Guenter W. Gross, Emese Dian, Edward G. Keefer, Alexandra Gramowski, and

Simone Stuewe

The interface between biological tissue and nonbiological materials such as structural

implants or microelectodes has shown itself to be a challenging scientific and engi-

neering problem. The concept of biocompatibility has grown beyond studies of tox-

icity to include long-term cell–surface interactions, with emphasis on maintenance of

normal cellular functions. These studies are di‰cult to perform exclusively in vivo

because it is not possible to monitor the cellular dynamics at implants as a function

of time under controlled chemical and physiological conditions. However, such con-

ditions can be obtained in vitro, where developing tissue responses can be monitored

with time-lapse photography, fluorescence, intracellular microelectrodes, and extra-

cellular multichannel recording, and where the physical and chemical environments

can be maintained and manipulated with great precision.

In the past two decades, methods have been developed that allow the growth of

primary cultures, derived from a variety of dissociated central nervous system

(CNS) tissues, on surfaces decorated with substrate-integrated microelectrodes.

These cultures form spontaneously active neuronal networks that allow the simulta-

neous monitoring of neuronal spike activity at sixty-four or more sites and provide a

concomitant optical monitoring of major features of network morphology over rela-

tively long periods of time. Such cultures have been maintained in an electrophysio-

logically active and pharmacologically responsive state for a maximum of 312 days

in vitro. It is the purpose of this chapter to acquaint the reader with some of the char-

acteristics of culture networks, describe the stability of the cell electrode coupling,

and summarize the remaining challenges in this research domain.

Generation of Networks on Microelectrode Arrays

In order to achieve strong and stable adhesion, long culture life, and reproducibility

(as measured with responses to pharmacological substances), we consider it desir-

able to generate mixed cultures that contain both neurons and glia in somewhat

predictable ratios. Therefore glia are considered an important component of these

cultures. Although the resulting flat arrangement of cells is often called a monolayer,



the culture is actually a three-dimensional structure of cells. Neuronal somata are

always situated on top of the glia layer (carpet); however, axonal processes can be

found both on top and underneath the carpet. The initial stages of organization

seem to be determined by a competition between cell-cell and cell-substrate adhesion.

A poorly prepared surface will favor cell-cell adhesion, resulting in cell aggregates on

the surface and floating cell clumps in the medium.

General Cell Culture Methods

Primary cultures are prepared according to the basic method established by Ransom

et al. (1977) from embryonic murine CNS tissues (BALB-c/ICR). Because of dif-

ferent developmental rates of CNS regions, spinal cord and brain tissues are har-

vested from embryonic mice at gestation days 14–15 and 16–18, respectively. The

tissues are dissociated enzymatically and mechanically, seeded at a density of 0.2–

0.5� 106 cells/cm2 onto microelectrode array (MEA) surfaces confined by a 2�
3-cm2 silicone gasket (figure 9.1; Gross and Kowalski, 1991; Gross, 1994). Cultures

are incubated at 37�C in a 10% CO2 atmosphere until ready for use, generally 3

weeks to 3 months after seeding. The culture medium is replenished twice a week

with minimum essential medium (MEM, Gibco, Carlsbad, Calif.) containing 10%

horse serum. Spontaneous activity starts at approximately 1 week in the form of ran-

dom spiking and stabilizes in terms of coordinated spike and burst patterns by 15

days in vitro. Such networks can remain spontaneously active and pharmacologically

responsive for more than 6 months (Gross, 1994). Although the general experimental

approaches are quite similar, di¤erent parent tissues may require slightly di¤erent

treatments or maintenance. For example, spinal cultures that contain both glycine

and g-aminobutyricacid (GABA) inhibitory circuits are maintained in MEM that is

devoid of glycine. Cortical cultures that do not have active glycine inhibition are

maintained in DMEM (Dulbecco’s minimum essential medium), which contains

3 mM glycine.

Using the methods described, cell cultures have been found to survive and remain

electrophysiologically active and pharmacologically responsive for many months

(table 9.1). Since the data in this table were not obtained from designed longevity

experiments, but resulted from routine procedures and culture usage, it is likely that

with special care, such primary cultures can survive for up to a year or longer. Pres-

ent feeding methods subject cultures to substantial osmotic shocks and metabolite

and pH fluctuations. If these stressors could be avoided, culture survival should ex-

ceed 6 months in vitro (Potter and DeMarse, 2001).

Surface Preparation and Cell-Surface Adhesion

The dynamics involved in the generation of stable adhesion may be described in

terms of three major events (Doherty and Walsh, 1992): (1) initial apposition (in
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6. The spinal cord pellet is triturated 
in 5 ml MEM + 10% horse serum/10% 
fetal bovine serum (MEM 10/10). 
Minced frontal cortex is triturated in 
5 ml DMEM + 5% horse serum/5% fetal 
bovine serum + B27 + 8 µg vitamin 
C/ml (DMEM 5/5). 

5. The D1SGH is 
aspirated and the tissue
is minced with two 
sterile #20 scalpel blades. 

4. Different regions of the CNS are removed 
(spinalcord, frontal cortex, auditory cortex, brain stem) 
and placed in D1SGH at room temperature.

1. Balb-C/ICR mice are mated for
12 hours, fourteen days before culturing  
(timed pregnancies).

2. For each batch of cultures, a 
single pregnant female mouse is 
anesthetized, sacrificed by 
cervical dislocation, and dissected 
under sterile conditions to remove
the uterus. 

3. Ten to fourteen embryos are 
delivered from the uterus under 
a dissecting microscope in sterile 
D1SGH.

Spinal
cord

Figure 9.1
Summary of major steps required to obtain primary cultures growing on microelectrode arrays (MEA).
The dissociated cells are seeded onto an adhesion island prepared in the center of the MEA. After 24 hr,
the entire area within the gasket (heavy black rectangle) is filled with medium. Thereafter, cultures are
maintained with biweekly feeding for up to 6 months in incubators under 10% CO2 to maintain pH. For
ease of handling and to minimize contamination, the MEAs are contained in covered petri dishes.

Table 9.1
Cell culture survival

Tissue Experiments
No. of
Experiments

Max. Active
Culture Age
(days)

Mean Age for
Experiments
(days)

Spinal cord 720 312 47

Cortex (whole) 58 137 57

Cortex (frontal) 117 94 48

Cortex (auditory) 209 189 58

Olfactory bulb 62 172 54
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which nonspecific adhesion plays a role), (2) di¤usional recruitment [assembly of cell

adhesion molecules (CAMs) in a transient cluster], and (3) stable adhesion (critical

mass of CAMs and coupling to cytoskeleton). In the nervous system, certain compo-

nents may alternate between stable and transient adhesion in order to achieve mor-

phological remodeling, which is an important component of plasticity. It has been

observed in Aplysia that cell adhesion molecules can be internalized via coated pits,

a process that is thought to induce instability in the synaptic structure and could be a

prerequisite for circuit restructuring (Mayford et al., 1992; Bailey et al., 1992). The

majority of the specific adhesion molecules found to date belong to one of four large

families: the immunoglobin superfamily, the cadherins, the integrins, and the selec-

tins (Pigott and Power, 1993). However, except for adhesion to laminin, glia-to-

substrate adhesion in a culture is largely nonspecific and appears dominated by ionic

and hydrogen bonding.

The primary materials we have used for insulation of the microelectrode arrays

are polysiloxane resins (dimethylpolysiloxane, Dow Corning DC 648) and a methyl-

silicone resin (PS233, Glassclad RC, United Chemical Technologies, Bristol, Pa.).

Both surfaces are decorated with methyl groups that render the surface hydrophobic

and unsuitable for cell adhesion. Surface activation can be achieved by a short (1-s)

exposure to a hot flame (butane) that oxidizes the methyl groups to hydroxyl moi-

eties and other radicals (Lucas et al., 1986; Harsch et al., 2000).

Using our methods, the chemical nature of the adhesion surface is quite complex

(figure 9.2). The dominant covalently attached surface adhesion molecule is covered

by poly-d-lysine (PDL, mol. wt. 70–120 kD, Boehringer, Mannheim, Germany).

After allowing the PDL to settle overnight, the solution is aspirated, dried, and the

surface covered with laminin on the day of seeding. When the suspension of dissoci-

ated cells is added, a large variety of dissolved soluble molecules (DSM) are also

added and settle onto the laminin and PDL adhesion structure. Since we always

Figure 9.2
Realistic view of neuronal adhesion to a substrate. The dominant surface moiety (SM) of the polysiloxane
is covered sequentially by poly-d-lysine (PDL) and laminin (LAM). Upon adding the suspension of disso-
ciated cells, dissolved soluble molecules (DSM) are added to the laminin and PDL adhesion layer. Disso-
ciated spherical glia and neurons form weak adhesion with this complex surface within 15–30 min, flatten,
and extend short processes by 1–2 hr. The system then stratifies, with neuronal somata situated on top of
the glial layer.
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culture in a serum-containing medium, serum albumin is most likely the dominant

soluble molecule. However, even if serum is avoided, it is impossible to dissociate

tissue without causing extensive cell death, resulting in cell debris and soluble mole-

cules that modify the surface. Spherical glia and neurons form weak adhesion with

this complex surface within 15–30 min and flatten and extend short processes by 1–

2 hr. The system then stratifies, with neurons situated on top of the glial layer.

Although the sequential addition of polylysine and laminin provides a good sur-

face for subsequent cell attachment, neurons prefer glia and are rarely seen outside

the glial domain. When glia retract locally, neuronal processes generally fasciculate,

lift o¤ the surface, and become bundles. If the glial carpet is not confluent during cul-

ture development, neurites usually follow glial structures. Somata are always found

on segments of the glial carpet (figure 9.3).

Strength of Adhesion

For a particular contact area, the greater the cell mass adhering to that area, the

more unstable the adhesion. Cell clumps and fascicles of neurites have relatively

large vertical dimensions and are therefore subject to greater lateral hydrodynamic

forces associated with even slight movement of culture dishes (Goslin et al., 1998).

This is often encountered during attempts to create ordered networks. Narrow

adhesion patterns limit the contact area and encourage process fasciculation. Fas-

cicles develop tension and often pull away from the substrate. The same is true of

cell aggregates that arise under most culture conditions but are again favored by

A B

Figure 9.3
Phase-contrast (A), Bodian-stained and (B) interference-contrast microscopy of peripheral areas of adhe-
sion islands produced by flame activation of polysiloxane and surface decoration with polylysine and lam-
inin. Despite the presence of these two adhesion proteins, neuronal somata and their neurites prefer
adhesion to the glia carpet and are rarely found on glia-free surfaces. A glial bridge in A demonstrates the
strong preference of neurites for a glial carpet. The white curve in B represents the edge of the adhesion
island. Bar: 25 mm.
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adhesion patterns that limit the overall adhesion area. To establish strong, stable ad-

hesion with present methods, there is little choice but to grow shallow, highly dis-

persed monolayers that maximize cell contact with the substrate.

The strength of adhesion varies greatly with procedure, tissue, and technique. It is

also di‰cult to measure quantitatively. However, a study of rapid acceleration injury

in dispersed monolayer cultures by Lucas and Wolf (1991) allows some estimation of

how strongly glia and neurons adhere to their respective substrates. Using a novel

application of a ballistic pendulum, culture flasks with most of the medium removed

were subjected to 220 g impacts every 3–5 s tangential to the adhesion surface. Cu-

mulative impact forces of 440 g were required to reach a threshold for neuronal

death, and forces of 1100 g were required to achieve 50% neuronal death. Glia were

not a¤ected at these impact levels.

Neuronal death thresholds were also moved higher by the addition of 100 mM

ketamine to the medium 1 day prior to the impact experiments. Lucas and Wolf sug-

gested that Ca2þ entry through N-methyl-d-aspartate (NMDA) channels weakened

the cytoskeleton, allowing an increasing degree of nuclear displacement during

impacts and leading to subsequent catastrophic membrane damage and necrotic

cell death. Of interest to the topic of this chapter are the observations that neurons

did not lose adhesion to glia, and that glia did not lose their adhesion to the sub-

strate as long as the glial carpet was confluent, the neurons were highly dispersed,

and fasciculation was at a minimum. These interesting results indicate that under ap-

propriate conditions, neuronal and glial adhesion in primary cultures is remarkably

stable unless compromised by pH fluctuations, low calcium, or rapid changes in

osmolarity of the medium. In addition, adhesion islands that do not have adequate

coverage with PDL or laminin at their periphery often show partial glial carpet re-

traction in areas where glia ventured beyond the PDL regions onto the flamed areas.

Elastic forces generated within the glial carpet then overcome the weak adhesion to

the flamed surface. Retraction usually stablilizes over the optimum PDL-laminin

surfaces.

Cellular Constituents of the Cultures

Despite substantial progress in immunocytochemistry, a quantitative cell identifica-

tion in mixed neuronal-glial cultures is still extremely di‰cult. Neuronal counts per

microscope field are greatly dependent on seeding densities and early adhesion con-

ditions that are di‰cult to determine accurately. An estimate of neurons in culture

as percentage of total cells depends as much on neuronal survival as on glial survival

and proliferation. Antibody staining depends on culture age, tissue source, and level

of di¤erentiation of cells. For these reasons we consider the Bodian stain (Bodian,

1936) or Loots-modified Bodian (Loots et al., 1979) the most convenient method

for neuron identification.
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Table 9.2 summarizes neuronal percentages based on neurofilament staining and

counts of all nuclei per microscope field for young cultures at 15 and 30 days in vitro.

All cultures were treated with 7.5 mM cytosine arabinoside (ara-C) at days 4–5 after

seeding. Although the percentage is influenced by variable glial proliferation, primar-

ily before treatment, the table clearly shows a substantial neuronal cell death (ap-

proximately 35%) between 15 and 30 days in vitro. It is di‰cult to estimate the

neuronal cell death during the first 2 weeks after seeding because molecular markers

are not expressed reliably (Whithers and Banker, 1998). However, Segal et al. (1998)

has estimated that 50% of the neurons obtained from postnatal rat brain survive the

Table 9.2
Percentage of neurons in spinal cultures at 2 and 4 weeks

Seeding Density
Culture
Date

% neurons
at 14–15
days in vitro N n

% neurons
at 29–30
days in vitro N n

5� 105 cells/ml 2-3-00 27.2 2 2 18.5 (7.1) 2 10

5� 105 cells/ml 8-3-00 28.2 (8.4) 2 8 18.1 (3.7) 1 4

2:5� 105 cells/ml 7-20-00 17.8 (8.2) 2 10 9.6 (9.8) 1 3

Notes: N, number of di¤erent cultures used; n, total number of fields counted. Neurons were stained with
neurofilament monoclonal antibodies (Sigma; catalog no. N-5139). Glia counts were determined from
counting nuclei under phase contrast. Percent values represent number of neurons over total nuclei
counted. Standard deviations are given in parentheses.
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Figure 9.4
Neuronal cell counts over recording matrix (1-mm2 area) from 54 Bodian-stained cultures, and from 9 and
14 cultures stained with neurofilament antibody at 15 and 30 days, respectively (o). Despite density fluctu-
ations, a stabilization of neuronal counts past 30 days (vertical line) is apparent. After 30 days, neuronal
loss is approximately 10% in 100 days or 3% per month. All Bodian-stained cultures were treated with 50
mM FdU. Cultures used for neurofilament staining were treated with 7.5 mM ara-C.
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first 30 days in vitro. Thereafter, the rate of neuronal cell death is greatly reduced.

Figure 9.4 shows data from 54 Bodian-stained cultures where all neurons situated in

a 1-mm2 area centered on the recording matrix were counted. The cell seeding con-

centration was 500k cells/ml. A linear regression for the scatter plot shows a neuron

loss of approximately 3% per month. The large open circles represent the neurofila-

ment data (table 9.2) normalized to 1-mm2 areas for 15 and 30 days in vitro and

show the cell death that occurs within the second 2-weeks in culture. These results

are in general accord with the more qualitative observations found in the literature.

Control of Glia in Culture

In the adult CNS, there can be found at least ten times as many glia cells as neurons

(Streit, 1995). Microglia represent 5–20% of the entire central nervous system glial

cell population, and there are at least as many microglia as there are neurons

(Kreutzberg, 1987; Perry and Gordon, 1988). Although these ratios are not the

same at the time embryonic tissue is isolated for culturing, glia represent a major

constituent of the dissociated tissue and continue to develop after seeding. Cultures

overgrown with glia provide poor optical data and were at one time thought to lose

more neurons than cultures treated with antimitotics. We have recorded from cul-

tures that were allowed to grow unrestrained (untreated) and cultures treated with

either cytosine arabinoside (Ara-C, 7.5 mM) or fluorodeoxyuridine (FdU, 50 mM)

(figure 9.5). The results show a di¤erence in electrode yield (number of electrodes

A B

Figure 9.5
Comparison of electrophysiological parameters for untreated cultures and cultures treated with ara-C and
FdU. (A) The percent of channels with activity greater than 2:1 (active channels) is the same for ara-C and
FdU, but is significantly lower for the untreated cultures. (B) Signal-to-noise ratios (S/N, both maximum
and mean) were not significantly di¤erent. (C) and (D) Global means of spike and burst rates (per minute)
also show a significant di¤erence (p < 0:05) in the native (normal medium) state among untreated and
treated cultures. The numbers on the columns in A and B indicate the number of di¤erent cultures in
each dataset. The numbers in C also represent the number of cultures and are the same for each set of
columns in C and D.
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with measurable activity expressed as percent of all functional electrodes) and burst

and spike rates (figure 9.6). The percent of channels with activity greater than 2:1 is

the same for ara-C and FdU, but is significantly lower for the untreated cultures.

Whether this relates to a reduced number of neurons, reduced axonal growth, or

increased glial insulation of recording craters is not known at this time. Signal-to-

noise ratios (SNRs, both maximum and mean) were not significantly di¤erent;

global means of spike and burst rates (per minute) also show a significant di¤erence

( p < 0:05, Student-t) in the native state (normal medium) among untreated and

treated cultures.

FdU inhibits thymidylate synthase, the enzyme that produces thymidine, thus pre-

venting DNA replication (Liu et al., 1999). In AraC, the arabinose ring is phos-

phorylated on the side opposite the phosphorylation site of the ribose ring. This

results in inhibition of DNA synthase. The characteristics of untreated and treated

cultures are compared in table 9.3.
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Figure 9.6
Comparison of spinal cord culture for (A) untreated and (B) ara-C-treated conditions at 7 days in vitro.
Untreated cultures have more microglia and reaveal a thicker glial carpet with a typical cobblestone e¤ect.
Treated cultures at 7 days have fewer microglia, reveal more processes, and have a thinner glial carpet. At
4 weeks in vitro, cultures such as the one shown in A will have most neurites covered by glia and reveal
only the tops of neurons as phase-bright bodies.
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Microelectrode Arrays and Cell-Electrode Coupling

The techniques used to fabricate and prepare microelectrode arrays have been

described elsewhere (Gross, 1979; Gross et al., 1985; Gross and Kowalski, 1991).

Two MEAs with di¤erent electrode patterns are now in routine use (figure 9.7).

Cell-electrode coupling is complex and depends on random crater crossing (or near

crossing) of axons (figure 9.8). Although signals are also obtained from somata,

more than 80% of the signals show a sharp negative-going wave of approximately

300 ms duration and are considered to be of axonal origin. The presence of glia and

their greatly di¤ering morphological arrangement relative to the recording sites

makes a determination of maximum recording distances as a function of process

size very di‰cult. So far we have not seen signal pickup by nearest-neighbor elec-

trodes (40 mm distant). However, axons will occasionally cross two di¤erent

recording sites, resulting in the pickup of the same temporal spike pattern on two

electrodes. Spike wave shapes still will di¤er because of di¤erent cell-electrode cou-

pling at each recording crater. The highest signal-to noise ratios are obtained when

axons are trapped in recording craters by glia cells (cf. figure 9.9).

Seeding of mammalian cell suspensions onto planar arrays has been done in our

laboratory since 1980 (Gross and Lucas, 1982). Two adhesion areas are formed on

the array by flaming through masks: a centrally located island (usually 3–4 mm in

diameter) and a separate 1� 2-cm region used for medium conditioning. Polylysine

and laminin are then added as described earlier. The adhesion areas receive, re-

spectively, 50-ml and 450-ml volumes from a cell suspension at a concentration of

Table 9.3
Characteristics of treated and untreated cultures

Untreated Cultures Treated Cultures (FdU or ara-C)

General architecture Multiple layers of glia intermixed
with neurons

Monolayer glial carpet with axons
above and below the carpet and
neuronal somata always on top of the
carpet

Recording Good Good

Adhesion strength Good, retraction at periphery
due to internal tension

Optimal

Cell-electrode coupling Good Good

Resistance to medium
movement and flow

Excellent, very robust Sensitive to high to medium flow rates

Microscopy Fair to poor, neurites and cell
bodies covered by glia

Excellent; well-defined cell bodies and
many neurites unobscured by glia

Neuronal survival Good Good

Microglia Many Few
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approximately 500k cells/ml. After 1 hr, 450 ml of medium are added between the

two regions so that the fluid volumes merge. After 24 hr, 1 ml of medium is added,

increasing the total volume confined by the gasket to 2 ml. This volume is main-

tained for the duration of the cultures life span in the incubator. It is essential to

monitor the osmolarity of the solutions and minimize osmotic shocks. Although neu-

rons osmoregulate, rapid osmolarity changes are detrimental. At present we use Dul-

becco’s minimum essential medium (Sigma Chemical Co., St. Louis, Mo.) with 5%

fetal bovine and 5% horse serum for the cortical tissues, and MEM with 10% fetal

bovine and 10% horse serum for the spinal cord cultures.

A B

Figure 9.7
MEAs in use. CNNS MMEP3 (A) and 4 (B) showing electrode arrangement in the recording area. The
bottom panels represent phase-contrast micrographs of the recording matrices of either MMEP version af-
ter fabrication and gold electroplating of recording craters. Under bright-field microscopy, the conductors
are invisible. MMEP3 has four rows separated by 200 mm, with 16 electrodes per row spaced 40 mm apart.
MMEP4 has an 8� 8 matrix of electrodes spaced at 150-mm intervals. Impedances: 3 MW and 1 MW (at
1 kHz) for each version, respectively.
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Figure 9.8
Neuronal network on a microelectrode array. Medium-density spinal culture on MEA, 98 days after seed-
ing. Conductors in the recording matrix are 10 mm wide; lateral spacing between electrodes (center to cen-
ter) is 40 mm.

 axons under 
 glial carpet

Figure 9.9
Trapping of neurites in recording craters under glia provides optimal recording conditions. In treated cul-
tures, glia do not overgrow neuronal somata, but do grow over neurites in the first few days of network
development on MEAs. ITO, indium tin oxide.
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Extracellular Recording: Procedures and Data Analysis

MEAs are placed into either sterililized (via autoclaving) constant-bath recording

chambers or closed perfusion chambers (Gross and Schwalm, 1994; Gross, 1994)

and maintained at 37�C on a microscope stage. For the open-chamber configuration,

the pH is maintained at 7.4 with a continuous stream of filtered, humidified, 10%

CO2 in air. Neuronal activity is recorded with a two-stage, 64-channel amplifier sys-

tem (Plexon Inc., Dallas, Texas), and digitized simultaneously via a Dell 410 work-

station (spike analysis) and a Masscomp 5700 computer (burst analysis). Total

system gain is normally 10 to 12K. Spike identification and separation is accom-

plished with a template-matching algorithm (Plexon, Inc.) in real time to provide

single-unit spike rate data. In addition, whole-channel (multiple units/channel) data

are analyzed o¿ine using custom programs for burst recognition and analysis. Burst

patterns derived from spike integration (t ¼ 200 ms) provide a high signal-to-noise

feature extraction that reveals the major modes of neuronal network behavior

(Gross, 1994). Using this approach, burst rate, duration, and interburst interval

can be quantified from individual recording sites (figure 9.10). Action potentials are

B CA

ED

Figure 9.10
Examples of data formats. (A) Complex 4-channel, multiunit activity as seen on oscilloscopes. (B) and (C)
Whole-channel integration showing the derivation of the activity variables’ burst duration (bd), burst
period (bp), and integrated burst amplitude (ba). (D) Spike raster display showing multiple simultaneous
spike and burst patterns. (E) Digital simulation of Resistor-capacitor filter (RC) integration.
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stored as time stamps, using the threshold crossing of the negative-going wave. Time

stamp data are usually processed in 60-s bins, a convenient measure that allows the

plotting of activity variables to show the evolution of network activity patterns over

periods of many hours.

Figure 9.11 shows nineteen action potential (AP) wave shapes recorded in a closed

flow chamber on day 1 and day 7 after chamber assembly. The flow rate of the

medium was 20 ml/min and the culture was not subjected to any pharmacological

manipulation. The medium was recirculated into a 15-ml medium supply flask (a to-

tally closed system). It can be seen that the AP shapes are not constant, but undergo

slow changes. We assume that this stems from fluctuations in cell-electrode coupling,

which is influenced by movement or swelling and shrinking of glial components.

Figure 9.12 demonstrates the stability of basic recording parameters, electrode

yield, and signal-to-noise ratios as a function of age. The results are from a recent

(1994–2000) database and confirm earlier assertions (Gross, 1994) that there is no

major deterioration in these characteristics over 5 months (probably up to 9 months).

The scatter of the data, however, is substantial and reflects culture problems, minor

experimentation with seeding densities, and mistakes during chamber assembly that

lead to cell stress. Most important, sudden osmotic stresses through rapid additions

of medium at di¤erent osmolarities are common mistakes made by beginning ex-

perimenters in this field. The electrophysiological consequences of sudden osmotic

shocks should not be underestimated. Optimization of recording conditions (in terms

of number of electrodes showing activity) is also reached by the fourth week and sta-

bilizes thereafter (figure 9.13).

Data are observed in both analog and digital formats (figure 9.14). Two to four

oscilloscopes are usually employed to monitor the most interesting or most represen-

tative channels. In parallel, up to thirty-two channels can be digitized via a Plexon

Multiple-Neuron Acquisition Processor system. A real-time spike separation feature

allows 4 units to be discriminated and separated (when SNRs are large) so that a

maximum of 128 units can be processed simultaneously. A data flow summary is

provided in figure 9.14.

The main data display format available at present is shown in figure 9.15. This

massive amount of information can be presented in real time and provides an over-

view of major pattern changes or loss of channels during the course of the experi-

ment. In addition, gross changes in burst durations, phase delays for burst onsets,

and some fine structure for spiking within bursts can be observed. However, a simple

display of all channels obviously is not the answer to the data-processing problems.

It is necessary to select key activity variables and process them quantitatively.

As a first step, a dual graph of spike and burst rates per minute should be available

(preferably in real time) to follow the evolution of activity with time during all
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Figure 9.11
Spike signals at individual electrodes over a 7-day period. Each trace represents the mean of forty action
potentials recorded on day 1 (white trace) and day 7 (black). Although changes in spike shape occur, they
are slow and attributed to gradual rearrangements of glia and/or active neuronal components near the
recording site. Both increases and decreases in spike amplitudes occur as a result of this restructuring.
Age of culture: 33 days in vitro.
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Figure 9.12
Basic activity parameters as a function of age. (A) Percent of functional electrodes with measurable signals
(1.5:1 or greater). (B) Signal-to noise ratios (SNRs) as a function of culture age. Neither the electrode yield
nor the maximum mean SNRs show a trend of decreasing with age. The mean SNRs include values of
1.5:1.
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experimental manipulations. We have found bins of 1 min to be a good compromise

between plotting too much detail and losing real-time contact with the network.

Minute means from all channels with standard deviations allow a minute-to-minute

evaluation of network activity and channel variability and an immediate comparison

with past network activity. In these bins, activity variables such as spike and burst

production remain numbers, whereas other variables such as burst duration, period,

and integrated amplitude are averaged and form ‘‘minute means.’’

More quantitative steps can be taken by extracting coe‰cients of variation (CV)

from the minute values for each activity variable. Two types of CVs have been

used (Keefer et al., 2001): one that describes the degree of synchronization among

channels (termed CVnetwork), and one that represents the degree of temporal fluctua-

tion of the burst pattern (termed CVtime). The values for CVnetwork are obtained by

averaging the binned values (60 s) across all channels, followed by calculations of a

new average across time for a particular experimental episode. These for CVtime are

obtained from activity variables per minute that are averaged for each channel across

time (i.e., often the stationary activity domain of an experimental episode), followed

by an averaging of the individual channel CVs obtained across all channels (figure

9.16). Hence, if a population is synchronized but the activity varies with time, a low

CVnetwork and high CVtime are obtained. Conversely, a nonsynchronized network

with several simultaneous regular (periodic) patterns yields a high CVnetwork with a
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Figure 9.13
Age distribution of results from experiments when more than 50% of the electrodes showed activity. Elec-
trode yield appears to optimize by 4 weeks and become stable over time.
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low CVtime. In the latter case, each channel could be periodic, but with di¤erent

periods and patterns on each channel or subsets of channels.

Although the calculation of CVs is an e¤ective tool for quantifying the states of

oscillatory networks and burst coordination, which are always seen as steady states

during disinhibition (i.e., the blocking of inhibitory synapses), this approach is less

e¤ective for describing transient network states. In fact, the recognition and quan-

tification of transient spatiotemporal patterns that are continually generated by

networks in vitro present a formidable challenge. Here, extensive application of non-

linear dynamics and sophisticated schemes of pattern recognition will be necessary

before substantial progress can be made in dealing with subtle pattern changes in

nonlinear and nonstationary systems. However, changes induced by toxins and other

neuroactive compounds are generally robust and relatively large in magnitude and

therefore quantifiable. Such compounds can be detected rapidly and produce reliable

responses. Thus, pharmacological investigations and applications are realistic with

present techniques and methods.

spike train 
statistics

Plexon Inc. MNAP

Analog Processing

ANALOG MULTICHANNEL RECORDING

Digital Processing

Time Stamps Waveforms

OscilloscopesChart Recorder

whole channel 
RC integration

burst train 
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Channel Activity Variables:
burst rate (bpm)
spike rate (spm)
mean burst duration per min
mean burst period per min
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           Network Activity Variables
Cross-channel means per min
Episode means and coefficients of variation
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  spike discrimination

14-channel 
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Figure 9.14
Flow chart of digital and analog signal-processing steps. The 64-channel (maximum) analog data are pro-
cessed digitally via the Plexon Inc. MNAP/NEX software, which allows a multitude of conventional data
manipulations. Spike profiles on single channels are usually discriminated, but can also be lumped as
whole-channel responses for displays of total spike production and major burst patterns. Parallel analog
processing involved display on an 8- or 12-channel chart recorder after RC integration (integration con-
stant approximately 700 ms). Storage on tape is used occasionally to back up the digital processing.

194 Guenter W. Gross and colleagues



Figure 9.15
Raster display of all spikes from 83 discriminated active units generated by 32 digital signal processors.
The width of the panel represents 30 s. Note the coordinated burst patterns on most of the channels and
variable phase delays for burst onsets. Spinal cord culture, 48 days in vitro, native activity.



Applications: Toxicology, Drug Development, and Biosensors

Neuronal cell cultures in vitro are isolated systems for which the culture medium

becomes the extracellular space. Consequently, their chemical or pharmacological

environment can be controlled precisely and kept constant for long periods of time.

Results achieved so far indicate that the networks formed by primary cultures are

pharmacologically histiotypic, that is, they mimic the pharmacological responses of

the parent tissue (Gross, 1994; Gramowski et al., 2000; Morefield et al., 2000). This

behavior of cell cultures allows the development of unique platforms for systematic

investigations of many neurobiological and pharmacological mechanisms. In light

of the now-demonstrated longevity of neurons in culture (6–9 months, Gross, 1994;

Kamioka et al., 1996), such test systems also will allow chronic studies and investiga-

tions of developmental influences. Extensive preliminary data suggest this concept is

viable and that responses will be obtained from all substances able to stop or alter

nervous system activity, as well as from general metabolic toxins.

EXPERIMENTAL  EPISODE

minute 1 minute 2 minute 3 . . . . . min n
Ch 1 bv 11 bv 12 bv 13                      bv 1n                CV1

Ch 2 bv 21 bv 22 bv 23                     bv 2n ................................... CV2

Ch 3 bv 31 bv 32 bv 33                     bv 3n .................................... CV3

.

.
Ch N bv N1 bv N2 bv N3                   bv Nn .....................................CVN

CV time

CV networkΣ cvmin/n
 1   

n

Σ CVch/N
 1
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Σ bv1/N   
           minute means and CV's for all channels
    cv1  ........  cv2  .........cv3 .................... cvn

1
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Σ bv1j/n
1j

n

episode means and CV's

Figure 9.16
Determination of temporal regularity and network synchronization using coe‰cients of variation (CV). All
calculations are based on 1-min bins where a specific burst variable (bv) is either logged as a number for
burst rate or averaged for burst duration and interburst interval. These values are used to obtain episode
means with CVs for experimental episodes (left/right), or minute means for each minute of the experimen-
tal episode (top to bottom). The episode CVs for each channel represent a measure of temporal pattern
fluctuation for that channel. Averaged across the network, these CVs reflect pattern regularity even if sev-
eral patterns exist and even if they are not synchronized. Conversely, the minute CVs represent channel
coordination. Averaged across the experimental episode, they reflect the degree of synchronization even if
the pattern fluctuates in time. For simplicity, they have been designated CVtime and CVnetwork, respectively
(from Keefer et al., 2001a).
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Figure 9.17 shows a network response to the convulsant trimethylolpropane phos-

phate (TMPP). Such pattern regularization is typical for compounds that generate

epilepsy in mammals and represents a classic disinhibitory response. The blocking

of inhibitory synapses such as GABA synapses in frontal cortex tissue or GABA

and/or glycine synapses in spinal cord tissue always results in pattern regularization

and highly coordinated bursting. Although an increase in spike production is fre-

quently associated with such a response, this is not the salient feature. Excitatory

compounds such as glutamate or NMDA increase spike production but never gener-

ate such regular burst patterns. Hence any unknown compound that generates the

response shown in figure 9.17 can be classified with high reliability as a potential

convulsant.

In contrast to the excitation and pattern regularization shown in figure 9.17, many

compounds terminate activity reversibly or irreversibly. The manner in which activ-

ity terminates is substance specific (Gross et al., 1997a,b) and may be used to identify

or at least classify a substance. An example of activity termination is shown in

figure 9.18. While testing a set of novel acetylcholinesterase (AChE) blockers (Keefer

et al., 2001b) that were expected to increase activity in cultures derived from frontal

cortex tissue, two of seven substances inhibited activity irreversibly. Such unex-

pected responses reflect secondary binding that is di‰cult to predict biochemically.

Figure 9.17
Burst pattern changes in response to 100 mM trimethylolpropane phosphate (TMPP) shown with inte-
grated spike data as displayed on a chart recorder. (A) Native activity consists of bursts of short and long
durations, with irregular burst amplitudes. Within 2 min after application of TMPP to the culture (arrow),
the activity transitions to a much more regular and synchronized burst pattern. (B) 20 min after TMPP
application, the network has reached a quasi-periodic oscillatory state. The bar represents 1 min. The am-
plitude of the traces is proportional to spike frequencies within bursts.
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Spontaneously active networks, as pharmacologically functional systems that contain

the synaptic mechanisms present in the parent tissue, reveal the e¤ects of all binding

sites targeted by the new compound and are therefore predictors of physiological

responses.

Figure 9.18 displays the mean spike ratesG SD from twenty-eight discriminated

units (A) and mean burst rates from a subset of twelve channels (B) as a function of

time, and shows the termination of activity after application of 350 mM of a choline

compound with a six-carbon hexylene spacer (Keefer et al., 2000). Three complete

changes of medium at 320–325 min did not reactivate the network. After 2 hr of ob-

servation, the loss of spontaneous activity was considered ‘‘irreversible.’’ The insert

shows the dose-response curves for the inhibition of spiking and bursting activity,

with median e¤ective concentration (EC50) values of 260 and 340 mM, respectively.

It is also interesting to note that the standard deviations remain constant for spike

production, but increase substantially for network bursting activity. This reflects a

loss of coordination among channels that starts right after the application of 10 mM

at 55 min.
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Figure 9.18
Irreversible inhibition of network activity in response to acctylcholinesterase blocker (inhibitor 5). (A)
MeanG SD of 28 discriminated units. Titration to 200 mM produces very little e¤ect on spike rates; raising
the concentration to 350 mM causes a rapid reduction in spiking. All spike activity is abolished within ap-
proximately 30 min. (B) The e¤ect on spike rates is paralleled by inhibition of burst rate (meanG SD of 12
channels). However, the standard deviation of the burst rates begins to increase at 50 mM, indicating a
lessened cross-channel coordination. The inhibition was not reversible by three complete changes of me-
dium at 320 min (from Keefer et al., 2001b).
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Network responses are highly specific and not all compounds produce altera-

tions in the spontaneous activity. This is illustrated in figure 9.19, which summarizes

responses to nerve gas hydrolysis products. Isopropyl methylphosphonate (IMP) and

methylphosphonate (MP) are metabolites of sarin; pinacolyl methylphosphonate

(PMP) is a breakdown product of soman. Panel A shows that IMP decreased spike

production by an average of 37% (n ¼ 3 cultures) at 5 mM, without significantly

altering burst rates. A 72-hr chronic exposure to 6 mM IMP (arrow) produced

no visible cytotoxicity or significant loss of network activity. Test responses to the

NMDA receptor antagonist APV and to 20 mM bicuculline (BIC) were normal.

However, a lack of recovery of higher spike rates after a medium change at 0 is un-

explained. Panel B reveals that increasing concentrations of MP up to 5 mM did

not change bursting or spiking during acute exposures. In contrast, PMP (panel C)

inhibited both bursting and spiking at concentrations above 2 mM. The loss of

activity was not associated with observable cytotoxicity, and was reversible by

washing.

Such results, together with the monitoring of cells through the light microscope,

imply that none of these nerve gas metabolites are toxic, but some are neuroactive

at high concentrations. These results were already deduced from animal experiments

(Brown and Brix, 1998; Munro et al., 1999), and the compounds discussed here are

listed as irritants in chemical catalogs. We have used them to illustrate the reliability

of the physiological predictions; networks neither exaggerate nor dismiss the e¤ects

of toxic or neuroactive chemicals. They respond to concentrations at which animals

also show e¤ects. It is interesting to speculate if better methods of pattern recognition

would provide early warning at lower concentrations. This is entirely possible, but

has not yet been demonstrated.

Research in the past 3 years has also demonstrated that with the proper life sup-

port, it is feasible to use networks as tissue-based biosensors. In this role, the net-

works are not artificial ‘‘olfactory systems,’’ but rather ‘‘function deficit detectors’’

that respond reliably to all compounds capable of interfering with the normal neuro-

nal function of an organism. Such interference can occur on several levels: metabolic,

synaptic and nonsynaptic channels, and cytotoxic. The network mirrors the physi-

ological changes that occur in intact nervous systems. Although a termination of

activity is the easiest change to detect, epileptiform states (as demonstrated in figure

9.17) and even responses to mind-altering drugs, such as the cannabinoid mimetics

anandamide and methanandamide (Morefield at al., 2000), can be detected and clas-

sified. Networks are not supersensitive; responses occur at concentrations similar to

those that cause e¤ects in animals (Gramowski et al., 2000; Morefield et al., 2000;

Keefer et al., 2001a). As a consequence, they do not generate false positives because

of high sensitivities, but report the presence of compounds at concentrations that will

a¤ect the nervous systems of mammals.
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Figure 9.19
Di¤erential e¤ects of nerve gas hydrolysis products. IMP (isopropyl methylphosphonate) and MP (methyl-
phosphonate) are metabolites of sarin; PMP (pinacolyl methylphosphonate) is a breakdown product of
soman. (A) IMP decreased spike production by an average of 37% (n ¼ 3) at 5 mM, without significantly
altering burst rates. A 72-hr constant exposure to 6 mM IMP (arrow) produced no visible cytotoxicity or
significant loss of network activity. The culture still responded normally to test applications of D-2-amino-
5-phosphonovaleric acid (APV, stopped the activity) and bicuculline (BIC, return to a bursting state.) (B)
5-mM MP did not change either bursting or spiking during acute exposures. (C) PMP inhibited both burst-
ing and spiking at concentrations above 2 mM. The loss of activity was not associated with observable
cytotoxicity and was reversible by washing.
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Summary

Spontaneously active networks growing on microelectrode arrays are e¤ective ‘‘test-

beds’’ for a large number of investigations. Cell-surface adhesion and cell-electrode

coupling, tissue survival, and the dynamics of cellular interactions with nonbiological

materials and even with special geometries can all be studied quantitatively in vitro.

Local stimulation through recording electrodes is possible, with responses often

exciting the entire network (Gross et al., 1993; Gross, 1994). Although the three-

dimensional environment of tissue in vivo is more di‰cult to mimic in culture, it is

important to note that even optically observable ‘‘monolayers’’ are shallow three-

dimensional constructs. Also, all implants, regardless of their structural complexity,

will have surfaces to which tissue must adhere. Finally, three-dimensional growth of

tissue in culture is being investigated (O’Connor et al., 2000) with confocal micros-

copy so that cellular dynamics in thick tissue layers can also be studied.

At present, it appears that data processing and display in a multichannel envi-

ronment may be the most complex and most challenging of all remaining problems

in implanted prostheses. Although substantial progress has already been achieved

with implanted electrodes in behaving animals (Sasaki et al., 1989; Wilson and Mc-

Naughton, 1993; Nicolelis et al., 1998; Chapin, 1998; Hampson and Deadwyler,

1998), cultured networks generally provide a larger number of channels over a longer

period of time. Also, they are well suited for investigating the internal dynamics of

small networks because of the high electrode density that can be achieved without

causing tissue disruption. This allows investigation of structure and function relation-

ships, pattern generation and processing, fault tolerance, and even storage mecha-

nisms. Networks in culture provide experimentally simple and highly economical

test-beds for exploring the frontiers of multichannel data processing.

As isolated systems, networks in culture allow quantitative, repeated pharmaco-

logical manipulations over long periods of time. In this domain, response repeat-

ability is remarkable because the networks react to molecules introduced into the

medium, which simultaneously a¤ects all target receptors or other binding sites. Indi-

cations of tissue specificity (Morefield et al., 2000) complicate applications, but also

reflect a welcome retention of parent tissue characteristics in culture. These network

properties immediately suggest the development of massively parallel systems for

systematic screening and evaluation of compounds for toxicity and neuroactive and

pharmacological potential. Finally, as a consequence of their pharmacological sen-

sitivity and reliable neurophysiological responses, networks can be used to provide

early warning of the presence of chemical toxicants. The networks represent broad-

band sensors that react to known and unknown compounds that have the capability

of altering the performance of nervous system functions.
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10 Building Minimalistic Hybrid Neuroelectric Devices

James J. Hickman

The objective of our research e¤orts is to learn how to handle and prepare cells to

serve as components for microdevices and engineered tissues, and then to demon-

strate the practicality of this approach by manipulating them to build hybrid systems

and engineer functional tissues. We are developing test-beds based on the signals gen-

erated between two neurons that can react to changes in the neuronal circuit’s envi-

ronment. Since it will be necessary to predict the outputs of the neuronal circuits in

the test-beds, which will depend on geometry, synapse placement, and cell pheno-

type(s), we have modeled various circuit configurations as well. The ability to control

the surface composition of an in vitro system, as well as other variables, such as

growth media and cell preparation, plays an important role in creating a defined sys-

tem for fabricating a hybrid device and in vitro evaluation of surface modifications

and their e¤ect on cellular materials.

We have reproducibly created patterned neuronal circuits and shown that we can

successfully measure the signals from these circuits in our defined in vitro culture sys-

tem (Das et al., 2003; Ravenscroft et al., 1998). We have also modeled modes of cell-

cell communication that could be monitored and investigated the electrical properties

of the neuronal circuits in contact with the designed biological interfaces in these sys-

tems (Peterson, 2001; Jung et al., 1998; Ravenscroft et al., 1998). One application of

this concept is for drug development or new biomedical diagnostics. These function-

based test-beds could also detect drug e‰cacy or toxicity through e¤ects ranging

from the obvious (cell death) to those that are more subtle (impairment of function).

This wide range of responses can be measured because cells and the networks they

form are exceedingly sensitive to certain changes in their environment.

We have developed surface chemistry that can be used to create templates that en-

able the patterning of discrete cells and networks of cells in culture (Stenger et al.,

1998; Ravenscroft et al., 1998); the networks can then be aligned with transducers.

This advance allows the construction of a test-bed that measures changes in the po-

tential of cells and/or their processes. Thus, any changes in the electrical signals upon

exposure to a compound could be detected. Other types of sensors currently in use or



under development include ion-sensitive electrodes (Solsky, 1990; Uhlig et al., 1997)

sensors based on antibody binding (Aizawa, 1991; Bernard and Bosshard, 1995),

living cells (Parce et al., 1989; Leech and Rechnitz, 1993), and other types (Hughes

et al., Edelman and Wang, 1991). Most assays rely on the fact that the agonist is

known and are targeted for a specific compound. Preliminary work has been

reported on measuring signals from neurons using solid-state devices (Regher et al.,

1989; Fromherz et al., 1991; Jung et al., 1998; O¤enhausser and Knoll, 2001; Gross

et al., 1997). However, sensors that can determine a compound’s e‰cacy or toxicity

that a¤ects motor function, cognitive function, or other higher-order processes are

primitive or do not exist. At present, the only available ‘‘test-beds’’ based on cogni-

tive or motor function are living creatures. It would be beneficial to develop sensors

to function as precursors to these epidemiological studies.

In vitro cell cultures of embryonic rat tissue have been used to study rudimentary

cellular organization and communication. Neurons in culture are generally disorga-

nized in the sense that the connections between the cells are not controllable. Histor-

ically, this has made it di‰cult to relate specific signals to specific functions, as well

as to make the system reproducible. If one could control the connections between liv-

ing neurons, new paradigms in in vitro cellular networks could be realized. A major

benefit would come from sorting out all of these complex connections and arrange-

ments and making them reproducible. We are using a reductionist approach to in

vitro cellular networks by using the minimum number of neurons to construct simple

reproducible circuits and connecting them to silicon devices. These new hybrid neu-

roelectric devices can then be connected in a multitude of configurations, much like

the components and devices that comprise computational devices.

The most di‰cult tasks in developing the fabrication protocol are controlling the

placement of neurons, the processes, and the number and placement of synapses.

Building a network composed of neurons into the preferred synaptic configuration

requires high-resolution surface patterns that guide the geometry and outgrowth of

the elements of the circuit. The use of hippocampal neurons is of particular interest

for studies of cell-cell communication because the hippocampus is thought to play a

central role in learning and memory function. It is known that the ability of neuronal

processes to extend to their targets is dependent on adhesion to underlying substrata,

which in vivo appears to be spatially and temporally patterned. The ability to culture

mammalian neurons on patterned substrata would allow the investigation, and pos-

sible control, of the factors involved in the formation of basic neuronal circuits.

The use of surface modification techniques allows the interface between biological

and nonbiological materials to be tailored independently of the bulk composition of

the nonbiological material. We are using SAMs to control the intrinsic and geomet-

ric properties of surfaces in contact with biological systems. A self-assembled mono-

layer (SAM) is a modifying layer composed of organic molecules, one molecule
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thick, that can spontaneously form strong interactions or covalent bonds with reac-

tive groups on an exposed surface. The utilization of SAMs for modifying surfaces

has been demonstrated on silicon dioxide (Stenger et al., 1992), biodegradable poly-

mers (Hickman et al., 1993), and other polymers such as Teflon (Vargo et al., 1992).

A large variety of functional groups or a combination of functional groups can be

located on the terminal opposite the attachment point of a SAM, and the chemical

composition can be manipulated to systematically vary the surface free energy (Sten-

ger et al., 1992). We have used the geometric control of the surface composition

a¤orded by SAMs to create in vitro circuits of mammalian neurons (Stenger et al.,

1998).

Patterning of surfaces to control the growth of neurons and other cells in culture

has been achieved by numerous investigators (Stenger et al., 1992; Vargo et al.,

1992; Cooper et al., 1976; Hammarback et al., 1985; Kleinfeld et al., 1988; Corey et

al., 1991; Singhvi et al., 1994; St. John et al., 1997; Stenger et al., 1998; Ravenscroft

et al., 1998) and most important, several photolithographic methods utilizing SAMs

have emerged that allow high-resolution patterning for biological applications (Sten-

ger et al., 1992; Kleinfeld et al., 1988; Corey et al., 1991; Singhvi et al., 1994; St.

John et al., 1997; Stenger et al., 1998; Ravenscroft et al., 1998). We have demon-

strated functional control of these systems by recording the electrophysiological sig-

nals produced by neurons on the patterned SAMs in response to stimuli, successfully

modeled the neuronal networks, and demonstrated geometric control of synaptic

development (Ravenscroft et al., 1998). In addition, geometric only cues have been

used to define axonal-dendrite polarity in developing hippocampal neurons, which is

a key step in creating engineered neuronal networks (Stenger et al., 1998). The sur-

faces have been characterized by X-ray photoelectron spectroscopy (XPS), imaging

XPS, and contact-angle measurements.

A key requirement for fabricating a test-bed from rudimentary circuits is that the

neuronal cultures be located in a defined environment. By this we mean that in order

to reproducibly determine how factors and modifications a¤ect a system, it is impor-

tant to have as many conditions defined as possible. It is also necessary to be able to

assay the e¤ect of unknown samples that may contain toxic compounds. The use of

serum-free media in combination with the SAM surface modifications allows system-

atic investigation of optimal growth conditions for di¤erent neurons or combinations

of neurons. In previous work, we studied the e¤ect of maintaining hippocampal neu-

rons in medium containing serum and in serum-free medium, while varying the na-

ture of the culture plate surface, dissociation methods, and other factors. The results

reported in Scha¤ner et al. (1995) established a good in vitro model for hippocampal

culture.

We have found that by analyzing the surface through all phases of modification,

it is possible to establish a cell culture system in which the surface composition
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and geometry, growth medium, and cell preparation method are reproducible and

defined. The ability to define these characteristics enables the fabrication and study

of neuronal circuits in a controlled environment. In conjunction with our continuing

patterning work, we have determined some of the possible modes of communication

between cells and constructed models of simple logic circuits to test our hypothesis

that sensors can be based on cell-cell communication.

Patterning Neuronal Circuits

The complete experimental details for the neuronal patterning and electrophysiology

can be found in Ravenscroft et al. (1998). The metal microelectrode recording details

can be found in Jung et al. (1998). The modeling parameters are described here for

clarity.

An analysis of the surface both before and after culture, as well as X-ray photo-

electron spectroscopy imaging of the patterns as the laser conditions were varied,

was crucial to understanding the e¤ect of di¤erent combinations of fabrication

variables. Optimized high-resolution circuit patterns successfully guided the neuronal

adhesion and neurite outgrowth of E18–19 hippocampal neurons in a defined serum-

free medium as shown in figure 10.1A (Ravenscroft et al., 1998).

(a) (b)

Pattern Cells obeying pattern region

Neuron 2

Neuron 1

Neuron 2

Neuron 1

spontaneous

evoked

spontaneous
evoked

250 ms

250 ms

250 pA
250 pA

Figure 10.1
(a) Micrograph of circuit-patterned day 2 in vitro hippocampal neurons plated onto DETA/15F modified
glass coverslips. (b) Electrophysiology of day 12 in vitro hippocampal neurons displaying both spontane-
ous and evoked activity on a DETA/15F line-space patterned surface. The top two traces are the control,
and the bottom two are from the circuit pattern. Neuron 1, stimulated presynaptic neuron. Neuron 2,
postsynaptic neuron.
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We have successfully recorded from the patterned neurons using dual patch-clamp

electrophysiology (figure 10.1B). With the dual patch-clamp technique, we monitored

the emergence of spontaneous (single-cell) and evoked (two-cell) synaptic activity

for both the patterned and unpatterned (control) neuronal cultures. The electrophys-

iology trace from neuron 2 represents the postsynaptic neuron, and neuron 1 the

electrophysiology trace for the stimulated presynaptic neuron. No evoked electro-

physiology data were obtained for day 8 hippocampal neurons on a circuit-patterned

surface.

These results suggest that synapses form on the pattern at di¤erent rates than in

random undissociated cultures, which suggests a geometry-mediated development of

synaptic events. This indicates that we may be able to control synaptic development

by controlling the cell growth parameters and surface geometry. This makes sense

when you consider data that show most neurons remain ‘‘plastic’’ or are capable of

synaptic change during their lifetime.

Another important issue is how to orient the neurons once they are placed in the

correct position. Much like an electronic transistor, not only the construction but the

orientation of the device is critical for function. Banker and Cowan (1977) showed

that the longest neurite from a developing embryonic neuron would become the

axon. Our hypothesis was that if we gave the neurites many paths, but put ‘‘speed

bumps’’ on all but one path, this would be su‰cient to make the unimpeded neurite

the axon. Figure 10.2 (left to right) shows the mask pattern used; a micrograph of

a neuron plated on this pattern using DETA as the permissive surface and 13F

as the repulsive surface; immunocytochemical labeling with anti-MAP-5 primary

Figure 10.2
Directional axonal outgrowth by geometric manipulation of a surface as well as immunocytochemical
identification of the axon and dendrites.
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antibody for axonal identification; and labeling with anti-MAP-2 for dendrites and

the cell body. This experiment indicates that polarity can also be achieved by geo-

metric means alone (Stenger et al., 1998).

The accurate spatial placement of a neuronal cell network allows a wide spectrum

of circuit and fabrication technology to be applied to the detection of signals trans-

mitted within the network. Preliminary work by Fromherz et al. (1991) demonstrated

that field-e¤ect transistors (FETs) can detect changes in membrane potential from

cell bodies. We have also developed an electronic interface to a microelectrode chip

and have successfully tested it by recording electrical activity from single unpatterned

hippocampal neurons using metal microelectrodes (Jung et al., 1998). The neurons

were grown on a silicon nitride (Si3N4)-coated microelectrode, and the signals were

recorded from gold microelectrodes in serum-free media. This demonstrates that we

can culture the cells in a defined media on the Si3N4 surface and record the signals,

and that the electronic interface can process and display the electrophysiological sig-

nals. The results demonstrate that the signals produced by the mammalian cells are

strong enough to be picked up by the electrodes, and the signal-to-noise ratio can

approach that achieved with patch-clamp electrophysiology. We have also shown

that the cells’ activity can be attenuated by the introduction of a toxin to the in vitro

environment, which is experimental proof of concept for the sensor (data not shown).

This result demonstrates the feasibility of using the sensor to evaluate drug candi-

dates if we can establish the modes of cell-cell communication that could be moni-

tored as an indicator of cell function.

Modeling Cell-Cell Communication

We believe that there will be di¤erent modes of operation of the system based on the

number and location of synapses, which will permit the fabrication of neuroelectric

devices with distinct input-output relationships. To address this question, preliminary

simulations of simple two-neuron circuits were made using the neural modeling pro-

gram GENESIS (Wilson et al., 1989; Bower and Beeman, 1998; Peterson, 2001). In

these models, the interaction between an excitatory and an inhibitory neuron was

simulated. For the sake of simplicity, both current injection and voltage mea-

surements were performed at the soma of each neuron, as represented by the micro-

electrodes in figure 10.3. We typically ran the modeling experiments using current

injection on both neurons. The full details of these simulations can be found in

Peterson (2001). Characterization of the neuronal model example includes (1) exam-

ination of the time response of each circuit branch, (2) verification of the reproduci-

bility of the model network’s synaptic connections, and (3) verification of circuit

behavior and properties over time in culture.

210 James J. Hickman



Circuit 1

The circuit model (figure 10.4A) consists of an inhibitory neuron forming a single

synaptic connection on the cell body of an excitatory neuron. With appropriately

chosen stimuli, this simple circuit can produce distinctive behavior, as demonstrated

by the simulation e¤orts in figure 10.5. For example, a constant stimulation train ap-

plied at input B would be gated based on the state of input A. Stimulation of input A

would inhibit the transmission of excitation, whereas the lack of stimulation of input

A would permit the propagation of excitability. The behavior of this circuit model is

similar to that of a simple transistor-logic circuit where the state of the transistor gate

influences circuit output (figure 10.4B). Furthermore, this circuit model is the core

element of a circuit to explain directional selectivity in the mammalian retina
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Figure 10.3
Basic setup for dual patch-clamp electrophysiological recordings from simple neuronal circuits.
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(A) First circuit model and (B) a corresponding transistor logic circuit.
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(Barlow and Levick, 1965) and thalamocortical processing of visual information

(Douglas et al., 1991; Douglas and Martin, 1991). With a stimulus moving in the

nonpreferred direction (A to B), the inhibition decreases the excitability of the post-

synaptic excitatory neuron, whereas in the preferred direction, excitation passes

freely (Anton et al., 1992). As a result, the action potential’s amplitude may carry

information on stimulus strength, providing the basis for a principle in the mamma-

lian nervous system for multilevel logic.

In the experiment we employed two neurons (the top is L1 and the bottom is R1)

with standard sodium (Na) and potassium (K) channels and linked the two cells with

an inhibitory connection from the cell L1 to the cell R1. The simulation was done in

GENESIS using simple Hodgkins dynamics with the following results:

� Cell L1 turns on 50 ms after R1 and, after a delay, inhibits the output of cell R1.

� Once cell L1 turns o¤, after a delay, the output of cell R1 resumes.

We have simulated this circuit, and as seen in figure 10.5, the inhibition from

neuron L1 inactivates the neuron R1 output as expected. While this simulation dem-

Figure 10.5
Voltage traces for neurons L1 (top) and R1 (bottom). The synaptic connection from L1 to R1 is inhibitory
and is set at a weight of 600. For 100 ms, cell R1 received no somatic current input and then a constant
pulse soma input of 0.00025 mA was applied for 50 ms and then turned o¤. Cell L1 received a similar
pulse, which started later and lasted for 200 ms.
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onstrates the behavior of a binary device, neuronal circuits such as these are capable

of much more complex processing, including temporal integration of asynchronous

inputs. We speculate that two aspects of complexity may emerge upon examination

of patterned neuronal circuits. First, synaptic connections may undergo long-term

potentiation (LTP) or long-term depression (LTD), which require substantial and

persistent postsynaptic activity (Juusola et al., 1996). Thus, LTP or LTD would cre-

ate use-dependent alterations in synaptic strength to a¤ect information processing.

Second, there is evidence of the use of graded, rather than ‘‘all-or-nothing,’’ action

potentials to transmit information in many neurons, including cultured rat hippo-

campus (Johansson and Arhem, 1990). These could then form the basis for signals

that could be modeled and used in determining drug e‰cacy and toxicity.

Circuit 2

The second circuit model (figure 10.6), in response to a stimulus, produces an excita-

tory output train, which is then suppressed by the downstream inhibitory neuron.

The length of the excitation train would depend on the propagation delay of the in-

hibitory feedback loop. This particular neuronal model is the key component of

a winner-take-all (WTA) circuit that has been characterized in the layer II olfactory

cortex (Van Hoesen and Pandya, 1975) and in cutaneous mechanoreception in skin

(Van Hoesen and Pandya, 1975), and may have an important role in perceptual de-

cision making in primates (Gardner and Palmer, 1989). In addition, this circuit bears

a strong resemblance to the Renshaw cell-spinal motor neuron circuit, where activa-

tion of the motor neuron excites the inhibitory Renshaw cell, which then slows or

stops the discharge rate of the motor neuron (Van Keulen, 1979). The ion channel

settings for the neurons were the same as those in the earlier examples.

I
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Figure 10.6
Circuit modeling illustrating excitatory train suppression.
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We started with the following synaptic connections: a self-excitatory connection on

L1 of weight 40 plus a small excitatory connection to R1 of weight 40. R1 does not

connect back to L1 at this time. We now allow cell L1 to excite cell R1:

� For 20 ms, cell L1 receives no somatic current input, and then a constant pulse

soma input of 0.00025 mA is applied for 380 ms. Cell L1 is strongly connected to

cell R1 with excitatory connections, so in the absence of any inhibitory feedback

from cell R1, we expected the output from cell L1 to trigger a corresponding output

in cell R1.

� Cell R1 received no somatic current and had no synaptic connections with cell L1.

We expected cell R1 to turn on and pulse with a frequency similar to that of cell

L1. This was indeed what we observed. The L1 voltage and input current trace can

be seen in figure 10.5 (we used the same L1 settings for the rest of the simulation

experiments in this section, so the graph is not repeated). The L1 and R1 membrane

voltage traces are shown in figure 10.7. It was seen clearly that the output from L1

triggers R1’s output.

Now we added the desired inhibition from cell R1 of weight 4000 and ran the sim-

ulation as follows:

� For 20 ms, cell L1 receives no somatic current input and then a constant pulse

soma input of 0.00025 mA is applied for 380 ms. Cell L1 is strongly connected to

cell R1 with excitatory connections, so in the absence of any inhibitory feedback

from cell R1, we expected the output from cell L1 to trigger a corresponding output

in cell R1.

� Cell R1 received no somatic current and had a large inhibitory synaptic connection

with cell L1.

We expected cell R1 to turn on and pulse with a frequency similar to that of cell

L1, but the inhibition from R1 shut down L1. The traces of the cell L1 and cell R1

Figure 10.7
Triggered cell output for cells L1 (top) and R1 (bottom).
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voltages are seen in figure 10.8. It is clear that the inhibition from R1 to L1 shuts

down the output from L1.

Circuit 3

The third neuronal circuit (figure 10.9) extended the fourth model by including an

autoinhibitory synapse to terminate the inhibitory feedback. We expected to be able

to shut down cell L1 and then reactivate it using the self-inhibition from R1 to cancel

R1’s inhibitory signal to L1. The experiment was as follows:

� For 20 ms, cell L1 receives no somatic current input and then a constant pulse

soma input of 0.00025 mA is applied for 380 ms. Cell L1 is strongly connected to

cell R1 with excitatory connections, so in the absence of any inhibitory feedback

from cell R1, the output from cell L1 then triggers a corresponding output in

cell R1.

Figure 10.8
Output shutdown caused by inhibition.
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Figure 10.9
Circuit modeling illustrating reactivation via self-inhibition.
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� Cell R1 received no somatic current but now has a large inhibitory synaptic con-

nection with cell L1, as well as a large self-inhibitory connection.

We expected cell R1 to turn on and pulse with a frequency similar to that of cell

L1 but the inhibition from R1, which was used to seriously a¤ect the frequency of

the L1 trace, was now cancelled by the self-inhibition. Hence L1 began to turn on

again. The inhibitory R1 to L1 synaptic connection was set to be 4000 as in the

previous experiment, and the new self-inhibition on R1 was set to be 400,000. The

traces of the cell L1 and R1 voltages are shown in figure 10.10. Note that L1 does

indeed begin firing again.

Conclusions

We have developed the tools for creating hybrid neuronal-silicon devices and have

successfully modeled basic designs of neuronal circuits. The next step will be to com-

bine these tools to create an integrated device. Our approach to developing this hy-

brid device in many ways parallels the development of the early transistor. The first

transistor involved using two dissimilar systems—p-type and n-type germanium—

and taking advantage of the combination’s characteristics that resulted from their

Figure 10.10
Cell firing reinitiates.
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interaction at the interface. In a similar fashion, we are proposing to take two dissim-

ilar systems composed of a neuron and an FET or metal microelectrode on a silicon

chip and tailor the interface to take advantage of the resultant device’s characteris-

tics. We believe that using living neurons as indicators of a compound’s e‰cacy is a

promising future technology. These neurons can elicit a modified action potential

(digital signal) when they are acted upon by di¤erent compounds. For example,

some compounds operate by inhibition of the sodium channels, some act on the

potassium channels, while still others activate intracellular cascades, leading to cal-

cium mobilization and activation of a specific gene. We have achieved neuronal sur-

vival on patterned self-assembled monolayers in serum-free media for over a month.

In addition, we seek to design the solid-state portion of the toxin detector for our

neuronal systems and devices. Work is underway in a number of groups to develop

the circuitry to analyze the signals, and progress is rapid. Finally, our modeling

experiments indicate numerous candidate circuits for sensor fabrication.

In future work, to determine the response range of the neuronal circuits, we will

test their response to drugs or toxins that are known to a¤ect synaptic transmission.

For example, anticholinesterase agents (e.g., pesticides, carbamate insecticides) are

a class of agents known to potentiate cholinergic transmission by inhibiting acetyl-

cholinesterase, which causes a depolarization block of transmission at cholinergic

synapses. Another class of antagonists, which also includes pesticides (e.g., chlorinated

cyclodienes, bicuculline picrotoxin), is called GABA antagonists. These antagonists

function by blocking the chloride channels in nerve cells at GABA receptors, causing

uncontrolled excitation of postsynaptic central neurons. GABA is known to be the

chief inhibitory transmitter in the hippocampus. Glycine antagonists, which are often

called rodenticides (e.g., strychnine), function by blocking the inhibitory neurotrans-

mitter glycine in the spinal cord, causing convulsions. Glutamate receptor-modulating

agents comprise a large class of substances [e.g., zinc, phencyclidine (angel dust),

polyamines, redox reagents] that function by disrupting glutamate neurotransmission.

This wide range of compounds should give a clear picture of the sensitivity and flex-

ibility of the circuit combinations we have developed.

There is an important caveat to our results to date. From a practical standpoint,

implementation of these circuit models requires the ability to distinguish excitatory

from inhibitory neurons in a mixed population during dissociation and culture of

hippocampal tissue. There is evidence that inhibitory (g-aminobutyricacid, GABA-

ergic) hippocampal neurons exhibit morphological features distinct from excitatory

(non-GABA-ergic) hippocampal neurons. For example, most GABA-ergic neurons

have more polygonal-shaped cell bodies, nonspiny and less tapering dendrites, and

fewer dendrites than excitatory hippocampal neurons (Benson et al., 1994). Still, we

cannot be certain that such morphological di¤erences will be apparent under our cul-

ture conditions after attachment to SAM or SAM-modified surfaces.
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To address this concern, using our standard patterning techniques, we generate a

large number of two-neuron patterns on a single surface. We can then expect some

significant fraction of the neuronal circuits to exhibit the desired excitatory or inhib-

itory orientation. Individual circuits we chose for their morphologic characteristics

will be examined electrophysiologically and correlated with immunocytochemistry

to verify the phenotype of the neurons within each patterned circuit.

This is one of the first attempts to combine all of the required parts to create a use-

ful system for understanding neuronal circuits and for beginning to create multicellu-

lar systems using cells as components. These biological/nonbiological hybrid devices

would be a major demonstration of the ability to combine surface chemistry and

microsystems to create systems and to provide a novel, biologically founded solution

to many neurological conditions. We believe that the demonstration of this concept

and its availability as a new model system will further the aims of the biomedical

community and that the idea of bioengineering cells to build natural but also unnat-

ural constructs also has major implications. As biology becomes increasingly inte-

grated with other disciplines, easily reproducible recipes for manipulating cells as

materials will be necessary. Much like molecular biology used to be a ‘‘black art’’

practiced by a few experts, now a variety of sophisticated analysis tools including

PCR, capillary electrophoresis, and Western and Northern blots are routine experi-

ments or ‘‘kits’’ available to all. Cellular manipulation needs to rise to this level of

accessibility where the metric of success is not that ‘‘they didn’t die’’ but, instead,

that the cells can be spatially placed, integrated with other structures, and their reac-

tion to controlled changes in their environment determined, in a defined system,

where the results are easily interpretable. The assembly of the cells in homogenous

or heterogeneous systems will then become a straightforward process.
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11The Biotic/Abiotic Interface: Achievements and Foreseeable Challenges

Roberta Diaz Brinton, Walid Sousou, Michel Baudry, Mark Thompson, and

Theodore W. Berger

Implantable microelectronic systems—first as cardiac pacemakers, then as cochlear

implants, and most recently as deep brain stimulators to treat the motor symptoms

of Parkinson’s disease—have transformed the lives of many and will benefit many

more in the future (Loeb, 1990; Humayun et al., 1996). A biomimetic neural pros-

thetic device, while having stimulation as a component of its function, is envisioned

to assume the actual function of neurons, replacing those lost from damage or dis-

ease (Berger et al., 2001). Implanted replacement silicon neurons would have func-

tional properties matching those of the damaged neurons, and would both receive

and send electrical information to regions of the brain with which the damaged re-

gion previously communicated. The design of a biomimetic neural prosthetic device

is described in Berger et al. (2001); see also chapter 12 in this volume.

Considered here is the challenge to develop a seamless interface between the elec-

tronics and the complex cellular topography of the brain. This chapter summarizes

our collective progress to date in developing the underlying science and technology

that will make possible an e¤ective long-term interface between specific brain regions

and multichip modules consisting of novel, hybrid analog-digital microchips.

Essential Requirements for an Implantable Neural Prosthesis

Integration of a neuroprosthetic implant into the nervous system is a multifactorial

challenge that will require developments in (1) the long-term viability of intimate

contact between cells of the brain and the neuroprosthetic implant, (2) methods to

sustain neuronal survival, and (3) regulation of the glial immune response to promote

favorable regeneration conditions while repressing responses that can lead to glial

scarring and encapsulation of the implant (see figure 11.1). Surmounting each of

these challenges will require strategies that capitalize on existing knowledge and

forging new hybrid strategies that provide novel solutions to previously intrac-

table problems. This chapter reviews recent progress and thinking on each of these

issues.



The Neuron/Silicon Interface

Neuron survival and reorganization is paramount to long-term functional connectiv-

ity with a microelectronic neural prosthetic implant. The foreseeable challenges to

the seamless integration of such a device center on the longevity of adhesion and sur-

vival strategies. To date, all tested strategies have been short-term trials. For a neural

prosthetic implant to be e¤ective, its surface must be engineered to promote intimate

contact with neural tissue while simultaneously avoiding activation of an inflamma-

tory response.

An integral part of achieving this is the development of surface coatings for the

packaging materials, electrodes, and platforms. Ideally, the surface coatings will be

tuned to the properties of each surface to match their function within the implant.

One can anticipate that platform materials will include both rigid substrates, such as

Biomimetic neuroprosthetic device

Neuron / electrode interface 

Figure 11.1
Challenges for the biotic/abiotic interface: (1) Sustaining long-term neuron-electrode compatibility and ad-
hesion; (2) preventing or minimizing an inflammatory response over the lifetime of the prothesis. Represen-
tation of a biomimetic neural prosthesis for the hippocampus and the interface between the signal detection
component, the electrodes, and neurons (by T. W. Berger).
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ceramics, glass, and silicon, as well as flexible polymer materials, such as poly di

methyl siloxane (PDMS), parylene, and polyimide. Electrode materials will include

simple metals, such as platinum or gold, as well as metal oxides and nitrides, such

as iridium oxide (IrO2), indium tin oxide (ITO), and TiN. The packaging materials

will include some of the same materials, that is, ceramics and glass, as well as other

environmentally stable materials, such as titanium and stainless steel. The surface

treatment chemistries being developed for controlling cell attachment and specific

cell recognition must be e¤acious for each of these surfaces and be adaptable to new

materials that we have not yet envisioned.

Neuron/silicon interfaces will have to be tailored to the material requirements of

the device. Hence, we have embarked upon a strategy of developing a ‘‘toolbox’’ of

materials that can be used to selectively coat abiotic surfaces with a stable, tailorable,

biocompatible material so that a device’s surface will have a chemical and molecular

composition comparable to that of the cellular region of the nervous system being

replaced and hence will perform like natural tissue in vivo. The development of

such a coating ‘‘toolbox’’ will require analysis of the stability of coating chemistries

(Abdelrazzaq et al., 2002; Vijayamohanan and Aslam, 2001; Fendler, 2001; Ulman,

1991) under biologically relevant conditions in vitro and in vivo. Next, these pro-

cesses can be used to anchor groups chosen to carry out specific operative functions,

including selective cell binding, cell repulsion, and controlled release of a substance

(Mohajeri et al., 1996; Hailer et al., 1997; Kiss, 1998; Lee and Benveniste, 1999;

Esch et al., 2000).

Our previous work, as well as that of others in the field, indicates that selected sil-

icon surfaces (table 11.1), electrode metals (table 11.2), and a variety of bioamine

substrates (figure 11.2 and table 11.3) are e¤ective in promoting neuronal adhesion

on electrodes and silicon-based surfaces whereas others are ine¤ective (Gross et al.,

1982; James et al., 1998, 2000; Branch et al., 2000; Sorribas et al., 2001; Soussou,

2002). Di¤erent substrates result in di¤erent neuron topographies (see table 11.4).

Table 11.1
Analysis of biocompatibility of hippocampal neurons cultured on silicon-based substrates

Silicon Surface
Neuronal
Growth Characterization

Silicon Excellent Excellent neuronal adhesion and process
outgrowth

Silicon dioxide Excellent Excellent adhesion and outgrowth

Silicon nitride (insulation
material used in multisite
electrode arrays)

Nonexistent No neuronal adhesion. Requires coating with
organic adhesion molecule (poly-d-lysine,
laminin, etc.) for neuronal attachment to occur

Si coated with@1200 Å MgO2 Poor Little to no neuronal adhesion
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For example, the density of positive charges and polymer size dramatically a¤ects

neuronal cluster development (see figure 11.1 and table 11.4). Dissociated single

neurons seeded onto 30,000–70,000 molecular weight polymers of poly-d-lysine and

poly-d-ornithine substrates migrate to form small clusters, whereas neurons seeded

onto polyethylenimine, which is more highly positively charged, do not migrate to

form clusters and su¤er a higher degree of cell death. Inclusion of basement mem-

brane, a complex extract of extracellular matrix from a mouse tumor cell line, with

any of these substrates greatly increases the capacity of neurons to migrate into clus-

ters (see figure 11.2 and table 11.4).

Poly-d-lysine and laminin are known to be particularly e¤ective in promoting ad-

hesion of dissociated neuron cultures onto inorganic materials, and we investigated

their e‰cacy with regard to our hippocampal conformal multisite electrode arrays

(Soussou et al., 2000, 2002). Poly-d-lysine and laminin were applied to the surface

of the conformal arrays, with application limited to linear tracks aligned with the

long axis of each column of electrode sites in the rectangular array (figure 11.3).

When dissociated hippocampal neurons were prepared on the surface of the array,

the adhesion of cells and the extension of their processes were restricted to the treated

regions. Neural networks that formed were predominantly in parallel, linear tracks

over the columns of electrodes.

Table 11.2
Analysis of biocompatibility of hippocampal neurons cultured on metal ion-based electrodes

Electrode
Metal

Neuronal
Growth Characterization

Aluminum Excellent Neurons attach, remain adhered for several weeks; permits
neuronal process outgrowth. Potential problem with
oxidation that would limit signal detection.

Gold Excellent Neurons attach, adhere for an extended time; permits
neuronal process outgrowth. Easily amenable to cross-
linking. High impedance and low charge-transfer capacity.
Cheap and easy deposition.

Indium tin oxide
(ITO)

No neuronal
adhesion

Thin-film transparent microelectrodes that permit
visualization of cells on top of microelectrodes. Requires
coating with organic substrate for neuronal adhesion. High
impedance, resulting in greater noise. Low charge-transfer
capacity.

Platinum black No neuronal
adhesion

Requires coating with organic substrate for neuronal
adhesion. Low impedance. High charge transfer. Falls o¤
with stimulation. Mechanically unstable.

Titanium nitride No neuronal
adhesion

Requires coating with organic substrate for neuronal
adhesion. Microcolumnal shape results in low impedance
(80–250 kW) and high charge-transfer capacity, which
enables greater stimulation intensities. More mechanically
stable, allows electrodes to be used multiple times.
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Poly-D-Lysine Substrate

Poly-D-Lysine with Basement Membrane Matrix

Figure 11.2
Morphological development of hippocampal neurons on polyamine-coated surface in the absence or pres-
ence of basement membrane matrix on glass and multisite electrode arrays. The panels on the far left show
hippocampal neurons grown on glass coated with poly-d-lysine in the absence (top) and in combination
with basement membrane matrix (bottom). Note that in the presence of basement membrane, neuronal
clusters appear more frequently and a modest degree of process fasciculation occurs. The middle panels
show phenotypic development of neuronal processes on these two substrates. Dendritic processes are la-
beled with the dendrite selective marker MAP2 shown, while axons are labeled with the axon-selective
marker, GAP43. In the third panel are dissociated hippocampal neurons cultured onto multisite electrode
arrays. Note that in the presence of basement membrane, a much greater degree of clustering of neurons
and fasciculation of their processes occurs. Bar: 50 mm.
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Table 11.3
Organic adhesion substrates and their properties

Organic Substrate Structure Properties

Poly-d-lysine
(PDL) H2NCH2CH2CH2CH2

NH C C n

H O
PDL Most commonly used substrate. Branched

cationic polymer, with peptide bonds.
d-conformation prevents proteolytic
degradation.

Polyornithine
(PO)

CH2CH2CH2NH C C n

H O
PO

H2N

Structurally very similar to PDL, but
unbranched cationic polymer, with peptide
bonds.

Polyethyleneimine
(PEI)

y

PEI
CH2CH2NH2

CH2 CH2NNH CH2 CH2 x

Branched cationic polymer with no
carboxylic group, thus more positively
charged. Lack of peptide bond prevents
proteolytic degradation. Reported to
enhance cell maturation compared with
PDL (Lelong et al., 1992).

Basement
membrane (BM)

Contains:
Laminin 56%
Collagen IV 31%
Entactin 8%
Heparan sulfate proteoglycan
Matrix metalloproteinases
Growth factors: EGF, bFGF, NGF,
PDGF, IGF-1, TFG-b

Extracellular matrix extracted from EHS
mouse tumor. Similar in structure,
composition, physical property, and
functional characteristics to in vivo BM.

Table 11.4
Analysis of morphological features of hippocampal neurons cultured on various organic substrates

Organic
Substrate

Individual
Cells Clusters Thin Branches

Fasciculated
Branches

PDL Intermediate Intermediate High Below average

PEI Most None Above average None

PO Intermediate Above average High Below average

BM Below average Above average
(highly variable)

Intermediate Above average
(highly variable)
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Impact of Surface Composition on Electrophysiological Signaling of Neurons

Our most recent work has addressed the impact of surface composition on the elec-

trophysiological properties of neurons, with the long-term intent of manipulating the

excitability of neurons that would interface with the electrodes of a neural prosthesis.

Our initial data indicate that the morphologies induced by di¤erent substrates are

associated with di¤erent electrophysiological phenotypes (see figure 11.4) (Soussou

et al., 2000). It is important to note that the di¤erences in electrophysiological phe-

notype are not due to changes in neuronal viability because neurons cultured on

titanium nitride-silicon nitride multisite electrode arrays coated with poly-d-lysine

exhibit markers of viability comparable to that of neurons cultured onto similarly

coated glass coverslips (see figure 11.5).

(a) (b)

Figure 11.3
A designed morphology of a conformal multisite electrode array. (A) Dissociated hippocampal neurons
grown on a conformal multisite electrode array coated with poly-d-lysine in a linear pattern aligned on
top of the electrodes. Both nerve cell bodies and their processes were predominantly attached to the linear
tracts of poly-d-lysine, with minimal crossing of processes across the 50-mm gap between electrode pads
and leads. (B) Axons attached to linear tracts of poly-d-lysine labeled with a fluorescent marker for the
axon-selective marker, GAP43. Bar: 50 mm.
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Figure 11.4
Analysis of spontaneous activity of cultured hippocampal neurons on multisite electrode arrays. Electro-
physiological recordings are derived from the same dissociated hippocampal neuron culture on a polyethy-
leneimine (PEI)-coated multisite electrode array at days 15 (1) and 18 (2). (A1) and (A2) Rastergrams of
two channels and limits of detected bursts. (A1) One channel fires almost continuously, whereas the other
has short bursts (some too short to be detected as bursts by this algorithm and the set parameters). (A2)
Both channels fire long and short bursts sporadically but synchronously. (B1) and (B2) Interstimulus inter-
val (ISI) histograms of the two channels in A. The continuously firing cell has a wider and delayed histo-
gram, while the histograms of the bursting cells get narrower with shorter burst durations. (C1) and (C2)
The autocorrelograms of the activity in the four cells show the refractory period as a drop in the center (the



second cell in C2 has some noise included that occurred during the refractory period and occludes the
drop). The flat histogram reflects uncorrelated continuous firing, while the broad peaks in C2 reflect longer
bursts than C1’s bursting cell. (D1) and (D2) Cross-correlograms of the two channels. (D1) Flat correlo-
gram indicates nonsynchronous firing between the two cells, while D2 indicates that the two cells are well
synchronized in time. The gray-scale correlation matrices plot the cross-correlation indices of all the active
electrodes in that particular multisite electrode array, so that each pair of electrodes has two small squares
coding their indices (one above the midline and one below). The indices are calculated as the area between
G0.02 s that is above the average baseline divided by the number of spikes in the reference channel (this
normalization generates an unsymmetrical matrix). A higher (white) index indicates highly correlated
channels. The autocorrelation indices are set to zero.
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Figure 11.5
Neuronal viability on multisite electrode arrays compared with control hippocampal cells cultured on glass
coverslips. The culture medium was collected following specified days from hippocampal neuron cultures
plated onto glass or multisite electrode arrays and analyzed for lactate dehydrogenase (LDH) content in
the culture medium. LDH is a stable cytoplasmic enzyme expressed in all cells, including neurons. It is rap-
idly released into the cell culture supernatant upon damage to the plasma membrane. The spectophotomet-
ric results are translated to nanograms per milliliter by interpolation on a standard reference curve and
normalized to the cell plating density. Both multisite electrode array cultures and control cultures show
similar aging patterns: initially high LDH release into the medium as a result of the initial damage at seed-
ing, followed by low level of LDH release for 10 days, and aging followed by a modest rise in LDH release
likely due to related oxidative damage to the plasma membrane after 20 days in culture, which occurs in
the absence of antioxidants.
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Although much of the electrophysiological testing of interfaces to date has been

completed using hippocampal slices (which remain physiologically viable for 12–18

hr), we also have begun using hippocampal slice cultures to test the long-term viabil-

ity of the neuron/silicon interface. The latter preparations involve placing slices of

hippocampus on a semipermeable membrane in contact with tissue culture media

and maintaining them long term in a culture incubator (Gholmieh et al., 2003). Slice

cultures can be prepared directly on multisite electrode arrays, which then can be

tested periodically to examine the robustness of the electrophysiological interaction

with the hippocampal tissue. Preliminary findings have revealed that bidirectional

communication remains viable for at least several weeks, although we have yet to

systematically test long-term functionality.

For e¤ective signal detection and transmission, intimate contact between neurons

and electrode components of a neural prosthesis is necessary. To review, dendrites

are the ‘‘input’’ regions of neurons; cell bodies and axons are their ‘‘output’’ regions.

A neural prosthesis will inevitably be sandwiched between two surfaces so that it will

R R R R R

R
R

R
R

R R R R R

R R R R R

R

nonspecific cell attachment
or repulsion group

artificial surface
anchoring group cell

cell

cell

cell adhesion molecule (CAM)

nonspecific
cell binding

cell
repulsion

neural
integration
selective cell
attachment

artificial surface

artificial surface

artificial surface

artificial surface

Figure 11.6
Schematic representation of the preparation of surface coatings to promote cell-selective attachment. Sur-
face chemistries can be designed to promote selective cell attachment, prohibit nonspecific cell binding, and
prevent inflammation through cell repulsion chemistry to thwart activation of the inflammatory response
in glial cells. Integration of the neural component with the artificial surface of the neuroprosthesis could be
achieved by specific recognition between either an nCAM sequence or receptors selectively expressed on
specific neuron populations (shown as bars).
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have to function as neurons do—as a receptive postsynaptic element to receive infor-

mation, a processing element to transform the incoming signal, and as a transmission

presynaptic element to communicate the processed signal. Implanted in the brain, a

neural prosthesis would reconnect two disconnected regions of the brain and would

have to interface between four surfaces in three-dimensions. Axons from the surviv-

ing neural tissue will have to provide input to the device, with the device functioning

as the postsynaptic element, whereas dendrites will have to be functionally connected

to its output, with the device functioning as the presynaptic element and the dendrite

as the postsynaptic element.

Achieving such selective portioning of neuronal elements will require the use of ad-

hesion and attraction strategies that will promote, at the very least, the attachment of

neural elements to the reception and transmission electrodes of the prosthesis. In par-

allel, repulsion of glial cells from the signal detection and transmission electrodes,

must be achieved. However, the repulsion of glial cells will have to be very limited

in order to keep glial cells in close enough proximity to promote long-term neuron

survival. One potential strategy to achieve selective adhesion is to use cell adhesion

molecules (CAMs) to generate adhesion or antiadhesion surfaces (see figure 11.6)

that promote the selective adhesion of neurons and astrocytes to specific compart-

ments of the interface with the device (see figure 11.7). Our approach will be to

develop specific surface modifications using a combination of cell-specific adhesion
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Cell adhesion molecule (CAM) sequences to promote neuron adhesion to a neural implant surface.
TiN substrates (shown as black bars) were coated with (A) aminoalkyl-phosphonic and (B) carboxyl-
phosphonic acids. The RGDS peptide (arginine-glycine-aspartate-serine) was then coupled to each surface
as shown. The substrates were then cultured with dissociated neurons. Both optical (top) and scanning elec-
trical micrographs (bottom) show string cell adhesion and growth on the amino-treated surface and no ad-
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molecules that will promote selective couplings between interface input pads and cell

bodies and axons, and between interface output pads and dendrites.

Biocompatibility and Long-Term Viability

Long-term viability of the implant requires the maintenance of e¤ective functional

interactions between the microchip and brain tissue on a time scale of years, as peri-

odic replacement of a neural prosthetic implant is not a realistic option. While not

all of the biocompatibility and long-term viability challenges can be fully appreciated

until the working prototypes of implant devices have been developed, preventing or

suppressing the inflammatory response to foreign objects is likely to be a problem for

all implantable neural prosthetics and will be chief among the factors that will im-

pede the long-term viability of a neural implant (see figure 11.8).

Figure 11.8
Schematic of neuroinflammatory response cascade and cell types involved in neuroinflammation. The
background illustrates the complexity of neuroimmune signaling in the brain, whereas the foreground illus-
trates the types of cells involved in the inflammatory response. Of particular importance are the microglia
and resistive astrocytes that are the principal inflammatory cells of the brain. Also shown are factors that
can regulate the inflammatory response, including endogenous factors such as estrogen and exogenous
anti-inflammatory drugs such as rapamycin, which is both an anti-inflammatory and an antiproliferative
agent.
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Regulating the Glial Immune Response: Managing the Inflammatory Response

Managing the multicellular, multifaceted glial response is crucial to the success of

the neuron/neuroprosthetic interface (Cui et al., 2001; Sorribas et al., 2001). In labo-

ratories conducting chronic electrophysiological recordings, it has been well known

for decades that the quality of electrophysiological signals generated by many stan-

dard recording methods designed for long-term use in behaving animals gradually

degrades over the course of weeks. However, not all electrophysiological recording

methods are always subject to such degradation in signal quality over time. For ex-

ample, multimicrowire recording methods using a small number of wires can record

in a stable manner for many months (approaching a year). While it is widely

accepted that the ‘‘window’’ for stable, high-quality electrophysiological recordings

is on the order of days to weeks, only relatively recently (i.e., within the past 5 years)

have detailed histological descriptions of the encapsulation of the electrodes begun to

appear (A. M. Turner et al., 2000; Szarowski et al., 2003).

The inflammatory response begins immediately upon insertion of electrodes into

the brain, reaches steady state within several weeks, and is correlated with a gradual

decrease in the quality of electrophysiological signals recorded from target neurons

(A. M. Turner et al., 2000; Szarowski et al., 2003). To be considered viable, any

strategy for a long-term, implantable, cortical prosthetic system must overcome the

inflammatory encapsulation response. For images of the encapsulation process and

the contribution of astrocytes and microglia, the reader is referred to the web site of

the Craighead laboratory at http://www.hgc.cornell.edu/neupostr/lrie.htm.

The challenge of the glial inflammatory response is complicated. Astrocyte func-

tion is crucial to neuron viability because astrocytes are the repository of growth fac-

tors vital to neuron survival (Anderson and Swanson, 2000; Aschner, 2000; Dong

and Benveniste, 2001; Gates and Dunnett, 2001; Gimenez y Ribotta et al., 2001).

However, astrocyte proliferation is well known to be a principal culprit in blocking

regeneration of central nervous system neurons and encapsulation of implanted de-

vices (Eclancher et al., 1996; Davies et al., 1997; DiProspero et al., 1997; Yang

et al., 1997; Fawcett and Asher, 1999; Fitch et al., 1999; Logan et al., 1999; J. N.

Turner et al., 1999; Asher et al., 2000, 2001; A. M. Turner et al., 2000; Yang et al.,

2000; Menet et al., 2001). The production of the glial-derived cytokines that lead to

inflammation is highly complex but, in general, activation of actrocytes and espe-

cially microglia leads to the inflammatory response and ultimately to encapsulation

of the device and degeneration of neurons (see figure 11.8) (Anderson and Swanson,

2000; Aschner, 2000; Dong and Benveniste, 2001; Gates and Dunnett, 2001; Gime-

nez y Ribotta et al., 2001; Eclancher et al., 1996; Davies et al., 1997; DiProspero

et al., 1997; Yang et al., 1997, 2000; Fawcett and Asher, 1999; Fitch et al., 1999;

Logan et al., 1999; J. N. Turner et al., 1999; Asher et al., 2000, 2001; A. M. Turner
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et al., 2000; Menet et al., 2001). In contrast, radial glia can function as progenitor

cells for neurogenesis (Yang et al., 1997; Gotz et al., 2002).

Despite their role in the inflammatory response, astrocytes also serve as sources of

growth factors and nutrients and function to remove toxins from the extracellular

compartment. The close proximity of astrocytes to neurons is essential to neuronal

long-term survival. One strategy to achieve the benefits of astrocytes while poten-

tially obviating their deleterious e¤ects is to develop a method for selective attach-

ment of neurons and glia to specific compartments of a neural prosthesis. Our initial

approach will involve di¤erential surface coatings of specific cell adhesion molecules,

such as decapeptide (KHIFSDDSSE) or L1, to bind glial cells and repulsion mole-

cules, such as the integrin-ligand peptide RGDS (arginine-glycine-aspartate-serine)

or the amino acids serine or polyethylene glycol (Mohajeri et al., 1996; Hailer et al.,

1997; Kiss, 1998; Lee and Benveniste, 1999) (see figure 11.7).

An alternative approach could use inhibitors of glial proliferation (cycloheximide)

at the time of implantation to permit neuronal contact and adhesion with the neuro-

prosthetic electrodes to occur and then allow normal glial proliferation to proceed.

The risk of this approach is that while antiproliferative agents would inhibit the pro-

liferative response of activated and hence inflammatory glial cells, they would also

inhibit proliferation of neural progenitor and stem cells, thereby potentially eliminat-

ing a crucial source of neurons necessary for successful interfacing between the bio-

mimetic device and the brain tissue surrounding the device. A third approach could

be to couple surface coatings of CAMs and repulsion molecules with hydrogels for

release of chondroitinase to inhibit the chondroitin sulfate proteoglycans required

for glial scarring and/or inflammatory response inhibitors such as vasopressin or

anti-interleukin 1 (figure 11.9) (Zhao and Brinton, 2004; Sanderson et al., 1999).

The aforementioned strategies of creating biomimetic surfaces with membrane

proteins found on the extracellular side of the membrane, such as cell adhesion mol-

ecules, coupled with anti-inflammatory strategies that capitalize on the advances in

neuroimmunology, may prove to be su‰cient to sustain the viability of a neural

prosthesis over the lifetime of the user.

Conclusions

The goal of this chapter was to bring into focus several of the major challenges for

the development of implantable neural prostheses that can coexist and bidirectionally

communicate with living brain tissue. Although these problems are formidable,

advances in the field of microelectronics, surface chemistry, materials science, neuro-

immunology, neuroscience, and therapeutic formulation provide the scientific and

engineering sca¤olding necessary to generate solutions to the challenges at the

biotic/abiotic interface.
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12 Brain-Implantable Biomimetic Electronics as a Neural Prosthesis for
Hippocampal Memory Function

Theodore W. Berger, Roberta Diaz Brinton, Vasilis Z. Marmarelis, Bing J. Sheu,

and Armand R. Tanguay, Jr.

One of the true frontiers in the biomedical sciences is repair of the human brain:

developing prostheses for the central nervous system to replace higher thought pro-

cesses that have been lost through damage or disease. The type of neural prosthesis

that performs or assists a cognitive function is qualitatively di¤erent than the coch-

lear implant or artificial retina, which transduce physical energy from the environ-

ment into electrical stimulation of nerve fibers (Loeb, 1990; Humayun et al., in

press), and qualitatively di¤erent than functional electrical stimulation (FES), in

which preprogrammed electrical stimulation protocols are used to activate muscular

movement (Mauritz and Peckham, 1987). Instead, we consider here a neural prosthe-

sis designed to replace damaged neurons in central regions of the brain with silicon

neurons that are permanently implanted into the damaged region. The replacement

neurons would have the same functional properties as the damaged neurons, and

would receive electrical activity as inputs and send it as outputs to regions of the

brain with which the damaged region previously communicated. Thus, the prosthesis

being proposed is one that would replace the computational function of damaged

brain areas, and restore the transmission of that computational result to other

regions of the nervous system. Such a new generation of neural prostheses would

have a profound impact on the quality of life throughout society because it would

o¤er a biomedical remedy for the cognitive and memory loss that accompanies Alz-

heimer’s disease, the speech and language deficits that result from stroke, and the

impaired ability to execute skilled movements following trauma to brain regions re-

sponsible for motor control.

Although the barriers to creating intracranial, electronic neural prostheses have

seemed insurmountable in the past, the biological and engineering sciences are on

the threshold of a unique opportunity to achieve such a goal. The tremendous

growth in the field of neuroscience has allowed a much more detailed understanding

of neurons and their physiology, particularly with respect to the dynamic and adap-

tive cellular and molecular mechanisms that are the basis for information processing

in the brain. Likewise, there have been major breakthroughs in the mathematical



modeling of nonlinear and nonstationary systems that are allowing quantitative rep-

resentations of neuron and neural system functions to include the very complexity

that is the basis of the remarkable computational abilities of the brain. The con-

tinuing breakthroughs in electronics and photonics o¤er opportunities to develop

hardware implementations of biologically based models of neural systems that allow

simulation of neural dynamics with true parallel processing, a fundamental charac-

teristic of the brain, and real-time computational speed. Fundamental advances in

low-power designs have provided the essential technology to minimize heat gen-

eration by semiconductor circuits, thus increasing compatibility with temperature-

sensitive mechanisms of the brain. Finally, complementary achievements in materials

science and molecular biology o¤er the possibility of designing compatible neuron/

silicon interfaces to facilitate communication between silicon computational devices

and the living brain.

Essential Requirements for an Implantable Neural Prosthesis

In general terms, there are six essential requirements for an implantable microchip

to serve as a neural prosthesis. First, if the microchip is to replace the function of a

given brain tissue, it must be truly biomimetic; that is, the neuron models incorpo-

rated in the prosthesis must have the properties of real biological neurons. This

demands a fundamental understanding of the information-processing capabilities

of neurons that is experimentally based. Second, a neural prosthesis is desired only

when a physiological or cognitive function is detectably impaired (according to

neurological or psychiatric criteria). Physiological or cognitive functions are the ex-

pression, not of single nerve cells, but of populations of neurons interacting in the

context of a network of interconnections. Thus, biologically realistic neuron models

must be capable of being concatenated into network models that can simulate these

phenomena.

Third, the neuron and neural network models in question must be su‰ciently

miniaturized to be implantable, which demands their implementation in at least

microchip circuitry. Given the known signaling characteristics of neurons, such an

implementation will most likely involve hybrid analog-digital device designs. Fourth,

the resulting microchip or multichip module must communicate with existing, living

neural tissue in a bidirectional manner. Given that both electronic and neural sys-

tems generate and respond to electrical signals, this is feasible, although the region-

specific, nonuniform distribution of neurons within the brain places substantial

constraints on the architecture of neuron/silicon interfaces.

Fifth, the variability in phenotypic and developmental expression of both struc-

tural and functional characteristics of the brain will necessitate adaptation of each
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prosthetic device to the individual patient. Some provision for ‘‘personalizing’’ an

implantable prosthesis must be anticipated and included in the neuron-network

model and the device design. Finally, there is the critical issue of power required for

the prosthetic device. Not only will supplying power be di‰cult, given implantation

of a set of microchips into the depths of the brain (versus the periphery, as with

a cochlear implant), but cellular and molecular mechanisms found in the brain are

highly temperature sensitive, so that any solution must minimize heat generation to

remain biocompatible.

We describe here an interdisciplinary, multilaboratory e¤ort to develop such an

implantable, computational prosthesis that can coexist and bidirectionally commu-

nicate with living neural tissue. We will deal with five of the requirements; only the

issue of power will not be addressed here. Although the final achievement of an

implantable prosthesis remains years in the future, it is nonetheless our position that

the path to such a goal is now definable, allowing a solution path to be defined and

followed in an incremental manner. We summarize our collective progress to date in

developing the underlying science and technology that will enable the functions of

specific brain regions to be replaced by multichip modules consisting of novel, hybrid

analog-digital microchips. The component microchips are ‘‘neurocomputational,’’

incorporating experimentally based mathematical models of the nonlinear dynamic

and adaptive properties of real brain neurons and neural networks. The resulting

hardware can perform computations supporting cognitive functions such as pattern

recognition, but more generally will support any brain function for which there is

su‰cient experimental information.

To allow the ‘‘neurocomputational’’ multichip module to communicate with exist-

ing brain tissue, another novel microcircuitry element has been developed—silicon-

based multielectrode arrays that are ‘‘neuromorphic,’’ that is, designed to conform

to the region-specific cytoarchitecture of the brain. When the ‘‘neurocomputational’’

and ‘‘neuromorphic’’ components are fully integrated, our vision is that the resulting

prosthesis, after intracranial implantation, will receive electrical impulses from tar-

geted subregions of the brain, process the information using the hardware model of

that brain region, and communicate back to the functioning brain. The proposed

prosthetic microchips also have been designed with parameters that can be optimized

after implantation, allowing each prosthesis to adapt to a particular user or patient.

The System: The Hippocampus

The computational properties of the prosthesis being developed are based on the

hippocampus, a cortical region of the brain involved in the formation of new long-

term memories. The hippocampus lies beneath the phylogenetically more recent
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neocortex, and is composed of several di¤erent subsystems that form a closed feed-

back loop (figure 12.1), with input from the neocortex entering via the entorhinal

cortex, propagating through the intrinsic subregions of the hippocampus, and then

returning to the neocortex. The intrinsic pathways consist of a cascade of excitatory

connections organized roughly transverse to the longitudinal axis of the hippocam-

pus. As such, the hippocampus can be conceived of as a set of interconnected, paral-

lel circuits (Andersen et al., 1971; Amaral and Witter, 1989). The significance of this

organizational feature is that after the hippocampus is removed from the brain,

transverse ‘‘slices’’ (approximately 500 mm thick) of the structure that preserve a sub-

stantial portion of the intrinsic circuitry may be maintained in vitro and thus allow

detailed experimental study of its principal neurons in their open-loop condition

(Berger et al., 1992, 1994).

Figure 12.1
(A) Diagrammatic representation of the rat brain (lower left), showing the relative location of the hippo-
campal formation on the left side of the brain (light gray); (center) diagrammatic representation of the left
hippocampus after isolation from the brain and (right) slices of the hippocampus for sections transverse to
the longitudinal axis. (B) Diagrammatic representations of a transverse slice of the hippocampus, illustrat-
ing its intrinsic organization: fibers from the entorhinal cortex (ENTO) project through the perforant path
(pp) to the dentate gyrus (DG); granule cells of the dentate gyrus project to the CA3 region, which in turn
projects to the CA1 region; CA1 cells project to the subiculum (SUB), which in the intact brain then proj-
ects back to the entorhinal cortex. In a slice preparation, return connections from CA1 and the subiculum
are transected, creating an open-loop condition for experimental study of hippocampal neurons.
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The hippocampus is responsible for what have been called long-term ‘‘declarative’’

or ‘‘recognition’’ memories (Berger and Bassett, 1992; Eichenbaum, 1999; Shapiro

and Eichenbaum, 1999; Squire and Zola-Morgan, 1998): the formation of mnemonic

labels that identify a unifying collection of features (e.g., those comprising a person’s

face), and form relations between multiple collections of features (e.g., associating

the visual features of a face with the auditory features of the name for that face). In

lower species not having verbal capacity, an analogous hippocampal function is evi-

denced by an ability, for example, to learn and remember spatial relations among

multiple, complex environmental clues in navigating and foraging for food (O’Keefe

and Nadel, 1978). Major inputs to the hippocampus arise from virtually all other

cortical brain regions, and transmit to the hippocampus high-level features extracted

by each of the sensory systems subserved by these cortical areas.

Thus, the hippocampus processes both unimodal and multimodal features for vir-

tually all classes of sensory input, and modifies these neural representations so that

they can be associated (as in the case of forming a link between a face and a name)

and stored in long-term memory in a manner that allows appropriate additional

associations with previously learned information (the same face may have context-

dependent names, for example, a first name in an informal, social setting and a posi-

tion title in a formal or business setting), and that minimizes interference (the same

name may be associated with several faces). After processing by the hippocampal

system, new representations for important patterns are transmitted back to other

cortical regions for long-term storage; thus, long-term memories are not stored in

the hippocampus, but propagation of neural representations through its circuitry is

required for a re-encoding essential for the e¤ective transfer of short-term memory

into long-term memory.

Although developing a neural model for long-term memory formation (or any

other cognitive function) may initially appear somewhat daunting, there is a rational

approach to the problem. Information in the hippocampus and all other parts of

the brain is coded in terms of variation in the sequence of all-or-none, point-process

(spike) events, or temporal pattern (for multiple neurons, variation in the spatiotem-

poral pattern). The essential signal-processing capability of a neuron is derived from

its capacity to change an input sequence of interspike intervals into a di¤erent, out-

put sequence of interspike intervals. The resulting input-output transformations in all

brain regions are strongly nonlinear, owing to the nonlinear dynamics inherent in the

molecular mechanisms that make up neurons and their synaptic connections (Magee

et al., 1998). As a consequence, the output of virtually all neurons in the brain is

highly dependent on the temporal properties of the input. The input-output trans-

formations of neurons in the hippocampus and neocortex—the regions of the brain

subserving pattern recognition—are the only ‘‘features’’ that the nervous system

has to work with in constructing representations at the cortical level. Identifying the
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nonlinear input-output properties of neurons involved in pattern recognition is

equivalent to identifying the feature models that endow the brain with its superior

feature extraction capability. The input-output properties of synapses and neurons

are not static, but are altered by biological learning mechanisms to achieve an opti-

mal feature set during memory formation for a new pattern. Identifying activity-

dependent forms of synaptic plasticity of the neurons involved in pattern recognition

is equivalent to identifying the biological ‘‘learning rules’’ used in optimizing feature

sets.

Biomimetic Models of Hippocampal Neuron Properties

Quantifying Input-Output Nonlinearities of Hippocampal Neurons

In order to incorporate the nonlinear dynamics of biological neurons into neuron

models to develop a prosthesis, it is first necessary to measure them accurately. We

have developed and applied methods for quantifying the nonlinear dynamics of

hippocampal neurons (Berger et al., 1988a,b, 1991, 1992, 1994; Dalal et al., 1997)

using principles of nonlinear systems theory (Lee and Schetzen, 1965; Krausz, 1975;

P. Z. Marmarelis and Marmarelis, 1978; Rugh, 1981; Sclabassi et al., 1988). In this

approach, properties of neurons are assessed experimentally by applying a random

interval train of electrical impulses as an input and electrophysiologically recording

the evoked output of the target neuron during stimulation (figure 12.2A). The input

train consists of a series of impulses (as many as 4064), with interimpulse intervals

varying according to a Poisson process having a mean of 500 ms and a range of

0.2–5000 ms. Thus, the input is ‘‘broadband’’ and stimulates the neuron over most

of its operating range; that is, the statistical properties of the random train are highly

consistent with the known physiological properties of hippocampal neurons.

Nonlinear response properties are expressed in terms of the relation between pro-

gressively higher-order temporal properties of a sequence of input events and the

probability of neuronal output, and are modeled as the kernels of a functional power

series. In the case of a third-order estimation:

yðtÞ ¼ G0 þ G1½h1; xðtÞ� þ G2½h2; xðtÞ� þ G3½h3; xðtÞ� þ � � � ;

where yðtÞ is the output, ðGiÞ is a set of functionals, and ðhiÞ is a set of kernels that

characterize the relationship between the input and output:

G0ðtÞ ¼ h0

G1ðtÞ ¼
ð
h1ðtÞxðt� tÞ dt

G2ðtÞ ¼ 2

ðð
h2ðt; tþ DÞxðt� tÞxðt� D� tÞ dD dt
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Figure 12.2
(A) Sample electrophysiological recording from a hippocampal granule cell during random impulse train
stimulation. Each arrow indicates when an electrical impulse is applied to perforant path inputs (see figure
12.1). Large, positive-going, unitary (action potential) events indicate when an input generated an output
response from the granule cell; smaller, positive-going events (e.g., to the first impulse and last two
impulses) indicate when an input generated only a subthreshold response (no output). The time delay (la-
tency) from the input event (arrow) to the granule cell response is equivalent to the parameter t in the
equations in the text (all latencies are less than 10 ms); the intervals between input events are equivalent
to the parameter D in the equations in the text. (B) First-order kernel, h1ðtÞ, which represents the average
probability of an action potential output occurring (with a latency of t) to any input event in the train. (C)
Second-order kernel, h2ðt;DÞ, which represents the modulatory e¤ect of any preceding input occurring D
ms earlier on the most current impulse in the train. (D) Third-order kernel, h3ðt;D1;D2Þ, which represents
the modulatory e¤ects of any two preceding input events occurring D1 ms and D2 ms earlier on the most
current impulse that are not accounted for by the first- and second-order kernels.
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G3ðtÞ ¼ 6

ððð
h3ðt; tþ D1; tþ D1 þ D2Þxðt� tÞxðt� t� D1Þ

� xðt� t� D1 � D2Þ dD1 dD2 dt

The train of discrete input events defined by xðtÞ is a set of d-functions. The first-,

second-, and third-order kernels of the series are obtained using a variety of estima-

tion procedures (Lee and Schetzen, 1965; Krausz, 1975; Marmarelis, 1990).

To clarify the interpretation of the kernels in the context of results for a typical

granule cell of the hippocampus, the first-order kernel, h1ðtÞ, is the average probabil-
ity of an action potential output occurring (with a latency of t) to any input event in

the train. The intensity of stimulation was chosen so that the first-order kernel had a

probability value of 0.4–0.5 (figure 12.2B). The second-order kernel, h2ðt;DÞ, repre-
sents the modulatory e¤ect of any preceding input occurring D ms earlier on the most

current impulse in the train (figure 12.2C). Second-order nonlinearities are strong:

intervals in the range of 10–30 ms result in facilitation as great as 0.3–0.4 (summing

the first- and second-order values, the probability of an output event is 0.8–1.0 for

this range of intervals). The magnitude of second-order facilitation decreases as the

interstimulus interval lengthens, with values of D greater than 100 ms leading to sup-

pression; for example, interstimulus intervals in the range of 200–300 ms decrease the

average probability of an output event by approximately 0.2. The third-order kernel,

h3ðt;D1;D2Þ, represents the modulatory e¤ects of any two preceding input events oc-

curring D1 ms and D2 ms earlier on the most current impulse that are not accounted

for by the first- and second-order kernels (figure 12.2D). The example third-order

kernel shown is typical for hippocampal granule cells, and reveals that combinations

of intervals less than approximately 150 ms lead to additional suppression of granule

cell output by as much as 0.5. This third-order nonlinearity represents in part satura-

tion of second-order facilitative e¤ects.

Improved Kernel Estimation Methods

The output of hippocampal and other cortical neurons exhibits a dependence on

the input temporal pattern that is among the greatest of any class of neuron in the

brain, because of a wide variety of voltage-dependent conductances found through-

out their dendritic and somatic membranes. Despite this, input-output models of the

type described here provide excellent predictive models of cortical neuron behavior.

Depending on the circumstances, kernels to the third order, and sometimes even to

the second order alone, can account for 80–90% of the variance of hippocampal neu-

ron output. Until recently, high-order nonlinearities have been di‰cult to estimate

accurately; traditional kernel estimation methods (e.g., cross-correlation) are highly

sensitive to noise and thus require long data sequences. To circumvent these problems,

we have developed several novel methods for estimating nonlinearities that are signif-
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icantly more e‰cient and result in substantially improved kernel estimates (Krieger

et al., 1992; Marmarelis, 1990; V. Z. Marmarelis and Orme, 1993; Saglam et al.,

1996; V. Z. Marmarelis and Zhao, 1997; Iatrou et al., 1999a,b; Alataris et al., 2000).

Several of the new methods involve the use of feedforward artificial neural

networks (ANN). We have compared the Volterra-Wiener (cross-correlation) and

ANN models in terms of their prediction ability on test data. The results showed

two major advantages of the new-generation methodologies: (1) a significant reduc-

tion in the required data length (by a factor of at least 10) to achieve similar or better

levels of prediction accuracy, and (2) an ability to model higher-order nonlinearities

that could not be detected using traditional kernel estimation methods. In addition,

we have recently developed methods capable of estimating nonstationary processes,

and demonstrated their e‰cacy with long-term forms of hippocampal cellular

plasticity (Xie et al., 1992, 1997; Thiels et al., 1994; Baudry, 1998). The ability to ac-

curately characterize nonstationarities provides the opportunity to extend the appli-

cability of this approach to modeling adaptive properties of hippocampal and other

cortical neural systems as well.

In total, the kernel functions represent an experimentally based model that is

highly accurate in describing the functional dynamics of the neuron in terms of

the probability of neuron output as a function of the recent history of the input. As

such, the kernels provide a mathematically ‘‘compact’’ representation of the result-

ing composite dynamics because each of the many contributing biological processes

need not be represented individually, or for that matter, even be known. In addi-

tion, because of the broadband nature of the test stimulus, the model generalizes

to a wide range of input conditions, even to input patterns that are not explicitly

included in the random impulse train. As such, the kernels not only provide the

basis for a biologically realistic neural network model, but also perhaps an ideal

basis for an implantable neural prosthesis. An input-output model can be sub-

stituted for a neuron on which the model is experimentally based, without regard

to the variability in neural representations that must exist from individual to individ-

ual, or the nearly infinite range of environmental stimuli that would give rise to those

representations.

Neural Network Models with Biologically Realistic Dynamics

Conventional, Artificial Neural Networks

Brainlike processing is often modeled mathematically as artificial neural networks,

or networks of processing elements that interact through connections. In artificial

neural network models, a connection between processing elements—despite the com-

plexity of the synaptic nonlinear dynamics described earlier—is represented as a sin-

gle number to scale the amplitude of the output signal of a processing element. The
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parameters of an artificial neural network can be optimized to perform a desired task

by changing the strengths of connections according to what are termed learning

rules, that is, algorithms for when and by how much the connection strengths are

changed during optimization. This simplification of a synapse as a number results in

two fundamental limitations. First, although a processing element can be connected

to a large number of other processing elements, it can transmit only one, identical

signal to all other elements. Second, only the connection strength can be changed

during the optimization process, which amounts to merely changing the gain of the

output signal of a processing element.

The ‘‘Dynamic Synapse’’ Neural Network Architecture

In an e¤ort to develop more biologically realistic neural network models that include

some of the temporal nonlinear signal-processing properties of neurons, we have

developed the ‘‘dynamic synapse’’ neural network architecture (Liaw and Berger,

1996). In this scheme, processing elements are assumed to transmit information by

variation in a series of point-process (i.e., all-or-none) events, and connections

among processing elements are modeled as a set of linear and nonlinear processes

so that the output becomes a function of the time since past input events (figure

12.3). By including these dynamic processes, each network connection transforms a

sequence of input events into another sequence of output events. In the brain, it has

been demonstrated that the functional properties of multiple synaptic outputs that

arise from a given neuron are not identical. This characteristic of the brain also has

been incorporated as a second fundamental property of dynamic synapse neural net-

works. Although the same essential dynamics are included in each synapse originat-

ing from a given processing unit, the precise values of time constants governing those

dynamics are varied. The consequence arising from this second property is that each

processing element transmits a spatiotemporal output signal, which, in principle,

gives rise to an exponential growth in coding capacity.

Furthermore, we have developed a ‘‘dynamic learning algorithm’’ to train each dy-

namic synapse to perform an optimized transformation function so that the neural

network can achieve highly complex tasks. Like the nonlinear dynamics described

earlier and included in the dynamic synapse network models, this learning algorithm

also is based on experimentally determined, adaptive properties of hippocampal cor-

tical neurons (which cannot be reviewed here; see Xie et al., 1992, 1997; Thiels et al.,

1994; Baudry, 1998), and is unique with respect to neural network modeling in that

the transformation function extracts invariant features embedded in the input signal

of each dynamic synapse. The combination of nonlinear dynamics and dynamic

learning algorithm provides a high degree of robustness against noise, which is a

major issue in processing real biological signals in the brain, as well as real-world
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Figure 12.3
Properties of a processing element of a traditional artificial neural network versus properties of a process-
ing element of a biologically realistic dynamic synapse neural network (see text for explanation).
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signals, as demonstrated in our case studies of speaker-independent speech recogni-

tion described in the following paragraphs.

Application to Speech Recognition

Current state-of-the-art speech recognition technology is based on complex, multi-

stage processing that is not biologically based. Although commercial systems can

demonstrate impressive performance, they are still far from performing at the level

of human listeners. To test the computational capability of the dynamic synapse neu-

ral network, two strong constraints were imposed: the network must be simple and

small, and it must accomplish speech recognition in a single step, that is, with no pre-

processing stages. Our system not only achieved this goal, but as will be described

later, also performed better than human listeners when tested with speech signals cor-

rupted by noise, marking the first time ever that a physical device has outperformed

humans in a speech recognition task (Liaw and Berger, 1997, 1998, 1999).

Invariant Feature Extraction Two characteristics of speech signals, variability and

noise, make its recognition a di‰cult task. Variability refers to the fact that the

same word is spoken in di¤erent ways by di¤erent speakers. Yet there exist invariant

features in the speech signal, allowing the constant perception of a given word, re-

gardless of the speaker or the manner of speaking. Our first application of the dy-

namic synapse neural network model to speech recognition was aimed at extracting

those invariant features for a word set with very di‰cult discriminability, for ex-

ample, ‘‘hat’’ versus ‘‘hut’’ versus ‘‘hit’’ (fourteen words in total), spoken by eight dif-

ferent speakers. The variability of two signals can be measured by how well they

correlate with each other. As seen in figure 12.4 (lower left), the speech wave forms

of the same word spoken by two speakers typically show a low degree of correlation;

that is, they are quite di¤erent from each other. However, the dynamic synapse neu-

ral network can be trained to produce highly correlated signals for a given word

(figure 12.4, lower right). Thus, the dynamic synapse neural network can extract

invariant features embedded in speech signals that are inherently very di‰cult to dis-

criminate, and can do so with no preprocessing of the data (only the output from a

microphone was used) using a core signal-processing system that is extremely small

and compact.

Robustness with Respect to White Noise To test the robustness of the invariant fea-

tures extracted by the dynamic synapse neural network, the network was first trained

to recognize the words ‘‘yes’’ or ‘‘no’’ randomly drawn from a database containing

utterances by some 7000 speakers with no added noise. We then evaluated the

performance of the model when the speech signals not used during training were

corrupted with progressively increasing amount of white noise [measured by the
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Figure 12.4
Conceptual representation of speaker-independent word recognition identification by a dynamic synapse
neural network. Inputs to the network are digitized speech wave forms from di¤erent speakers for the
same word, which have little similarity (low cross-correlation) because of di¤erences in speaker vocaliza-
tion. The two networks shown are intended to represent the same network on two di¤erent training or test-
ing trials; in a real case, one network is trained with both (or more) speech wave forms. On any given trial,
each speech wave form constitutes the input for all five of the input units shown in the first layer. Each unit
in the first layer of the network generates a di¤erent pulse-train encoding of the speech wave form (‘‘inte-
grate and fire neurons’’ with di¤erent parameter values). The output of each synapse (arrows) to the
second layer of the network is governed by four dynamic processes (see figure 12.3), with two of those pro-
cesses representing second-order nonlinearities; thus, the output to the second layer neurons depends on
the time since prior input events. A dynamic learning rule modifies the relative contribution of each dy-
namic process until the output neurons converge on a common temporal pattern in response to di¤erent
input speech signals (i.e., high cross-correlation between the output patterns).
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signal-to-noise-ratio (SNR) in decibels]. The results showed that our model is ex-

tremely robust against noise, performing better than human listeners tested with the

same speech dataset (figure 12.5). This is first time ever that a speech recognition sys-

tem has outperformed human listeners, and the dynamic synapse system did so by a

considerable margin.

Comparison with a State-of-the-Art Commercial Product and Robustness with Respect

to Conversational Noise The objective of this study was to compare the perfor-

mance of the dynamic synapse neural network and one of the best state-of-the-art,

Figure 12.5
Comparison of recognition rates by the dynamic synapse neural network system (dark gray bars) and
human listeners (light gray bars) for speaker-independent identification of the words ‘‘yes’’ and ‘‘no’’
when increasing amounts of white noise are added to the speech wave forms. Note that a 50% recognition
rate is equivalent to chance.
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commercially available systems, namely, the Dragon Naturally Speaking speech rec-

ognition system. Since the Dragon system operates in a speaker-specific mode (the

system is trained specifically for one user), the speech signals consist of the words

‘‘yes,’’ ‘‘no,’’ ‘‘fire,’’ ‘‘stop’’ spoken by a single speaker. The Dragon system was

trained in two stages. In the first stage, the system was fully trained using the mate-

rial provided by the manufacturer. In the second stage, it was further trained using

the four target words.

Once the training was complete, both the dynamic synapse neural network and the

Dragon system were tested with noise-added speech signals at various SNRs. A real-

istic, ‘‘conversational’’ type of noise was used: a recording of one female speaker and

one male speaker voice-reading newspapers simultaneously, along with the broadcast

of a news program on the radio. The same noise-added speech signals were used to

test human performance (average of five subjects). The results (figure 12.6) show that

the Dragon system is extremely sensitive to noise and performs poorly under noisy

conditions. Its performance degraded to 50% correct when the SNR was þ20 dB,

whereas both the dynamic synapse neural network and human listeners retained a

100% recognition rate. The Dragon system failed to recognize any word when the

SNR was þ10 dB, whereas the dynamic synapse neural network and human listeners

performed at 100 and 90% recognition rates, respectively. Furthermore, the dynamic

synapse neural network was highly robust and performed significantly better than

human listeners when the SNR dropped below þ2.5 dB. For example, for an SNR

ranging from 0 to �5 dB, human performance varied from a 30 to 15% correct rate,

while the dynamic synapse neural network retained a 75% correct rate. These find-

ings show that human listeners perform far better than the Dragon system in terms

of robustness against noise. Performance degradation under noisy conditions is well

documented for all speech recognition systems based on conventional technology,

like that used in the Dragon system. In contrast, the dynamic synapse neural network

significantly outperformed the Dragon system, demonstrating a robustness superior

to human listeners under highly noisy conditions.

The significance of these findings with respect to developing a neural prosthesis for

replacing cognitive functions is severalfold. First, the dynamic synapse neural net-

work used in the studies described here is remarkably small: only eleven processing

units and thirty synapses. The computational power of such a small network suggests

that extremely large neural networks will not be required for developing replacement

silicon-based circuitry for the brain. Second, the speaker-independent applications of

the dynamic synapse technology were performed using an unsupervised learning al-

gorithm, meaning that the features of the variable speech signals upon which success-

ful word recognition were based were not identified a priori; the network was allowed

to find an optimized feature set independently. In the context of an implantable pros-

thesis, this is obviously a desirable advantage in the sense that it may be reasonable
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Figure 12.6
Comparison of recognition rates by the dynamic synapse neural network system (dark gray bars), human
listeners (light gray bars), and the Dragon Naturally Speaking System (white bars) for speaker-specific
identification of the words ‘‘yes’’ and ‘‘no’’ when increasing amounts of conversational noise (see text) are
added to the speech wave forms. Note that a 25% recognition rate is equivalent to chance.
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to consider devices that adapt to the host brain by optimizing a set of initial param-

eters. Given that we know so little about the features used in pattern recognition for

many parts of the brain, having to depend on their a priori identification would rep-

resent a substantial impediment to progress. Third, the robustness of the trained dy-

namic synapse system clearly suggests that combining biologically based nonlinear

dynamics with biologically based learning rules may provide a new paradigm for

identifying algorithms of the brain for feature extraction and pattern recognition,

and opens the possibility for studying radically novel feature sets that are not predict-

able on the basis of current theoretical frameworks.

Analog Very Large-Scale Integrated Implementations of Biologically Realistic Neural

Network Models

To this point, we have addressed issues concerning the first two essential require-

ments for an implantable neural prosthesis. We have shown that it is possible to

obtain experimentally based, biologically realistic models that accurately predict hip-

pocampal neuron behavior for a wide range of input conditions, including those

known to be physiologically relevant. In addition, we have shown that the funda-

mental, nonlinear dynamic properties of hippocampal neurons can provide the basis

for a neural network model that can be trained according to biologically realistic

learning rules to respond selectively to temporal and spatiotemporal patterns coded

in the form of point-process spike trains, which are found in the brain. Moreover,

patterns can be recognized by the network model even when input signals are

embedded in substantial amounts of noise, a characteristic both of real-world condi-

tions and of signaling in the brain. In the next section we address the third essential

requirement, namely, the need to implement neuron and neural network models in

silicon, so that miniaturization will allow intracranial implantation.

Design and Fabrication of Programmable, Second-Order, Nonlinear Neuron Models

We have designed and fabricated several generations of hardware implementations

of our biologically realistic models of hippocampal neural network nonlinear dynam-

ics using analog very large-scale integrated (VLSI) technology (Tsai et al., 1996,

1998a,b). The model expressions of the first- and second-order kernel functions

describing those dynamics are computed in analog current mode instead of digital

format to fully exploit massively parallel processing capability. The particular objec-

tive of the design described here was to incorporate programmable, second-order

nonlinear, model-based parameters so that a flexible, generally applicable hardware

model of hippocampal nonlinearities could be developed. A fabricated and tested

3� 3 neural network chip is shown in figure 12.7.
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Figure 12.7
(A) Hybrid analog-digital VLSI implementation of a 3� 3 network of hippocampal neuron models with
second-order nonlinear properties. (B) A second-order kernel function generated by on-chip circuitry (com-
pare with the second-order kernel shown in figure 12.2). The first-order kernel value and the second-order
nonlinear function are programmable from o¤-chip circuitry.



The information transmitted among neurons is encoded in the interpulse intervals

of pulse trains. Di¤erent synaptic weights can be applied to the input pulse trains.

Each neuron executes the convolution of a model-based second-order kernel function

as

h2ðDÞ ¼ a� 10�bD � c� 10�dD

The parameters a; b; c; d, and an h1 o¤set are programmable not only so that the

same design can accommodate nonlinearities characteristic of di¤erent subpopula-

tions of hippocampal neurons, but also so that training-induced modification of non-

linearities can be accommodated.

The programmable pulse-coded neural processor for the hippocampal region was

fabricated by a double-polysilicon, triple-metal process with a linear capacitor option

through the Metal Oxide Semiconductor Implementation Service (MOSIS) service.

Each neuron contains two input stages connected to two outputs of other neurons

in the network. The exponential decay in the expression is implemented by a modi-

fied, wide-range Gilbert multiplier and a capacitor. During initialization of the chip,

the initial state potentials are loaded to the state capacitors. The parameter values

are stored on capacitors. These analog values are refreshed regularly by o¤-chip cir-

cuitry and can be changed by controlling software. Bias voltages to set the multi-

pliers and variable resistors in the correct operational modes also are required.

When operating with a 3.3-V power supply, simulation results show a 60-dB dy-

namic range. Depending on the complexity of the multiplier design, the resistance

can vary from 300 W to 300 kW. If the state potential is larger than the threshold

when an input pulse arrives, an output pulse is generated. Testing of fabricated chips

shows a reproducibility of experimentally determined input-output behavior of hip-

pocampal neurons with a mean-square error of less than 3%.

Design of a High-Density Hippocampal Neuron Network Processor

Although it is not yet known how many silicon neurons will be needed for an e¤ec-

tive prosthesis, the number is likely to be in the hundreds or thousands. This de-

mands a capability to scale up the type of fundamental design described here. To

accomplish this goal, we have utilized concepts of neuron sharing and asynchronized

processing to complete the design of a high-density neuroprocessor array consist-

ing of 128� 128 second-order nonlinear processing elements on a single microchip

(Tsai et al., 1999). Each single processor is composed of four data bu¤ers, four

indium bump flip-chip bonding pads (see later discussion), and one shared-neuron

model with second-order nonlinear properties (figure 12.8). The processing procedure

is as follows: (1) The input data are held in an input memory as the data arrive. (2)

The input array is divided in 16 parts, with each part a 32� 32 array. (3) Each part
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Figure 12.8
Schematic diagram for a scalable version of the programmable, second-order, nonlinear neural processor
shown in figure 12.6. This layout is scalable to a 128� 128 neuron model network.
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of the input data is sent to the processor array, with each neuron processing four buf-

fered data, one at a time. (4) All parameters of the kernel function are updated. (5)

After all 16 data parts have been processed, the results are stored in an output bu¤er

array.

This design not only provides programmable kernel parameters, but also incor-

porates indium bumps (four per processor) for flip-chip bonding to a second connec-

tivity matrix chip. It (see figure 12.9) allows considerable connection flexibility by

separating circuitry dedicated to processor dynamics from circuitry dedicated to

connection architecture. With the additional technology for flip-chip bonding, the

combined multichip module (not yet fabricated) will function much like a multilayer

cellular neural network (CNN) structure (Chua and Yang, 1988).

VLSI Implementation of a Dynamic Synapse Neural Network

The VLSI implementation of a limited-capacity dynamic synapse neural network has

been designed and fabricated using Taiwan Semiconductor Manufacturing Company

(TSMC) 0.35-mm technology, as shown in figure 12.10 (Park et al., 2000). The dy-

namic synapse neural network chip includes six input neurons, two output neurons,

one inhibitory neuron, eighteen dynamic synapses, and twenty-four input-output

(I/O) pads. Each synapse consists of seven di¤erential processing blocks, two hys-

teresis comparators, one and gate, two transmission gates, and biasing circuitry. As

described in the previous section, the functional properties of each synapse are deter-

mined by four dynamic processes, each having di¤erent time courses. Three of the

processes are excitatory and one is inhibitory; two of the processes represent di¤erent

second-order nonlinearities.

The resistor-capacitor exponential decay circuit for the dynamic processes is im-

plemented using poly (poly1/poly2) capacitance and N-type metal-oxide semicon-

ductor (NMOS) active registers to save chip area. The voltage-controlled active

NMOS channel resistance and current source are used to achieve the programmabil-

ity of parameter values of the dynamic synaptic neural network by controlling biases.

Each di¤erential equation-processing block is implemented with fully program-

mable voltage-controlled active resistors, poly capacitors, and a current source.

Each di¤erential processing circuit consists of two metal-oxide semiconductor field-

e¤ect transistors (MOSFETs) for active resistors, one poly capacitor, three control

MOSFETs, two transmission gates, and one inverter. A novel, e‰cient low-power

analog summation circuit was developed without using operational amplifiers, which

require significant silicon area and more power consumption.

The capacity of this prototype dynamic synapse microchip is limited (because of

the small number of output neurons), and not yet fully determined because the upper

capacity depends in large part on the decoding scheme used to distinguish di¤erent
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temporal patterns, an issue that is still under investigation. Nonetheless, the success-

ful implementation of this neural network model demonstrates that biologically real-

istic nonlinear dynamics that perform a high-level pattern recognition function can

be realized in hardware. We are currently working on an expanded design that will

provide for 400 dynamic synapses and on-chip implementation of the dynamic learn-

ing rule used to optimize feature extraction by the network.

What we have attempted to clarify in this section are several points relevant to

a hardware implementation of biologically realistic neural network models. First,

nonlinear dynamics (at least to the second order) characteristic of hippocampal and

other cortical neurons can be e‰ciently implemented in mixed, analog-digital VLSI.

The designs not only can be programmed to accommodate adaptive alterations in

the dynamics of the microchip neuron models, but also can be scaled up to sub-

stantial numbers of processing elements. Considerable flexibility can be realized by

separating the circuitry that implements processing element nonlinearities from the

circuitry that implements the connectivity among the elements. Processing element

and connectivity microchips can then be integrated as a multichip module.

Finally, a prototype of a dynamic synapse neural network capable of limited

speech recognition has been designed, fabricated, and tested, demonstrating that a

biomimetic neural network performing a cognitive function of neurological interest

is feasible. Although the capacity of the microchips fabricated to date is admittedly

not large, it is critical to distinguish between a functionality that significantly allevi-

ates clinical symptoms and a functionality that reproduces the capabilities of an

intact brain. A stroke patient who has lost all capability for speech need not be pro-

vided with a 5000-word vocabulary to substantially improve his or her quality of life;

a vocabulary of even 20 words would constitute a marked recovery of function. Even

the next-generation microchip neural networks will have a capacity that warrants

considering their future clinical use, provided other technical barriers, such as inter-

facing with the living brain, can be overcome.

The Neuron/Silicon Interface

The major issues with regard to an e¤ective neuron/silicon interface that will support

bidirectional communication between the brain and an implantable neural prosthesis

Figure 12.9
Hybrid analog-digital VLSI implementation of a 4� 4 network of hippocampal neuron models with
second-order nonlinear properties designed using the layout scheme shown in figure 12.7. Also shown in
the inset is an indium bump (two are included for each neuron model, one for input, one for output) that
allows flip-chip bonding of this neuron-processing microchip to a second connectivity microchip (not
shown) so that nonlinear processor properties and network connectivity properties are incorporated in dif-
ferent microchips of a multichip module.
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include (1) density of interconnections, (2) specificity of interconnections, and (3) bio-

compatibility and long-term viability. The issue of density of interconnections refers

to the fact that virtually all brain functions are mediated to a degree by a mass action

of neural elements; that is, changing the activity of one neuron in a system is unlikely

to have any substantial influence on the system’s function, and thus on the cognitive

process that depends on that function. The neuron/silicon interface must be designed

so that a large number of neurons are a¤ected by the implanted microchip.

The issue of specificity of interconnections refers to the fact that the neurons com-

prising a given brain region are not randomly distributed throughout the structure;

most brain systems have a clear and definable ‘‘cytoarchitecture.’’ For the hippocam-

pus, the major features of this cytoarchitecture are a dense grouping of cell bodies

into cell layers, with dendritic elements oriented perpendicular to those layers (see

figure 12.1B, top). The issue of specificity also extends to the organization of intrin-

sic circuitry. In the case of the hippocampus, the entorhinal-to-dentate-to-CA3-to-

CA1-subiculum pathway is composed of di¤erent cell populations that are spatially

segregated from one another. Any neuron/silicon interface must be designed to be

consistent with the cytoarchitectural constraints of the target tissue. Finally, the issue

of long-term viability refers to the obvious problems of maintaining e¤ective func-

tional interactions between a microchip and brain tissue on a time scale of years be-

cause periodic replacement of an implant is not likely to be feasible.

Density and Specificity

With regard to density and specificity, one can either attempt to integrate these de-

sign considerations into the computational component of the prosthesis, or separate

the computational and interface functions into di¤erent domains of the device and

thus deal with the design constraints of each domain independently. We have chosen

the latter strategy, developing silicon-based multisite electrode arrays with the ca-

pability to electrophysiologically record and stimulate living neural tissue. The fun-

damental technologies required for multichannel, bidirectional communication with

brain tissue already exist commercially and are being developed further at a rapid

rate (Egert et al., 1998; Hiroaki et al., 1999). Silicon-based, 64- and 128-electrode

site recording and stimulating arrays having spatial scales consistent with the hippo-

campus of a mammalian animal brain (which is much smaller than that of a human)

are now routinely used in our laboratory and several others (Gross et al., 1982;

Figure 12.10
(A) Hybrid analog-digital VLSI implementation of a six-input, two-output unit dynamic synapse neural
network. The circuit design also includes one additional processing unit as part of the output layer that
provides feedback to the dynamic synapses. In total, there are eighteen dynamic synapses. Network con-
nectivity is fixed. (B) Results of a circuit simulation showing input and output pulse events, and analog
potentials equivalent to excitatory and inhibitory synaptic events generated in the network connections.
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Wheeler and Novak, 1986; Stoppini et al., 1997; Egert et al., 1998; Stenger et al.,

1998; Hiroaki et al., 1999; Berger et al., 1999; Gholmieh et al., 1999; Han et al.,

2000; James et al., 2000; Shimono et al., 2000). In the near future, electrode densities

su‰cient to influence most of the neurons in a two-dimensional plane of a targeted

brain region will be operational.

Most commercially available multisite electrode arrays have a uniform geometry,

however, leaving the issue of specificity unresolved. For this reason, we have focused

the greater part our research with respect to neural/silicon interfaces on designing

multisite arrays in which the spatial distribution of electrode sites conforms to the

cytoarchitecture of the target brain region, that is, array geometries specific to the

hippocampus (Soussou et al., 1999). For example, one multisite electrode array that

we have fabricated and tested was designed for CA3 inputs to the CA1 region of the

rat hippocampus. Two rectangular arrays were constructed using silicon nitride and

indium tin oxide (ITO): one 2� 8 array of electrodes was oriented to stimulate CA3

axons that course through the dendritic region of CA1, and a second 4� 12 array

was positioned and oriented to record CA1 dendritic and cell body responses evoked

as a consequence of stimulation through the first array (figure 12.11). This particular

conformal probe had sixty-four 40� 40-mm stimulating-recording pads and a 60-mm

center-to-center interelectrode distance within each array.

The silicon nitride layer was deposited over the ITO electrodes, providing

insulation both between the various electrodes and between each electrode and the

hippocampal tissue. The layers were patterned to provide apertures only at the elec-

trode tips. Silicon nitride films approximately 1500 Å thick were deposited using the

plasma-enhanced chemical vapor deposition (PECVD) technique. Electrical char-

acterization using a VLSI electronic probing station showed excellent insulation ca-

pability and electrical isolation, with less than a 1.8% cross-talk level on adjacent

recording pads on the SiNx-insulated probes, measured over a frequency range

from 100 Hz to 20 kHz with a sinusoidal wave form and 50 mV root-mean-square

to 1000 mV root-mean-square signal amplitudes. Experimental testing with acutely

prepared rat hippocampal slices consistently demonstrated evoked extracellular field

potentials with signal-to-noise ratios greater than 10:1.

Additional mask designs that incorporate several key modifications have been suc-

cessfully completed and fabricated. First, the recording-stimulating pads have been

Figure 12.11
(A) Schematic layout of a conformal multisite electrode array designed for electrical stimulation of CA3
inputs to the CA1 region of the hippocampus. (B) Photomicrograph of a hippocampal slice positioned on
a conformal array fabricated on the basis of the layout shown in A. (Bottom) panel two extracellular field
potential responses recorded from one of the electrode sites in the rectangular array located in CA1 follow-
ing two stimulation impulses administered to two of the electrode sites (bipolar stimulation) in the rectan-
gular array located in CA3.
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resized to 30-mm diameters, a size approaching the diameter of a single neuron cell

body. Combined with smaller center-to-center distances between pads, the smaller

pad size will allow higher density arrays for greater spatial resolution when interfac-

ing with a given brain region, and thus better monitoring and control of that region.

Second, several new layouts have included di¤erent distributions of stimulation-

recording pads that geometrically map several subregions of the hippocampus (figure

12.12). This represents the beginnings of a group of interface devices that will o¤er

monitoring and control capabilities with respect to di¤erent subregions of the hippo-

campus, and ultimately other brain structures as well. In addition, more recent de-

signs have utilized gold as the stimulation-recording electrode material to allow

higher injection current densities during stimulation. Electrical characterization of

the most recent generation of conformal neural probe arrays indicates, despite the

higher density of electrodes, less than a 4.1% cross-talk level on adjacent recording

pads.

Biocompatibility and Long-Term Viability

Many of the problems with respect to biocompatibility and long-term viability can-

not be fully identified until the working prototypes of multielectrode arrays described

earlier have been developed to the point that they can be tested through long-term

implantation in animals. Nonetheless, we have begun to consider these issues and to

develop research strategies to address them. One of the key obstacles will be main-

taining close contact between the electrode sites of the interface device and the target

neurons over time. We have begun investigating organic compounds that could be

used to coat the surface of the interface device to increase its biocompatibility and

thus promote outgrowth of neuronal processes from the host tissue and increase their

adhesion to the interface materials.

Poly-d-lysine and laminin are known to be particularly e¤ective in promoting ad-

hesion of dissociated neuron cultures (cultures prepared from neonatal brain; neu-

rons are prepared as a suspension and then allowed to adhere, redevelop processes,

and reconnect into a network) onto inorganic materials (Stenger et al., 1998; James

et al., 2000), and we have investigated their e‰cacy with regard to our hippocampal

conformal multisite electrode arrays (Soussou et al., 1999, 2000). Poly-d-lysine and

laminin were applied to the surface of the conformal arrays shown in figure 12.11,

but application was limited to linear tracks aligned with the long axis of each column

of electrode sites in the rectangular array. When dissociated hippocampal neurons

were prepared on the surface of the array, the adhesion of cells and the extension of

their processes were restricted to the treated regions; that is, hippocampal neurons

were attracted, attached, and proliferated synaptic connections almost exclusively

in parallel, linear tracks over the columns of electrodes (see chapter 11). Although

this represents only an initial step in addressing the issues of biocompatibility, it is
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Figure 12.12
(A) Photomicrograph of a hippocampal slice placed over a conformal multisite electrode array designed
and fabricated for stimulation and recording of activity from the dentate gyrus and CA3 regions. (B)
Detailed visualization of the three sets of electrodes included in the dentate-CA3 array; each consists of a
3� 6 electrode site rectangular array, with the two vertically oriented arrays designed for stimulation and
recording from the dentate gyrus, and the horizontally oriented array designed for stimulation and record-
ing from the CA3 region. (C) Schematic representation of a transverse section through the hippocampus
illustrating the relative locations of its subfields.
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through approaches such as these that we anticipate finding solutions to biocompati-

bility problems.

Although much of the electrophysiological testing of interfaces to date has been

completed using acutely prepared hippocampal slices (which remain physiologically

viable for 12–18 hr), we also have begun using hippocampal slice cultures to test the

long-term viability of the neuron/silicon interface (Gholmieh et al., 1999). The latter

preparations involve placing slices of hippocampus on a semipermeable membrane in

contact with tissue culture media, and maintaining them long-term in a culture incu-

bator (Stoppini et al., 1997). Slice cultures can be prepared directly onto multisite

electrode arrays, which then can be taken out the incubator and tested periodically

to examine the robustness of the electrophysiological interaction with the hippocam-

pal tissue. Preliminary findings have revealed that bidirectional communication re-

mains viable for at least several weeks, although we have yet to systematically test

long-term functionality. The main point to be made here is that novel preparations

like the slice culture will provide highly useful platforms for identifying and resolving

viability issues.

Conclusions

The goal of this chapter was to bring into focus what we believe will be one of the

premier thrusts of the emerging field of neural engineering: to develop implantable

neural prostheses that can coexist and bidirectionally communicate with living brain

tissue and thus substitute for a cognitive function lost as a result of damage and/or

disease (figure 12.13). Because of progress in neuroscience, molecular biology, bio-

medical engineering, computer science, electrical engineering, and materials science,

it is now reasonable to begin defining the combined theoretical and experimental

pathways required to achieve this end. We have described here major progress on

four of the essential requirements for an implantable neural prosthesis, achieved

through a series of experimental and modeling studies using the hippocampus: bio-

logically realistic neuron models that can e¤ectively replace the functional properties

of hippocampal cells, the concatenation of the neuron model dynamics into neural

networks that can solve a pattern recognition problem of cognitive and neurological

relevance, the implementation of biologically realistic neural network models in

VLSI for miniaturization, and the development of silicon-based multisite electrode

arrays that provide bidirectional communication with living neural tissue.

This progress does not constitute a set of final solutions to these four requirements.

Additional work is needed on nonlinear models of neuron dynamics, both with re-

spect to characterization of higher-order nonlinearities and particularly cross-input

nonlinearities. All neurons receive inputs from more than one other source, and

interactions among separate inputs most likely result in nonlinearities specific to
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those interactions that cannot be characterized by our present experiments or model-

ing. Likewise, the dynamic synapse neural network models must be expanded both in

terms of number of processing elements and numbers of network layers to begin

approaching the complexity and mass action of brain subsystems for which a neural

prosthesis will substitute. VLSI implementations of neural network models must be

scaled up as well, and better incorporate e‰cient and novel interchip transmission

technologies to achieve the high densities required for intracranial implantation. A

critical factor is that future generations of biomimetic devices will require low-power

designs to be compatible with the many temperature-sensitive biological mechanisms

of the brain, an issue that our program has yet to address.

Finally, there remains much concerning organic–inorganic interactions that needs

to be investigated for long-term compatibility between silicon-based technology and

Figure 12.13
Conceptual representation of an implantable neural prosthesis for replacing lost cognitive function of
higher cortical brain regions. The concept is illustrated here using a prosthesis substituting for a portion
of the hippocampus. The two essential components of the prosthetic system are a ‘‘neurocomputational’’
multichip module that performs the computational functions of the dysfunctional or lost region of the hip-
pocampus, and a ‘‘neuromorphic’’ multisite electrode array that acts as a neuron/silicon interface to allow
the neurocomputational microchips to both receive input from, and send output to, the intact brain.
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neural tissue. Although these problems are formidable, the rapid advances now

occurring in the biological and engineering sciences promise equally rapid progress

on elements of the global problem of intracranial implantable neural prostheses, par-

ticularly given the synergy that should emerge from cooperative e¤orts between the

two sets of disciplines.
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13 Brain Circuit Implementation: High-Precision Computation from
Low-Precision Components

Richard Granger

Attempts to understand, let alone augment or supplant, the operation of brain

circuitry rely not only on our knowledge of isolated neuron, circuit, and brain slice

behavior but also on the impressive computations achieved by assemblies of these

components. The variability of the constituent elements of these circuits suggests

that they are arranged to operate in ways not obvious from standard engineering

points of view. The quite nonstandard (and in many cases, apparently substandard)

unit components of these circuit designs (synapses and cells that are probabilistic, rel-

atively low precision, very sparsely connected, and orders of magnitude slower than

the typical elements of most engineering devices) provide constraints on their pos-

sible contributions to the overall computation of neural circuits. Since the resultant

brain circuits outperform extant engineering devices in many realms of crucial appli-

cation ranging from recognition of complex visual or auditory signals to motoric tra-

versal of complex terrain, our ability to imitate them can lead to two related but

distinct classes of scientific advance: new and unanticipated types of hardware de-

vices based on the unveiled engineering principles, and enabling technologies for the

integration of extrinsic devices with intrinsic brain circuitry. This latter capability

implies two directions of improved communication: a heightened ability to ‘‘listen

to’’ and interpret brain activity, and a growing faculty for ‘‘talking back’’ to the

brain, which may ameliorate impaired brain function or enhance normal function.

Background and Approach

The computations performed by human (or even rat) brains have not yet been

matched by engineering approaches despite tremendous amounts of money spent on

the attempts. It is not known why painstakingly developed artificial approaches con-

tinue to fall short of human performance. Even approaches that attempt to simulate

complex human behaviors may well be based on descriptions of those behaviors

that are incorrectly or incompletely specified. A prerequisite to replicating (let alone

exceeding) human abilities may turn out to be a clear computational understanding



of brain mechanisms. Among the vast body of data on brain mechanisms are a few

key facts:

� The evolution of the mammalian forebrain (telencephalon) gave rise to the emer-

gence of new circuits that do not appear in other classes (e.g., reptiles, birds). Prob-

ably the most advanced of these, thalamocortical circuits, are also by far the most

numerous, accounting for an allometrically disproportionate space in mammalian

brains, including the vast majority of circuits in the human brain.

� Study of the anatomical design and physiological operation of these circuits has led

to the derivation of specific algorithms that these circuits may be carrying out.

� This derivation suggests that distinct brain regions carry out distinct algorithms,

each contributing a di¤erent set of computations, with further composite algorithms

arising from interactions among multiple brain regions.

� The key features of most telencephalic circuits include sparse connectivity among

neurons ( pa 0:001); low-precision synaptic connections (a 4 bits); simple processors

(addition, multiplication); simple ‘‘learning’’ rules (fixed size increase or decrease);

slow operation (milliseconds per operation versus nanoseconds for typical computer

hardware); variable, probabilistic responses (versus the fixed, deterministic responses

of engineering devices).

These characteristics should be a severe liability for brain circuits, raising the ques-

tion of how they can achieve the advanced behavioral performance exhibited by

organisms. Indeed, it is sometimes instead assumed that these substandard assess-

ments of brain components are incorrect, driving an ongoing search for hidden

precision in brain components, including carefully timed synchronies, as opposed to

the variable synchronies underlying electroencephalograms (EEGs); precisely timed

sequences of neuronal firing (spike trains), as opposed to sequences driven probabil-

istically (such as Poisson sequences); added topography in brain wiring, as opposed

to the coexistence of topographic and highly nontopographic circuits described by

much quantitative anatomical research; and complex high-precision synapses care-

fully arrayed on dendrites, as opposed to relatively low-precision synapses probabil-

istically arrayed. Typical artificial neural networks (ANNs) make use of some or all

of these ‘‘improvements’’ in neural machinery, enabling higher-precision computa-

tion. However, owing to the costs of the higher-precision machinery used, such net-

works sometimes have relatively high costs in space and time complexity, resulting in

systems that do not readily scale to problems of large size.

An alternative is that brain circuits do use sparse, probabilistic, slow, low-precision

components to perform the rapid, high-precision computations that apparently un-

derlie our advanced sensory and motor capabilities, via algorithms that combine

these components in such a way as to enable the emergence of precision com-
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putation. Work in our laboratory in recent years has shown how these biological

components, although impoverished from the viewpoint of standard engineering,

nonetheless may give rise to specific useful high-precision computational methods.

This research has resulted in the derivation of a range of algorithms, including hier-

archical clustering (Ambros-Ingerson et al., 1990; Kilborn et al., 1996); sequence pre-

diction (Granger et al., 1994; Aleksandrovsky et al., 1996); time dilation (Granger

et al., 1994); Bayes classification (Coultrip & Granger, 1994); high-capacity storage

and retrieval (Aleksandrovsky et al., 1996; Whitson, 1998; Rodriguez et al., 2004);

reinforcement learning (Brucher, 2000); and novelty detection, data compression,

and hash coding (Granger et al., 1994; Rodriguez et al., 2004).

If these impoverished components can carry out these advanced algorithms, then

the low precision of the components becomes an advantage rather than a liability.

It enables relatively cheap (sparse, slow, low-precision) components to do a job that

otherwise would require much more expensive apparatus. In particular, this suggests

the utility of direct hardware implementations in which low-precision components

carry out these algorithms. ANNs typically require computing units with eight or

more bits of precision, with relatively dense connectivity among these units, and their

computations degrade in performance with reductions in either precision or connec-

tion density. A system reliant on these characteristics cannot use lower-precision

components to carry out the same computations, and cannot readily be scaled to

large sizes.

(30-35 µm)
(400-500 µm)

I
1-4 cells

II-III
15-109 cells

IV
12-64 cells

V
13-58 cells

VI
13-89 cells

Figure 13.1
Pyramidal cell modules (White and Peters, 1993) are anatomically organized by grouping apical dendrites
of layer II, III, and V cells, and have been proposed as candidate anatomical underpinnings of vertical
organizations of the cortex, such as columns (Mountcastle, 1957) that have only been described physiolog-
ically. Shown are typical ranges of numbers of neurons within each module; the variance decreases if cer-
tain less typical regions such as primary sensory and motor areas are excluded. The modules are roughly
30–35 mm in size and may be constituents of larger columnar arrangements.
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Thalamocortical Circuits

Figure 13.1 illustrates the key anatomical architectural characteristics of thalamo-

cortical circuits (Rodriguez et al., 2004). Neurons are vertically organized into ‘‘py-

ramidal cell modules’’ (White and Peters, 1993; Peters et al., 1994), roughly 30–35

mm across, consisting of distinct groups of layer V and layer II–III pyramidal cells

whose apical dendrites are commingled. Functional ‘‘columns’’ that are physiologi-

cally defined in terms of receptive field properties, rather than anatomical boundaries

(e.g., Mountcastle, 1957, 1978), are often described as 400–500 mm or more in extent

(Jones, 1981), thus comprising perhaps 200 pyramidal cell modules apiece.

Figure 13.2 illustrates the overall architecture of the thalamocortical system.

Neurons throughout the neocortex are organized into relatively stereotypical archi-

tectures. Although cortical studies describe some (subtle but potentially crucial) dif-

Figure 13.2
(a) Components and organization of the thalamocortical elements modeled. Included are features that re-
cur throughout much of the neocortex, especially in polysensory and association areas. Characteristics spe-
cific to primary sensory and motor areas are not modeled. (b) One primary loop through thalamocortical
circuitry. A¤erents from ‘‘core’’ thalamic nuclei (see text) project to layer IV and deep layer III; axons
from superficial layer small pyramidal cells engage in local excitatory-inhibitory circuits as well as giving
rise to collateral projections to deep layers and to adjacent cortical regions (not shown). Layer VI projects
back to the thalamic core as well as to overlying nucleus reticularis (N.Ret) neurons, which send inhibitory
connections to thalamic core cells. Throughout the ‘‘core’’ loop, the projections retain topographic rela-
tions. (c) In the other primary thalamocortical loop, thalamic ‘‘matrix’’ nuclei project broadly and di¤usely
to layer I, contacting the apical dendrites of layer II, III, and V cells. Layer V generates both descending
projections (predominantly to motor systems) and to matrix thalamic nuclei (Bourassa and Deschenes,
1995; Deschenes et al., 1998).
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ferences among various cortical regions (Galuske et al., 2000; Gazzaniga, 2000),

there are su‰cient shared characteristics to justify attempts to identify a common

basic functionality, which may be augmented by special-purpose capabilities in

some regions (Lorente de No, 1938; Szentagothai, 1975; Keller and White, 1989;

Castro-Alamancos and Connors, 1997; Rockel et al., 1980; Braitenberg and Schuz,

1998; Valverde, 2002). Two parallel circuit types co-occur, involving the topographic

projection of certain restricted thalamic populations and broad, di¤use projection

of the remaining thalamic neurons. It has been found that these two populations of

thalamic cells, distinguishable by their targets and topography, can also be identified

by their di¤erential immunoreactivity to two Ca2þ binding proteins. The former pop-

ulation, called thalamic ‘‘core’’ regions, exhibits immunoreactivity to parvalbumin,

whereas the latter, termed thalamic ‘‘matrix’’ nuclei, is reactive to calbindin (Moli-

nari et al., 1995; Jones and Hendry, 1989; Jones, 1998, 2001). The topographically

organized projections from the thalamic core synapse largely on layer IV and deep

layer III cells; the di¤use projections form synapses predominantly in layer I, on the

apical dendrites of layer II, III, and V cells. (Although the topographic a¤erents to

middle cortical layers, for example, lateral geniculate nucleus to primary visual cor-

tex, are often thought of as the primary input to the sensory neocortex, these fibers

actually comprise only about 6% of the synapses on their primary targets (layer IV

neurons), with the majority of the remaining a¤erents coming largely from lateral

corticocortical connections (Freund et al., 1985, 1989; Peters and Payne, 1993; Peters

et al., 1994; Ahmed et al., 1997).

Peripheral inputs activate thalamic core cells, which in turn participate in topo-

graphic activation of middle cortical layers; for example, ear ! cochlea ! auditory

brainstem nuclei ! ventral subdivision of medial geniculate nucleus (MGv) ! A1.

In contrast, matrix nuclei are most strongly driven by corticothalamic feedback

(Bender, 1983; Diamond et al., 1992a,b), supporting a system in which peripheral

a¤erents first activate core nuclei, which in turn activate the cortex (via a stereotypi-

cal vertically organized pattern: middle layers ! superficial layers ! deep layers),

which then activate both core and matrix nuclei via corticothalamic projections

(Mountcastle, 1957; Hubel and Wiesel, 1977; Di et al., 1990; Kenan-Vaknin and

Teyler, 1994).

Three primary modes of activity have typically been reported for thalamic neu-

rons: tonic, rhythmic, and arrhythmic bursting. The latter appears predominantly

during non-rapid eye movement (REM) sleep whereas the first two appear during

waking behavior (McCarley et al., 1983; Steriade and Llinás, 1988; McCormick and

Feeser, 1990; Steriade et al., 1990; McCormick and Bal, 1994; Steriade and Contre-

ras, 1995). There is strong evidence for ascending influences (e.g., basal forebrain) af-

fecting the probability of response of excitatory cells during the peaks and troughs of

such ‘‘clocked’’ inhibitory cycles. The most excitable cells will tend to fire in response
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to even slight a¤erent activity, whereas less excitable neurons will only be activated

in response to stronger input; this excitability gradient selectively determines the

order in which neurons will be recruited to respond to inputs of any given intensity.

Axons of inhibitory interneurons densely terminate preferentially on the bodies,

initial axon segments, and proximal apical dendrites of excitatory pyramidal cells in

the cortex, and thus are well situated to exert powerful control over the activity of

target excitatory neurons. When a field of excitatory neurons receives a¤erent

stimulation, those that are most responsive will activate the local inhibitory cells in

their neighborhood, which will in turn inhibit local excitatory cells. The typical time

course of an excitatory (depolarizing) postsynaptic potential (PSP) at normal resting

potential, in vivo, is brief (15–20 ms), whereas corresponding GABAergic (g-

aminobutyricacid) inhibitory PSPs last roughly an order of magnitude longer (80–

150 ms) (Castro-Alamancos and Connors, 1997). Thus excitation tends to be brief,

sparse, and curtailed by longer and stronger lateral inhibitory feedback (Coultrip

et al., 1992).

Based on the biological regularities specified, a greatly simplified set of operations

has been posited (Rodriguez et al., 2004). Distinct algorithms arise from simulation

and analysis of core versus matrix loops (see figure 13.2).

Thalamocortical ‘‘Core’’ Circuits

In the core loop, simulated superficial cells that initially respond to a particular input

pattern become increasingly responsive not only to that input but also to a range of

similar inputs (inputs that share many active lines, for example, small Hamming dis-

tances from each other), so that similar but distinguishable inputs will come to elicit

identical patterns of output from layer II–III cells, even though these inputs would

have given rise to slightly di¤erent output patterns before synaptic potentiation.

These e¤ects can be described in terms of the mathematical operation of clustering,

in which su‰ciently similar inputs are placed into a single category or cluster. This

can yield useful generalization properties, but somewhat counterintuitively, it pre-

vents the system from making fine distinctions among members of a cluster. For in-

stance, four similar inputs may initially elicit four slightly di¤erent patterns of cell

firing activity in layer II–III cells, but after repeated learning and synaptic potentia-

tion episodes, all four inputs may elicit identical activation patterns. Results of this

kind have been obtained in a number of di¤erent models with related characteristics

(von der Malsburg, 1973; Grossberg, 1976; Rumelhart and Zipster, 1985; Coultrip

et al., 1992).

Superficial layer responses activate deep layers. Output from layer VI initiates

feedback activation of the nucleus reticularis (NRt) (Liu and Jones, 1999), which in

turn inhibits the core thalamic nucleus (Ct). Since, as described, topography is pre-

served throughout this sequence of projections, the portions of Ct that become in-
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hibited will correspond topographically to those portions of layer II–III that were

active. On the next cycle of thalamocortical activity, the input will arrive at Ct

against the background of the inhibitory feedback from NRt, which has been shown

to last for hundreds of milliseconds (Huguenard and Prince, 1994; Cox et al., 1997;

Zhang et al., 1997). Thus it is hypothesized that the predominant component of the

next input to the cortex is only the uninhibited remainder of the input, whereupon

the same operations as before are performed. The result is that the second cortical

response will consist of a set of neurons quite distinct from those of the initial re-

sponse, since many of the input components giving rise to that first response are

now inhibited relative to their neighbors. Analysis of the second (and ensuing) re-

sponses in computational models has shown successive subclustering of an input:

The first cycle of response identifies the input’s membership in a general category of

similar objects (e.g., flowers); the next response (a fraction of a second later) identifies

its membership in a particular subcluster (e.g., thin flowers, flowers missing a petal),

then the next sub-subcluster, etc. Thus the system repetitively samples across time,

di¤erentially activating specific target neurons at a series of successive time points,

to discriminate among inputs.

An initial version of this derived algorithm arose from studies of feedforward exci-

tation and feedback inhibition in the olfactory paleocortex and bulb, and was readily

generalized to nonolfactory modalities (vision, audition) whose superficial layers are

closely related to those of the olfactory cortex, evolutionarily and structurally. The

method can be cast in the form of an algorithm (see table 13.1) whose costs compare

favorably with those in the (extensive) literature on such methods (Ambros-Ingerson

et al., 1990; Granger and Lynch, 1991; Gluck and Granger, 1993; Kilborn et al.,

1996; Rodriguez et al., 2004). Elaboration of the algorithm has given rise to families

of computational signal-processing methods whose performance on complex signal

Table 13.1
Formalization of core circuit operation

for input X
for C A winðX ;WÞ

Wj ( Wj þ kðX � CÞ
end_for

X ( X �mean½winðX ;WÞ�
end_for

where
X ¼ input activity pattern (vector)
W ¼ layer I synaptic weight matrix
C ¼ responding superficial layer cells (column vector)
k ¼ learning rate parameter
winðX ;WÞ ¼ column vector in W most responsive to X before lateral inhibition [e.g., Ej, maxðX �WjÞ]

Source: Rodriguez et al. (2004).
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classification tasks has consistently equaled or exceeded the performance of compet-

ing methods (Coultrip and Granger, 1994; Kowtha et al., 1994; Granger et al., 1997;

Benvenuto et al., 2002).

Analysis demonstrates good time and space costs for the derived algorithm. The

three time costs for the processing of a given input X are (1) summation of inputs

on dendrites, (2) computation of ‘‘winning’’ (responding) cells C, and (3) synaptic

weight modifications. For n learned inputs each of dimensionality N, in a serial pro-

cessor summation can be performed in OðnNÞ time; computation of winners takes

OðnÞ time; and modification of weights is OðN log nÞ. When carried out with appro-

priate parallel hardware, these three times reduce to Oðlog NÞ;Oðlog nÞ, and con-

stant times, respectively, that is, better than linear time. Space costs are similarly

calculated: given a weight matrix W , to achieve complete separability of n cues, the

bottom of the constructed hierarchy must contain at least n units as the leaves of

a tree consisting of log Bn hierarchical layers, if B is the average branching factor

at each level. Thus the complete hierarchy will contain@n½B=ðB� 1Þ� units, and the

space required to learn n cues of dimensionality N will be linear, or OðnNÞ time

(Ambros-Ingerson et al., 1990; Kilborn et al., 1996; Rodriguez et al., 2004).

Thalamocortical ‘‘Matrix’’ Circuits

In contrast to the topography-preserving projections in the ‘‘core’’ loop between Ct

and the cortex, the di¤use projections from L.V to the matrix thalamic nucleus (Mt)

and from Mt back to cortex in the ‘‘matrix’’ loop are modeled as sparsifying

and orthogonalizing their inputs, so that any structural relationships that may obtain

among inputs are not retained in the resulting projections. Thus input patterns in Mt

or in L.V that are similar may result in very di¤erent output patterns, and vice versa.

As has been shown in previously published studies, owing to the nontopographic na-

ture of layer V and Mt, synapses in L.V are very sparsely selected to potentiate; that

is, relatively few storage locations (synapses) are used per storage or learning event

(Granger et al., 1994; Aleksandrovsky et al., 1996; Whitson, 1998; Rodriguez et al.,

2004). For purposes of analysis, synapses are assumed to be binary (i.e., assume the

lowest possible precision, that synapses are either naive or potentiated). A sequence

of length L elicits a pattern of response according to the algorithm given here for su-

perficial layer cells. Each activated superficial cell C in turn activates deep layer cells.

Feedforward activity from the matrix thalamic nucleus also activates L.V. Synapses

on cells receiving activation from both sources (the intersection of the two inputs)

become potentiated, and the activity pattern in layer V is fed back to Mt. The loop

repeats for each of the L items in the sequence, with the input activity from each item

interacting with the activity in Mt from the previous step (see Rodriguez et al., 2004).

The activation of layer V in rapid sequence via superficial layers (in response to an

element of a sequence) and via Mt (corresponding to feedback from a previous ele-
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ment in a sequence) sparsely selects responding cells from the most activated cells in

the layer (Coultrip et al., 1992) and sparsely selects synapses on those cells as a func-

tion of the sequential pattern of inputs arriving at the cells. Thus the synapses poten-

tiated at a given step in L.V correspond to both the input occurring at that time step

and the orthogonalized feedback arising from the input just prior to that time step.

The overall e¤ect is ‘‘chaining’’ of elements in the input sequence via the ‘‘links’’ cre-

ated as a result of coincident layer V activity corresponding to current and prior in-

put elements. As in the operating rule described by Granger et al. (1994), the sparse

synaptic potentiation enables L.V cells to act as a novelty detector, selectively re-

sponding to those sequential strings that have previously been presented. The implicit

data structures created by the operation of this system are trees in which initial

sequence elements branch to their multiple possible continuations (‘‘tries,’’ Knuth,

1997). Su‰cient information therefore exists in the stored memories to permit

completion of arbitrarily long sequences from prefixes that uniquely identify the se-

quence. Thus the sequence ‘‘Once upon a time’’ may elicit (or ‘‘prime’’) many possi-

ble continuations, whereas ‘‘Four score and seven’’ elicits a specific continuation.

The resulting algorithm (see table 13.2) can be characterized in terms of com-

putational storage methods that are used when the actual items that occur are far

fewer than those that in principle could occur. The number of possible eight-letter

sequences in English is 268, yet the eight-letter words that actually occur in English

number less than 10,000, that is, less than one ten-millionth of the possible words.

The method belongs to the family of widely used and well-studied data storage tech-

niques of ‘‘scatter storage’’ or ‘‘hash’’ functions, known for the ability to store large

amounts of data with extreme e‰ciency. Both analytical results and empirical studies

have found that the derived matrix loop method requires an average of less than two

bits (e.g., just two low-precision synapses) per complex item of information stored.

Table 13.2
Formalization of matrix circuit operation

for input sequence XðLÞ
for C A TopographicSuperficialResponse ½XðLÞ�

for VðsÞ A CXNNtResponse ½XðL� 1Þ�
Potentiate ½VðsÞ�
NNtðLÞ ( NontopographicDeepResponse ðVÞ

end_for
end_for

end_for

(where
L ¼ length of the input sequence
C ¼ columnar modules activated at step XðLÞ
VðsÞ ¼ the synaptic vector of responding layer V cell
NNtðLÞ ¼ response of nonspecific thalamic nucleus to feedback from layer V )

Source: Rodriguez et al. (2004).
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The method exhibits storage and successful retrieval of very large amounts of infor-

mation at this rate of storage requirement, leading to extremely high estimates of the

storage capacity of even small regions of cortex. Moreover, the space complexity of

the algorithm is linear, or OðnNÞ for n input strings of dimensionality N; that is, the

required storage grows linearly with the number of strings to be stored (Granger

et al., 1994; Aleksandrovsky et al., 1996; Whitson, 1998; Rodriguez et al., 2004).

Circuits of the Striatal Complex

The basal ganglia, or striatal complex, is a collection of disparate but interacting

structures including the caudate-putamen, globus pallidus, subthalamic nucleus, and

substantia nigra pars compacta (SNc). It is the second largest telencephalic com-

ponent after thalamocortical circuits, phylogenetically predating the mammals and

operating as the primary brain engine for reptiles. In reptiles, and in mammals with

relatively small brain-to-body size ratios, the primary anatomical e¤erents of the

striatal complex descend to the brainstem nuclei, presumably driving complex se-

quential motor movements, including species-specific behaviors (e.g., stalking,

grooming). In all mammals, the striatal complex is tightly linked to the anterior neo-

cortex. As brain size grows allometrically larger, a number of fundamental relation-

ships between the neocortex and the striatal complex are altered, predominantly as a

result of the disproportionate growth of the anterior neocortex:

� Fascicular growth: the connection pathways between the anterior and posterior

neocortex grow, greatly increasing the relative size of the large axon bundles (fasci-

culi) connecting them.

� Corticostriatal loop growth: the dual e¤erent pathways from the striatal complex,

one descending to the brainstem nuclei and one ascending to the anterior neocortex

(via the ventral thalamus), change in relative size; the cortical outputs grow far larger

than the descending outputs.

� Pyramidal tract growth: descending outputs from the anterior cortex to motor sys-

tems grow disproportionately larger than the descending striatal motor outputs.

These changes in anatomical design are illustrated in figure 13.3; the elements dis-

cussed grow disproportionately with increases in brain-to-body size ratios, becoming

most notable in humans. In relatively small-brained mammals such as mice, the pri-

mary motor area of the neocortex is an adjunct to the striatally driven motor system.

Whereas damage to the motor cortex in mice causes subtle impairments in motor

behavior, damage to the motor cortex in humans causes paralysis. In this example

of encephalization of function (Jackson, 1925; Ferrier, 1876; Karten, 1991; Aboitiz,

1993), motor operations are increasingly ‘‘taken over’’ by the cortex as the size of the

pyramidal tract overtakes that of the descending striatal system. The role of the stria-
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tal complex in mammals with large brain-to-body ratios is presumably altered to re-

flect the fact that its primary inputs and outputs are now to the anterior neocortex; in

other words, it is now primarily a tool or ‘‘subroutine’’ available for query by the an-

terior cortex. Its operations then are most profitably viewed in light of its dual utility

either as an organizer of complex motor sequences (in small-brained mammals) or as

an informant to the anterior cortex (in large-brained mammals).

Figure 13.4 schematically illustrates the primary components of the striatal com-

plex. Striking di¤erences from the circuitry of the thalamocortical system include

the very di¤erent, apparently specialized designs of these components: matrisomes

(matrix), striosomes (patch), globus pallidus, pars interna and externa (pallidum),

tonically active cholinergic neurons (TACs), and substantia nigra pars compacta

(SNc). In contrast with the thalamocortical system, which is dominated by glutama-

tergic and local GABAergic neurotransmitter systems, the striatal complex depends

Figure 13.3
Primary constituents of mammalian telencephalon and subcortical connections. (a) The posterior neocor-
tex makes strong reciprocal connections with dorsal thalamic nuclei, as well as with the limbic system,
which in turn provides descending projections to hypothalamic regulatory systems. The anterior neocortex,
with corresponding strong reciprocal connections to ventral thalamic nuclei, also projects to the basal gan-
glia (striatal complex), which in turn projects to brainstem nuclei. (b) In mammals with larger brain-to-
body size ratios, a number of allometric changes occur, of which three of the largest are highlighted: (1)
growth of the fascicular connections between the posterior and anterior cortices, (2) growth of e¤erent
pathways from the striatal complex to the cortex via the ventral thalamus and concomitant reduction of
the relative size of the descending projections from the striatal complex, and (3) an increase in size of the
descending pyramidal tract projections from the cortex to motor systems, as though in compensation for
the reduced descending striatal pathway.
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on a broad variety of di¤erent neurotransmitter pathways, including GABA, gluta-

mate (Glu), dopamine (DA), acetylcholine (ACh), and substance P (Sp) among

others.

The two pathways from the cortex through the matrix components of the striatal

complex involve di¤erent subpopulations of cells in matrisomes (matrix): (1) MSN1

neurons, which express dopamine D1 receptors, project to the globus pallidus pars

interna (GPi), which in turn projects to the ventral thalamus and back to the cortex;

(2) MSN2 neurons, which express D2 receptors, project to the globus pallidus pars

externa (GPe), which in turn projects to the GPi (and thence to the thalamus and

cortex). Unlike thalamocortical circuits, in which long axon projections are glutama-

tergic, the MSN and GP projections are GABAergic, inhibiting their targets. Thus

cortical glutamatergic activation of MSN1 cells causes inhibition of GPi cells, which

otherwise inhibit thalamic and brainstem targets; hence MSN1 cell activation disin-

hibits, or enhances, thalamic activation of the cortex and striatal activation of brain-

stem nuclei. In contrast, an extra GABAergic link is intercalated in the pathway

from MSN2 neurons to the output stages of the matrix. It can be seen that activation

of MSN2 neurons decreases thalamic activation of the cortex and striatal activation

of brainstem nuclei. The two pathways from MSN1 and MSN2 neurons are thus

termed ‘‘go’’ and ‘‘stop’’ pathways respectively, for their opposing e¤ects on their

Figure 13.4
Schematic illustration of the striatal complex (basal ganglia). Glutamatergic cortical a¤erents activate both
matrisomal (matrix) and striosomal (patch) targets. Two GABAergic matrix pathways from medium spiny
neurons (MSN) through the pallidum project to brainstem motor systems, and back to cortical targets via
the thalamus. The patch projects GABAergically to the substantia nigra pars compacta (SNc) and to
tonically active cholinergic neurons (TACs), which in turn make cholinergic projections to the matrix.
Both patch and matrix receive dopaminergic input from the SNc, which in turn receives ascending infor-
mation conveying external ‘‘reward’’ and ‘‘punishment.’’
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ultimate motor targets. A complex combination of activated (‘‘go’’) and withheld

(‘‘stop’’) muscle responses (e.g., to stand, walk, throw) can be created by coordinated

operation over time of these pathways.

Two primary a¤erents to the striosomes are cortical and ascending inputs. The for-

mer are the same as the inputs to the matrix (despite the schematized depiction in the

figure, patch components are distributed throughout, and colocalized with, matrix).

The ascending inputs to the patch denote ‘‘reward’’ and ‘‘punishment’’ information

and have been shown to up- and downregulate dopamine responses from the SNc

(as well as other dopaminergic sites) in response to external stimuli carrying innate

or learned valences (e.g., water to a thirsty organism). A cortically triggered action,

followed by an ascending DA reward signal from the SNc to the patch, selectively

enhances active cortical glutamatergic synapses onto both matrix and patch targets.

Patch output back to the SNc then inhibits a DA response, so that increased cortical

activation of the patch (via enhanced synaptic contacts) will come to limit the DA

input from the SNc. On any given trial, then, the size of the DA signal from the

SNc comes to reflect the size of the actual ascending DA input (i.e., the reward

signal) that occurred over previous trials. Thus with repeated experience, adaptive

changes occur in both matrix and patch. Initially random matrix responses to a

cortical input become increasingly selected for responses that produce reward, and

initial naive striosomal responses will become increasingly good ‘‘predictors’’ of

the size of the reward (or punishment) expected to ensue as a result of the action

(Brucher, 2000).

Tonically active cholinergic neurons represent a small fraction (<5%) of the num-

ber of cells in the striatal complex, yet densely contact cells throughout the matrix;

thus they most likely play a modulatory role rather than conveying specific informa-

tion. The GABAergic inhibition of these cells by the patch will come to increase for

those patch responses that lead to reward, since in these instances the cortical drivers

of these patch responses become synaptically enhanced. Thus in those circumstances

where cortical inputs lead to the expected reward, TAC cells will tend to have less

excitatory e¤ect on the matrix. Since the TAC a¤erents to matrix are dense and non-

topographic, they represent a random ‘‘background noise’’ input, which can increase

the variance in selected matrix responses to cortical inputs, making the striatally

selected motor response to a cortical input somewhat nondeterministic. The resulting

behavior should appear ‘‘exploratory,’’ involving a range of di¤erent responses to a

given stimulus. With repeated exposure to the stimulus, as some responses di¤eren-

tially lead to reward, the corresponding synapses in both matrix and patch will be

enhanced, leading to the increased probability of the selected responses (via matrix)

and increasingly accurate ‘‘prediction’’ of reward size (via the patch), as stated. An

additional e¤ect of a synaptic increase in the patch is that the a¤erent patch stimula-

tion of TAC cells will increase, inhibiting TAC activity and diminishing the breadth
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of the exploratory variability in the response just described. Thus as rewards occur,

not only will reward-associated responses be increasingly selected by the matrix, the

variability among those responses will decrease.

Applications and Implementations

The coordinated activity of simulated thalamocortical and corticostriatal loops has

yielded computational methods applicable to a variety of domains with surprising ef-

ficacy. Analysis of military signals showed these brain circuit-derived methods specif-

ically outperforming not only standard statistical approaches such as Bayesian nets

but also methods based on typical artificial neural network approaches such as back-

propagation (Kowtha et al., 1995). Analyses of electroencephalographic informa-

tion in populations of Alzheimer’s patients and matched control populations have

demonstrated that these brain circuit methods outperform even advanced statistical

approaches (projection pursuit). The resulting analyses, applied to the task of classi-

fying the subjects by diagnostic category (Alzheimer’s versus normal) proved signifi-

cantly more e¤ective than competing approaches (Benvenuto et al., 2002). These and

related brain circuit algorithms are currently under development for a range of addi-

tional applications.

The simplifying constraints that led to derivation of these novel algorithms implies

added e‰ciencies from direct hardware implementations. Figure 13.5 illustrates

candidate designs for three constituent elements of thalamocortical circuitry: (a) a

‘‘ladder’’ circuit that determines which cells in a thalamic nucleus will respond in

terms of their order of excitability; (b) a ‘‘winner-take-all’’ circuit that implements

the e¤ects of lateral inhibition in a typical cortical layer, selecting the most respon-

sive excitatory unit(s) and suppressing responses from others; and (c) a sparse, ran-

dom synaptic matrix connecting input axons (e.g., from thalamic matrix nuclei) to

dendrites in neocortical layer I, via synaptic elements of various designs (e.g., floating

gates; see Mead, 1989; Hasler et al., 1995; Shoemaker et al., 1992, 1996).

Figure 13.5
Designs for three constituents of thalamocortical circuitry. (a) A ‘‘ladder’’ circuit determining the order of
cell response by the order of excitability. (b) A competitive or ‘‘winner-take-all’’ circuit implementing the
e¤ects of lateral inhibition in typical cortical local circuits (see text). (c) Sparse, random synaptic matrix
connecting input axons (horizontal) with cortical dendrites (vertical) in nontopographic connectivity layers
such as neocortical layer I.
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Tasks that remain unsolved by current approaches range from complex visual

processing (even simple static images, let alone complex movies) and auditory tasks

(unconstrained voice recognition and speech processing) to broadened medical ap-

plications (increased diagnostic use as well as utility for amelioration and treatment

of neurological impairments). Algorithms constrained by the simplicities and weak-

nesses of actual brain circuits and their constituents (Ambros-Ingerson et al., 1990;

Anton et al., 1991; Coultrip et al., 1992; Coultrip and Granger, 1994; Granger et al.,

1994; Aleksandrovsky et al., 1996; Kilborn et al., 1996; Shimono et al., 2000;

Granger, 2002; Benvenuto et al., 2002; Rodriguez et al., 2004) have been shown to

have powerful computational properties and good costs in terms of space and time

complexity, indicating their ability to be scaled to large size, and have given rise

to novel systems for analyzing complex time-varying signals in military, commercial,

and medical applications.

Current work is focused on the use of these findings for novel circuit designs, new

approaches to medical signal processing, and enhancement of the two-way com-

munication between brain systems and extrinsic systems. Although initial visual face

and character recognition systems exist, these are kept from widespread use by their

shortcomings, such as high false-alarm rates. Similarly, current voice-processing sys-

tems (e.g., automated telephone operators) can process only simple and very brief

utterances, and remain limited by their inability to operate on extended speech

streams. The development of these and related systems will not only advance our

scientific understanding of mammalian telencephalic operation and provide novel de-

vice designs applicable to a broad variety of commercial, military, and medical task

domains, it will also increasingly enable two-way communication between brain cir-

cuits and extrinsic systems, with concomitant medical and scientific benefits.

References

Aboitiz, F. (1993) Further comments on the evolutionary origin of mammalian brain. Med. Hypoth. 41:
409–418.

Ahmed, B., Anderson, J. C., Martin, K. A. C., and Nelson, J. C. (1997) Map of the synapses onto layer 4
basket cells of the primary visual cortex of the cat. J. Comp. Neurol. 380: 230–242.

Aleksandrovsky, B., Whitson, J., Garzotto, A., Lynch, G., and Granger, R. (1996) An algorithm derived
from thalamocortical circuitry stores and retrieves temporal sequences. In IEEE International Conference
on Pattern Recognition, IEEE Computer Society Press, Los Alamitos, Ca. vol. 4, pp. 550–554.

Ambros-Ingerson, J., Granger, R., and Lynch, G. (1990) Simulation of paleocortex performs hierarchical
clustering. Science 247: 1344–1348.

Anton, P. S., Lynch, G., and Granger, R. (1991) Computation of frequency-to-spatial transform by olfac-
tory bulb glomeruli. Biol. Cybern. 65: 407–414.

Bender, D. B. (1983) Visual activation of neurons in the primate pulvinar depends on cortex but not colli-
culus. Brain Res. 279: 258–261.

Benvenuto, J., Jin, Y., Casale, M., Lynch, G., and Granger, R. (2002) Identification of diagnostic evoked
response potential segments in Alzheimer’s disease. Exper. Neurol. 176: 269–276.

Brain Circuit Implementation 291



Bourassa, J., and Deschenes, M. (1995) Corticothalamic projections from the primary visual cortex in rats:
A single fiber study using biocytin as an anterograde tracer. Neuroscience 66: 253–263.
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14 Hybrid Electronic/Photonic Multichip Modules for Vision and Neural
Prosthetic Applications

Armand R. Tanguay, Jr. and B. Keith Jenkins

In this chapter we describe one possible approach to the development of neural pros-

thetic devices. This approach is based on the design and fabrication of compact

modules containing multiple silicon very-large-scale integrated (VLSI) chips that im-

plement neural or neural-like functionality, including dense weighted (synapse-like)

interconnections among arrays of neuron-like units. These modules would be de-

signed for surgical implantation at the site of a diseased or lesioned brain region,

with interfaces to active brain tissue that would allow bidirectional transmittance of

signals between a layer of extant biological neurons and one or more surfaces of the

implanted module.

Our current e¤orts toward eventual implementation of these modules are in large

part based on a parallel e¤ort in which we have attempted to leverage recent ad-

vances in VLSI electronics, optics, and photonics to develop semiautonomous adap-

tive vision sensors. These vision sensors are designed to provide advanced object

recognition functions for robotic vision applications (among others), and involve the

mapping of biologically inspired vision models onto a combination of specific VLSI

circuitry and dense fan-out/fan-in interconnection patterns. Although these adaptive

vision modules are not intended for application as implant devices, the basic prin-

ciples of this approach potentially allow the development of implantable modules

with modifications in the specific devices and architectures employed. Also, due at-

tention must be paid to the problem of interfacing an implanted neural prosthetic

device to living nerve tissue.

As a direct result of the vision-based focus of our research to date, the types

of neuron-like units (hereinafter referred to as ‘‘neuron units’’) and interconnectivity

patterns that we are currently investigating are potentially most appropriate for im-

plantation in specific regions of the visual cortex, which comprises the largest volume

fraction of mammalian brains. Other types of neuron units as well as modified inter-

connectivity patterns that are specifically emulative of their biological counterparts

could in principle be incorporated in modules of this type to allow implantation

in other functional regions of the brain. For example, hippocampal neuron units,



along with their associated dense interconnections, might be incorporated to provide

modules that either imitate or emulate specific interconnected regions within the hip-

pocampus, and hence perform memory-related brain functions.

Our treatment of these emerging compact multiple-chip (so-called multichip)

modules in this chapter will use to a great extent the implementation of autonomous

visual functionality as a vehicle to describe the potential capabilities and technical

hurdles associated with this approach to the development of large-scale neural pros-

theses with inherent complex functionality. Generalization of the approach to other

regions of the brain will be included as appropriate.

We now briefly describe several observations that guide our research on an auton-

omous vision sensor, and on the constraints that specifically characterize vision appli-

cations and hence define key performance requirements. As we will show later, the

applicability of our vision sensor research to neural prostheses rests to a large degree

on the observation that many key performance requirements are common to the two

applications, so that a synthetic approach designed and fabricated within a common

technology base seems viable.

The recent emergence of such a common technology base has in large part been

enabled by significant advances in the psychology and physiology of vision, in

computational neurobiology, in hybrid analog/digital VLSI technology and parallel

processing systems, in micro-optics, in photonic technology, and in hybrid electronic/

photonic packaging over the past decade. This technology convergence has in turn

made the long-sought goal of an adaptive vision sensor appear feasible (Jenkins and

Tanguay, 1992; Tanguay et al., 2000; Veldkamp, 1993; Tanguay and Jenkins, 1996).

The development of both a generic theoretical understanding of, and a technology

implementation platform for, adaptive vision sensors could enable the development

of a wide range of advanced smart camera and smart display systems. In addition,

the rapid emergence of multimedia applications has both created a critical need for

advanced vision sensors and generated increased interest in both hybrid analog/

digital approaches and hybrid electronic/photonic systems implementations.

In parallel with these advances, adaptive vision applications that involve rapid

identification of objects, tracking of moving objects, and estimation of pose (the spa-

tial orientation of an object), such as those envisioned for augmented reality systems,

place stringent upper bounds on the computational throughput required to accom-

plish the desired visual task in times significantly less than those characteristic of

human perception and/or reaction. In many such applications, several hierarchical

stages of processing must be completed within this stringent time limit, including

(for example) image acquisition, image preprocessing, feature extraction, object rec-

ognition, extraction of image orientation with respect to environmental coordinates,

determination of course of action, and (in some cases) precise registration of com-

puter animation and/or graphics with respect to structured or natural environments.

296 Armand R. Tanguay, Jr. and B. Keith Jenkins



In addition to the requirement for rapid processing within a given time limit, many

emerging vision models and algorithms involve operations that are parallel in nature,

nonlinear in functionality, and both local and nonlocal in structure. The resulting

computational complexity places correspondingly complex demands on any envi-

sioned hardware implementations.

In order to satisfy these requirements, we are investigating a hybrid electronic/

photonic multichip module (PMCM) architecture based on multiple layers of silicon

VLSI detection and processing circuitry (Jenkins and Tanguay, 1992; Tanguay et al.,

2000) comprising arrays of neuron-like signal-processing units that are coupled (in the

layer-to-layer dimension) with dense photonic fan-out/fan-in interconnections (Tan-

guay et al., 1995, 2000; Tanguay and Jenkins, 1996, 1999; Tanguay and Kyriakakis,

1995). These interconnections are implemented by two-dimensional (2-D) arrays of

either multiple quantum well (MQW) modulators (illuminated by an integrated opti-

cal power bus) or vertical cavity surface-emitting lasers (VCSELs) that are flip-chip

bonded on a pixel-by-pixel basis to the silicon VLSI detector/processor array, in con-

junction with proximity-coupled di¤ractive optical element and microlens arrays that

implement 2-D weighted space-invariant or space-variant fan-out patterns, as de-

scribed in more detail in a succeeding section. As a consequence of the layer-to-layer

fan-out, the e¤ective projective field of a given input pixel (picture element) increases

with the number of following layers. Likewise, the e¤ective receptive field of a given

neuron unit increases with the number of preceding layers.

This layered, densely interconnected architecture is inspired by, but not directly

emulative of, biological vision systems (as well as many, if not all, functional regions

of the mammalian brain) in which multiple concatenated nonlinear operations are

interspersed with the weighted interlayer fan-out and fan-in of information. For ex-

ample, biological vision systems commonly exhibit high spatial complexity but also

relatively high layer-to-layer processing and signal propagation delays, whereas

photonic multichip modules are expected to exhibit more modest spatial complexities

in conjunction with much lower layer-to-layer delays. In order to e¤ectively map

emerging vision models and algorithms onto this hardware platform, we have in-

vestigated several approaches for using this intrinsic space-bandwidth tradeo¤ to

advantage.

In this chapter we describe the results of our multidisciplinary research e¤ort to

date, which has focused on an analysis of the biological imperative for layering

throughout the mammalian visual system; the mapping of biologically inspired vi-

sion models and algorithms onto the emerging hybrid electronic/photonic multichip

module platform; the incorporation of spatial and temporal multiplexing approaches

to implement computationally complex operations; and the design, fabrication, test-

ing, and integration of the corresponding hardware components.
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We begin by outlining several of the key functionality requirements for neural

prosthetic multichip modules that apply (to first order, at least) irrespective of the

technology base of implementation, and hence set the performance parameters that

must be met before any given technology can be applied to neural prosthetic devices.

Next we describe the envisioned architecture and implementation strategy of the

multichip modules. Several general principles extracted from neurobiological systems

are then described, particularly as they apply to the general problem of e‰ciently

imitating or emulating the functionality of a biological system. The hierarchical or-

ganization and mapping of various computational models onto the emerging hard-

ware platform are presented next, with specific focus on the mapping of biologically

inspired vision models and the extraction of a generalizable ‘‘toolbox’’ of mappable

functions. Tradeo¤s between spatial and temporal complexity (multiplexing tech-

niques) are discussed in the following section, based on the fact that mammalian

wetware and hybrid electronic/photonic hardware have vastly di¤erent performance

characteristics and limitations. The circuits and devices that comprise the emerging

hardware platform are then described individually, and the section concludes with a

discussion of the integration issues that are associated with the incorporation of such

devices in three-dimensional (3-D) photonic multichip modules. Projected perfor-

mance metrics for such modules are described next from the perspective of a com-

parison with somewhat-idealized biological neural networks. In the final section we

analyze the fundamental scientific and technological issues that a¤ect the further de-

velopment of densely interconnected neural implants.

Functionality Requirements for Neural Prosthetic Multichip Modules

The set of functionality requirements for prospective implantable neural prostheses

is, from the technological implementation perspective, at the very least a bit daunt-

ing. First, any candidate neural prosthetic multichip module must provide for a via-

ble interface with the living biological tissue surrounding the implant site, as shown

schematically in figure 14.1. This biotic/abiotic interface should optimally be three-

dimensional and therefore cover much of the external surface of the implanted mod-

ule. In addition, the interface should incorporate a high density of interconnection

sites (electrodes) at an electrode spacing (pitch) that corresponds to the mean neuron

Figure 14.1
(a) Conceptual diagram of a hybrid electronic/photonic multichip module (PMCM) surgically implanted
in a given brain region as a neural prosthesis, interfaced to living neural tissue and implementing both fixed
and adaptive functionality (after Kandel et al., 1991, figure 19-4, p. 278). (b) Expanded view of the neural
prosthetic device, showing a thinned and counteretched silicon substrate with electrodes on the front (top)
face of the prosthetic device, as well as additional electrodes on the rear (bottom) face, to allow direct con-
tact with neural tissue. In this case, only a two-layer structure is shown for illustration. Det., detector;
VCSEL, vertical cavity surface-emitting laser; GaAs, gallium arsenide.
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spacing in the adjacent living neural tissue, with the potential for penetration of the

interfacial connections through an intervening layer of damaged tissue. Optimally,

these interfacial arrays should reflect the local cytoarchitecture (functional layout)

of the implanted region, and in that sense instantiate ‘‘conformal’’ mappings (Berger

et al., 2001). Neural connections throughout the brain often project far beyond the

nearest neurons, with interconnection patterns that are determined both ontogeneti-

cally (by ‘‘nature’’) as well as adaptively (by ‘‘nurture’’). Thus a viable neural pros-

thesis will optimally contain an interface or set of interface devices that allow some

combination of 3-D interconnectivity as well as adaptivity under retraining for (pre-

sumably lost) behavioral functionality.

One possible method for developing flexible 3-D interconnections at the neural

tissue/prosthesis interface is shown in figure 14.2, which depicts once-dissociated

neonatal rat hippocampal neurons that have self-organized on a two-dimensional

array of aluminum electrodes, which in turn have been deposited on an insulating

layer of silicon dioxide (SiO2) thermally grown on a silicon (Si) substrate (Berger

et al., 2001). Initial clustering of multiple neurons on a given electrode is followed

by self-organized interconnections among neuron clusters that develop via axonal

and dendritic projections. These projections appear in the microscope to be highly

directive in that they grow with high selectivity toward other nearby neural clusters.

These features provide the prospect of incorporating once-dissociated biological cel-

lular arrays on the surface of an implantable neural prosthesis, which then provide

self-generated (and perhaps adaptively directed) 3-D interconnections with adjoining

healthy tissue.

Neural prosthetic modules must, at least within the first few layers of the module

at any prosthesis/tissue interface, be capable of interacting with biological signal

representations (such as spiking behavior) that are characteristic of the local brain

tissue. Some neural prostheses may prove to be successful with instantiations of this

signal representation alone throughout all of the interconnected layers of the device.

On the other hand, many neural prostheses will most likely contain multiple signal

representations, biological in nature near the interface but with progressive trans-

formations of representation farther from the surface in order to make e¤ective use

of the key technological characteristics of silicon VLSI electronics, optical elements,

and photonic devices. For example, in certain regions of the brain it may prove

advantageous to progress from neural spike encoding to a pure analog representa-

tion, with bidirectional translation back and forth between the two primary signal

representations.

The equivalent computational capacity (and complexity) associated with a neural

prosthesis is likely to be considerable, depending on the particular brain region in

which it is implanted as well as the degree of lost functionality. This computational

complexity can to some degree be usefully expressed in neural network terms as the
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Figure 14.2
Optical photomicrographs of a silicon very-large-scale integrated (VLSI) chip with an aluminum electrode
pattern (150-mm� 150-mm electrodes, with 50-mm separations between adjacent electrodes and 30-mm wide
interconnection lines), on which dissociated neonatal rat hippocampal cells have self-associated and self-
organized to provide a potential prosthetic interface for subsequent projection into living neural tissue at
a given lesion site.
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number of connections per second that can be implemented, or adaptively in terms

of the number of connection updates per second that can be accomplished. The

form of this computational complexity must take into account the fact that most

‘‘operations’’ performed throughout the brain involve nonlinear, nonlocal, adaptive,

complex, and hierarchical characteristics that must be ‘‘captured’’ in the prosthetic

device in some form or other. To first order, the computational complexity in a

neural prosthesis will scale with the number of neuron units that can be instantiated

within a given physical layer, the number of physical layers that can be intercon-

nected, and the degree of fan-out and fan-in that can be incorporated between pairs

of such physical layers.

Beyond computational capacity and complexity, the temporal bounds on any

functional implementation must satisfy strict latency constraints (the time from the

initiation of a given event, such as presynaptic reception of a set of spike trains at

the prosthesis/tissue interface, to the completion of any intervening signal processing

and signal transmission in either feedforward or feedback interconnections to living

tissue). Signals within the brain are believed to be well contained within a bandwidth

of 10 kHz or so, which therefore yields a first-order response-time requirement of

about 100 ms for interactions at or near a prosthesis/tissue interface, and perhaps 1–

100 ms for completion of significant (higher level) prosthetic functional interactions.

Although these are seemingly tight time constraints, they actually allow considerable

temporal multiplexing on the artificial prosthetic side, as discussed further in a suc-

ceeding section.

These concomitant requirements of low latency (low processing delay) and high

computational complexity, combined with associated biocompatibility restrictions

on size, power dissipation, weight, and reliability (longevity) are unlikely to be satis-

fied by conventional systems approaches based on microprocessor and digital signal

processor (DSP) chips. To satisfy these requirements, we are investigating the im-

plementation architecture and associated technology based on the hybrid electronic/

photonic multichip module approach introduced above, and described in detail in the

next section.

Envisioned Architecture and Implementation Strategy

A conceptual diagram of the 3-D integrated electronic/photonic multichip module

(PMCM) structure is shown in figure 14.3. Multiple layers of pixellated silicon

VLSI chips (chips that are divided into arrays of nearly identical devices or func-

tional regions) are densely interconnected by a combination of electronic, optical,

and photonic devices to produce either a space-invariant or space-variant degree of

fan-out and fan-in to each pixel (neuron unit, or processing node). These weighted

fan-out/fan-in interconnections are suggestive of the axonal projections, synapses,
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and dendritic tree structures that characterize biological organisms. The use of op-

tical and photonic devices in particular allows the implementation of such dense

weighted fan-out/fan-in interconnection patterns between adjacent physical layers

within the stack of chips without significant cross-talk, thus eliminating the need for

electrical connections that must penetrate through each chip. The incorporation of

these optical and photonic devices further provides for fan-out from one terminal

on a given chip to many terminals on the adjacent chip (with individual weights on

each connection).

In one such implementation (Tanguay et al., 1995, 2000; Tanguay and Jenkins,

1996, 1999; Tanguay and Kyriakakis, 1995), shown schematically in figure 14.4,

two-dimensional arrays of inverted cavity indium gallium arsenide/aluminum gal-

lium arsenide (InGaAs/AlGaAs) multiple quantum well modulators fabricated on a

gallium arsenide (GaAs) substrate provide optical outputs from a given integrated

layer of the structure. These MQW modulator arrays are flip-chip bonded on a

pixel-by-pixel basis to the silicon VLSI chips, which typically incorporate local opti-

cal detectors (for optical inputs from the previous layer), processors (either acting

alone or in concert with electrical inputs from nearest and next nearest neighbors

within the plane), memory elements (in the analog or digital domain), and modulator

drivers. Alternatively, the detectors can be co-integrated with the modulator elements

on the GaAs substrate, but at the cost of twice as many bump bonds per pixel. In

this modulator-based implementation, an optical power bus provides the requisite il-

lumination to the modulator elements, which act as an array of electrically driven

reflecting elements with varying reflectivities to incident light. The optical power bus

principally consists of an array of one-dimensional (1-D) rib waveguides with a 2-D

Silicon 
Electronics

Optics/
Photonics

Figure 14.3
Conceptual diagram of a three-dimensional (3-D) PMCM providing both emulative and nonemulative
neural-like functionality, and showing silicon analog/digital VLSI chips aligned in layers and interfaced
in the vertical (layer-to-layer) dimension with dense fan-out/fan-in optical interconnections.
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array of outcoupling gratings spaced to match the pitch of the modulator array, and

is powered by a semiconductor laser source or source array to provide the required

uniform 2-D array modulator readout beams. Proximity-coupled di¤ractive optical

element (DOE) arrays, designed to incorporate both focal power (lens) and weighted

fan-out functions, are used to establish interconnections that are modulated (tempo-

rally varied) in intensity by each modulator element and its associated Si driver cir-

cuit. Alternative versions of this combined focusing and fan-out DOE array element

can be employed, such as either combined refractive/di¤ractive elements or separate

concatenated DOE and microlens arrays.

In another such implementation (Tanguay et al., 1995, 2000; Tanguay and Kyria-

kakis, 1995; Tanguay and Jenkins, 1999), shown schematically in figure 14.5, 2-D

arrays of bottom-emitting vertical cavity surface-emitting lasers are flip-chip bonded

on a pixel-by-pixel basis to the silicon VLSI chips, which act in this case as VCSEL

drivers in addition to the functions described in the modulator case. This replacement

of the modulator array with a VCSEL array has the simplification of eliminating the

requirement for the optical power bus, provided the power dissipation of the VCSEL

array can be made low enough to allow for the requisite (aggregate) operational

bandwidth.

For the specific case of adaptive vision sensors, the design of the individual Si

VLSI chips, and in particular the use of spatiotemporal multiplexing techniques for

network implementation and signal-processing functions, is motivated by the recent
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Figure 14.4
Schematic diagram of one possible implementation of a multilayer hybrid electronic/photonic computa-
tion/interconnection element within the PMCM, showing a novel optical power bus and a di¤ractive opti-
cal element array. Only two elements within an N�N or other conformal geometry array, as well as only
two (of M) silicon chip layers are shown. MQW mod., multiple quantum well modulator.
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development of several promising biologically inspired vision algorithms that can po-

tentially be mapped into the emerging 3-D PMCM platform. Software-based imple-

mentations of these vision algorithms, which collectively include low-level, mid-level,

and high-level visual processing functions, have in a number of cases been directly

tested against human (and in some cases trained human) observers, with the result

that the recognition rates and even confusion matrices are surprisingly well corre-

lated (Biederman and Kalocsai, 1997).

As the level of representation extends from low-level vision through mid-level

vision to high-level vision operations, interconnections tend to become both more

sparse and more global; in some cases, particularly between functionally partitioned

vision-processing modules, dense global interconnections may be required. Both

local and global interconnection cases can be accommodated within the PMCM

architecture by incorporating novel stratified volume di¤ractive optical elements

(SVDOEs) (Tanguay et al., 1995, 2000; Tanguay and Jenkins, 1996, 1999; Tanguay

and Kyriakakis, 1995; Chambers and Nordin, 1999), as shown schematically in

figure 14.6 (as ‘‘volume holographic optical elements’’), which consist of multiple

layers of proximity-coupled and aligned DOEs that implement either space-variant

or space-invariant interconnection patterns with properties characteristic of volume

holograms. These new devices o¤er the advantages of planar fabrication methods

compatible with VLSI design rules, and thus could circumvent the di‰culties in-

herent in optical recording of traditional volume holograms.

Det. Elect. Det. Elect.

Det. Elect. Det. Elect.

VCSEL VCSELVCSEL VCSEL

Silicon

GaAs

 

Silicon

Diffractive
Optical
Element

Figure 14.5
Schematic diagram of a second possible implementation of a multilayer hybrid electronic/photonic compu-
tation/interconnection element within the PMCM, showing VCSEL and di¤ractive optical element arrays.
Only two elements within an N�N array or other conformal geometry array, as well as only two (of M)
silicon chip layers are shown.
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The extension of this envisioned architecture to the case of neural prostheses

involves replacing the neuron units in the interfacial layers with artificial neuron

units that emulate the key functionality of adjacent biological neurons, while provid-

ing dense fan-out/fan-in interconnectivity patterns characteristic of the specific brain

region within which the prosthetic device is implanted.

General Principles Extracted from Neurobiological Systems

The development of a viable neural prosthetic technology base will require the co-

development of a ‘‘toolbox’’ of implementable functions and architectures that

can be flexibly employed to mimic as closely as possible the cytoarchitecture of the

implanted region. Thus it is worth reviewing key general principles that can be ex-

tracted from neurobiological systems and then crafted in hybrid electronic/photonic

form, a base technology substrate that di¤ers in many respects from human wetware

(Mead, 1989). Although the following discussion is both based on and framed within

the human visual system (including the retina through the early visual cortex), these

architectural principles to a large extent apply throughout the mammalian brain.
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Figure 14.6
Densely interconnected 3-D hybrid electronic/photonic computational module, showing both local (dif-
fractive optical element) and global (volume holographic optical element) optical interconnections.
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Biological vision systems exhibit a number of common themes, including (1) a pro-

pensity for layering of the processing architecture (Hubel, 1988; Wandell, 1995), (2)

the employment of massive parallelism with simple local processing units and mini-

mal (if any) local storage within each processing unit, (3) the use of a multiplicity of

neuron unit types and associated fan-out and fan-in patterns (which gives rise to a set

of interpenetrating neural network topologies), (4) the incorporation of dense inter-

connections at all scales (from local to global, among multiple brain regions; Zeki,

1993) with a high degree of fan-out and fan-in at each processing node within the

visual cortex, (5) adaptivity on multiple time scales as exhibited by both short-term

and long-term plasticity, (6) distributed storage of information as exemplified by the

plasticity of neuronal interconnection weights at individual synapses, (7) an associa-

tive memory organizational construct, (8) the potential importance of temporal cor-

relations for both synaptic plasticity and neuron activation (von der Malsburg,

1981), and (9) the incorporation of more complex synaptic behavior, such as adap-

tive temporal dynamics within each synapse (Liaw and Berger, 1996, 1999) (giving

rise to nonlinear dynamical system properties throughout). This latter feature

may prove key to understanding the responsivity of the vision system to continuous

rather than framed motion, as well as speech and sound recognition in the auditory

system.

Primate visual systems, for example, use dense layers of photoreceptors and neu-

rons at the lowest levels of vision processing, with primarily local, fixed, weighted

interconnections among multiple preprocessing layers within the retina (Dowling,

1992). The density of photoreceptors can be extremely high, ranging from about

1� 107 to 3� 107 cm�2 in the fovea (corresponding to a cone diameter on the order

of 1 mm) to 4� 106 cm�2 in the periphery (Wandell, 1995) (with a mixture of 4 to 10-

mm-diameter cones separated by a much higher density of 1-mm-diameter rods). This

density can be instructively compared with the current pixel densities of solid-state

imaging sensor arrays [including focal plane arrays in the visible, infrared (IR), and

ultraviolet (UV); charge-coupled device (CCD) arrays; and active pixel sensor (APS)

arrays], which range from about 1� 106 cm�2 to 4� 106 cm�2. Current smart pixel

arrays do not come close to achieving even these densities as a result of the incorpo-

ration of local processing circuitry within each pixel of the array.

For the stages of early vision implemented within the retina and the lateral genicu-

late nucleus, and extending into the lowest level of the visual cortex (region V1), the

interconnection mappings tend to be local (restricted neighborhoods), highly regular

(retinotopic), and only partially adaptive. Higher up the biological processing stream

(within the primate visual cortex), interconnections tend to become gradually less lo-

cal, less regular, and more adaptive, with a degree of interconnectivity (fan-out from

and fan-in to a given neuron) that is typically 103 to 104 (Hubel, 1988; Wandell,

1995; Dowling, 1992). Throughout the biological vision system, color information
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is merged and remerged with spatial information (Wandell, 1995), as well as with

inputs from other sensory modalities (beyond a certain stage of the visual system).

This variety and degree of interconnectivity is di‰cult if not impossible to achieve

in a current VLSI implementation within a given plane, as a result of limitations

both in the number of metallization layers allowed in a given process (five to seven)

and in the number of following devices that can be driven from a given device with-

out intervening bu¤ers and signal amplifiers.

Since the extension of VLSI chip implementations of smart cameras and biologi-

cally inspired vision systems from single-chip 2-D arrays to 3-D hybrid electronic/

photonic multichip modules is a principal focus of our technical approach, it is of

considerable interest to examine the biological imperative for layering. In primate

visual systems, layered structures provide a number of important functions. (1) The

existence of a layered structure provides a convenient mechanism for the implemen-

tation of multiple concatenated operations that include nonlinearities and weighted

fan-out/fan-in functions. The latter operation can be viewed as the convolution of a

2-D input function with a set of 2-D kernels (weighting functions), and provides the

basis for implementing both space-invariant and space-variant nonlocal operations

across multiple spatial scales. The separation of a given complex operation into sev-

eral sequential steps of nonlinearity/convolution also allows access to intermediate-

scale results for both feedforward and feedback connections that project beyond

intervening layers, as observed throughout biological vision systems. (2) Layering

also enables the implementation of higher-order complexity (hierarchical) operations

that can be derived from simple primitives implemented over multiple spatial scales.

(3) Layering naturally provides for the hierarchical buildup of the size of the recep-

tive field, so that nonlocal operations such as contrast enhancement and color con-

stancy can be implemented such that they are independent of the size of the object.

(4) Finally, layering carries with it the potential for increased algorithmic e‰ciency,

in that certain operations (e.g., even certain linearly decomposable convolutions at a

given kernel size) can be performed in multiple layers with less cost in computational

resources (e.g., fan-out from neurons via axons, synapses, and dendrites; total num-

ber of equivalent primitive operations; computational energy).

From a systems perspective, an unresolved question of considerable interest is the

overall e‰ciency of representation in biological vision systems, as defined by the e‰-

ciency with which higher-level representations are generated from the input visual

field through the use of lower-level primitives. Key to understanding this question is

the related e‰ciency of representation from the perspective of memory organization

(storage and recall). These two interrelated e‰ciencies are crucial to the e¤ective de-

sign of a biologically inspired vision system, particularly one implemented in a tech-

nology base with capabilities and characteristics vastly di¤erent from those provided

by biological wetware.
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The Hierarchical Organization and Mapping of Neurobiological Models

In this section we focus on the development of appropriate hierarchical organization

models for the implementation of neurobiological or neurobiologically inspired func-

tionality in neural prosthetic devices, and describe our current strategies for mapping

such models onto the emerging hybrid electronic/photonic multichip module plat-

form. As such, we again rely on the visual system as an applicable paradigm for gen-

eralization to other brain regions.

To date, the majority of attempts to develop artificial systems capable of vision-

related tasks are software based, implemented on digital computer hardware, and

rely on some combination of computational vision algorithms to perform func-

tions such as image processing, image segmentation, texture discrimination, pattern

recognition, stereopsis, motion detection, object recognition, and object tracking.

In current implementations, these computational vision algorithms employ synthetic

techniques (e.g., graphical, statistical, or decision theoretic in nature) to solve vision

tasks that are confined to limited problem domains.

Computational vision algorithms that work well in the real world are (usually

severely) constrained by the computational power available. As computational re-

sources improve in the future, both the sizes of the problem domains and the gener-

ality of the algorithms will increase. One approach that may enable such continued

progress is threefold: (1) an emphasis on biologically inspired algorithms; (2) the de-

velopment of special-purpose hardware and appropriate system architectures that are

to a degree biologically inspired as well, but that at the same time respect the techno-

logical constraints imposed by the hardware; and (3) a reductionist (and therefore

generalizable) approach to mapping algorithms onto the hardware. Such a reduc-

tionist approach involves the use of tools for implementing basic operations that are

common to vision models and algorithms. The di¤erences among vision models and

algorithms tend to reduce or even dissolve when viewed from the standpoint of the

basic operations needed to implement them. When developed from a biologically

inspired viewpoint, these basic operations are more likely to be e‰ciently implement-

able on special-purpose hardware that is highly parallel in structure and amenable to

the direct mapping of biologically inspired algorithms, such as the photonic multi-

chip module described in this chapter.

Consider, for example, three key yet complementary biologically inspired vision

models: recognition of highly disparate objects based on their constituent primitive

features [Mel’s SEEMORE object/scene recognition system and its variants, based

on taking selected combinations (conjunctions and disjunctions) of extracted primi-

tive features (Mel, 1997; Mel and Fiser, 2000)]; robust recognition and evaluation

of the similarities and di¤erences of related objects (e.g., faces) based on elastic

graph matching [von der Malsburg’s Dynamic Link Architecture, based on wavelet
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decomposition (Lades et al., 1993; Wiskott et al., 1998; Phillips, 1997)]; and recogni-

tion based on features that are invariant over 3-D transformations [Biederman’s Rec-

ognition by Components, based on the extraction of geometrically simple 3-D

components, or geons (Hummel and Biederman, 1992; Biederman and Gerhardstein,

1993; Biederman, 1995; Bar and Biederman, 1998; Biederman and Kalocsai, 1998;

Kalocsai and Biederman, 1998)]. Together, these three models exhibit the potential

for invariance not only to scale and orientation but also to object deformations

and 3-D viewpoints. A schematic depiction of the key features of these three com-

plementary models as they might be combined in a hierarchical vision system is

shown in figures 14.7 to 14.9. This conceptual system spans representational levels

from the input scene(s) to a higher-level invariant representation that can be used

by a subsequent processor for decision making, initiation of actions, and storage

in an associative memory, or passed on to processing modules that perform special-

ized functions.

From this viewpoint, the process of mapping a given vision algorithm onto the

hardware architecture can be divided into a sequence of two steps. The first step,

algorithm modeling, represents the original algorithm (such as object recognition as

Input scene(s)

Image preconditioning
and low-level operations

Edge-oriented
operations

Cue fusion
Dynamic
matching

operations

Acquisition and computation of low-level
features and cues (edge segments, color, texture, IR, …)

Higher level, invariant representation

• • • • • •

Figure 14.7
Overview of a vision system employing aspects of three complementary biologically inspired vision models
(all levels).
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implemented in SEEMORE, wavelet transformation, or elastic graph matching) as

a set of lower-level operations (such as repeated comparisons, inner products, and

point nonlinearities). The second step, which uses implementation tools, converts

these to a physical representation (such as forms of optical interconnection patterns,

interconnection weights, and electronic shift registers). Because this step begins with

low-level operations, in a sense it is blind to the vision algorithm being implemented

and therefore is generalizable across vision algorithms that can be decomposed into

appropriate lower-level operations. Its function is to map these low-level operations

onto the hardware in a way that is inherently parallel, provides su‰ciently low la-

tency, and is reasonably hardware e‰cient. As an illustration of the issues that arise

in the mapping of vision (or other brain function) models onto the photonic multi-

chip module hardware, the possible synergistic combination of biologically inspired

spatial multiplexing with electronic- and photonic-technology-inspired temporal mul-

tiplexing is described in the next section.

The Incorporation of Temporal Multiplexing Approaches

The envisioned hybrid electronic/photonic hardware platform is in some ways bio-

logically inspired (with its capability for weighted fan-out/fan-in interconnections,

layered structure, and parallelism), and in some ways not (with its much higher

Input scene(s)

Pre-conditioning
(dynamic range adjustment,

contrast enhancement)

Develop resolution hierarchy

Extract features

Low-Level
FeaturesColor

Gabor
wavelets• • • • • •Simple

shapes

Detection Plane

Predetection

Postdetection

Figure 14.8
Expanded overview of a vision system employing aspects of three complementary biologically inspired vi-
sion models (lower levels).
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anticipated temporal bandwidth and much lower anticipated spatial parallelism,

compared with biological systems). These characteristics beg for some form of tem-

poral multiplexing that can make use of both the parallel nature of the algorithms

and the spatiotemporal nature (Wang et al., 1993) of the hardware (Jenkins and

Wang, 1991). The need for multiplexing is also apparent in applications for which

the first hardware layer receives an input image from the physical world, as shown

at the top of figure 14.10. For these applications, a large mismatch in bandwidth

exists between the input image stream (@100-Hz frame rate in the biological vision

context) and the available processing rate that can be achieved in subsequent layers

(@50 to 100 MHz analog bandwidth; @200 to 500 MHz digital synchronous clock

rate or asynchronous operation rate; @1 to 100 MHz layer-to-layer interconnection

bandwidth per pixel). Similar bandwidth mismatches are likely to occur at or near

the neural tissue/prosthesis interfaces in the case of implanted devices. Again, some

form of spatiotemporal multiplexing is desirable in subsequent (interior) layers to

make use of the available hardware processing capabilities.
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Combinations
(conjunctions,
disjunctions)
of features Edge

detection

Edge filtering

Junction
detection
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completion

Pattern
classification
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representation

Elastic graph
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w/ database)
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Geon model description (of object or scene)
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recognition

Color
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wavelets• • • • • •Simple
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with other

cues

Development
of other cues

Figure 14.9
Expanded overview of a vision system employing aspects of three complementary biologically inspired vi-
sion models (higher levels).
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It should be noted that the availability of temporal multiplexing capability rep-

resents an advantage for hybrid electronic/photonic hardware platforms but, as al-

ways, such advantages have associated costs. In general, higher bandwidths imply

higher power dissipation, an undesirable feature for any reasonably compact im-

planted device. Thus many versions of neural prostheses based on this type of hard-

ware platform may not make full use of the available processing or communication

bandwidths in order to conserve power.

Because of their biological inspiration, the vision algorithms we have described

in this chapter (as well as many other possible vision or other brain-like functional

algorithms) are likely to be most e‰ciently implemented using some weighted inter-

connections that are fixed and some that are adaptive when implemented using

I1

C1

C3

C4

C5

C6

C2

C7

I2

I3

I4

I5

I6

I7

Pre-Detection Optics

Detection and Retinal
Operations

Storage and X-Scrolling

Y-Scrolling
Low Level Filtering

Storage and Shifting

2nd Stage of Filtering

Storage and Shifting

Mid-Level
Feature Extraction

CNN

2nd Mid-Level Stage

Invariant Representation

Figure 14.10
Example optoelectronic eye-and-vision processor layout, shown in cross-section, and depicting di¤erent
functionalities implemented in each layer, as well as a hierarchical architecture with layer-to-layer varia-
tions in the degree of fan-out and fan-in employed. CNN, cellular neural network.
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parallel hardware. The hardware described in this chapter currently employs optical

(physical) interconnection weights that are designed a priori and fixed once fabri-

cated, while the in-plane electronic interconnections (nearest neighbor or next nearest

neighbor) can be either fixed or adaptive. Thus the multilayered network depicted

schematically in figure 14.10 can be represented as a set of interpenetrating network

topologies, with both fixed and adaptive weights. At this point, it is an open question

as to whether or not this combined topology contains su‰cient adaptive capability

for the full range of envisioned applications. Consequently, temporal multiplexing

techniques could be used to provide additional means for e¤ectively achieving adap-

tive or programmable interconnection weights at the functional level, even for the

layer-to-layer interconnections.

As an example, consider the Gabor wavelet transform (Lades et al., 1993; Wiskott

et al., 1998) mentioned in a previous section. This transform can be modeled as a set

of convolutions, each with a kernel of the type shown in figure 14.11, but at di¤erent

scales and orientations. (For example, the Dynamic Link Architecture [Lades et al.,

1993] typically uses eight di¤erent orientations and five di¤erent scales, yielding forty

di¤erent kernels.) Once the transform is so modeled, a variety of physical implemen-

tations are possible. One such implementation uses a ‘‘direct mapping’’ approach

that involves representing the input image data in analog form, laid out spatially

(topographically, or retinotopically) in a first hardware plane. Each convolution

kernel is then laid out as an optical weighted interconnection, that is, as a fan-in pat-

Figure 14.11
Example Gabor wavelet kernel plotted in two orthogonal spatial coordinates (e.g., x and y).
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tern to a processing element (pixel) in a second, or receiving, hardware plane. (The

use of bipolar or complex numbers and arithmetic, if desired, can be handled by

employing any of a variety of known representations.) Neighboring processing ele-

ments (pixels) in the receiving plane correspond to di¤erent kernels (three kernels

are depicted in figure 14.12), so that an n�m region is used to implement all nm ker-

nels. The n�m array of fan-in kernels is repeated across the array. Thus, the trans-

form is performed in one time step as the data set moves from one plane through the

interconnections (kernels) and is summed optically at the detectors (for example) as it

is received in the subsequent plane. Although one processing element in the receiving

plane corresponds to just one kernel, mappings of this type can be sampled su‰-

ciently to avoid any loss of meaningful information.

While this direct mapping approach uses space e‰ciently, it may result in ine‰-

cient use of the temporal domain (because one useful time step may be followed by

a series of idle ones). A second technique can be implemented with a similar set of

n�m fan-in patterns, but repeated more sparsely across the array. Interconnections

for other operations are implemented in the interleaving regions. Upon operation,

the input image data set is shifted across the first plane in time (Goldstein and Jen-

kins, 1996; Goldstein, 1997); viewed from a given interconnection kernel (and there-

fore from a given processing element in the second plane), di¤erent portions of the

input image data are input to this interconnection kernel at di¤erent instances in

time. After a su‰cient number of time shifts, each (and every) kernel has operated

on the entire input image. This technique allows multiple operations to be performed

(for example, Gabor wavelet decomposition, and matching to a variety of small tem-

plates for primitive feature extraction) in a single layer. These operations are multi-

plexed partially in time and partially in space, resulting in a more e‰cient utilization

of the hardware-processing capability available.

Input

Output

Figure 14.12
Direct parallel mapping of Gabor wavelet decomposition, showing fan-in patterns for three kernels.
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Temporal multiplexing techniques could also be used to significant advantage in

implementing adaptive functionality. For example, the incorporation of a cellular

neural network (CNN) layer (depicted schematically as layer C6 in figure 14.10)

naturally allows the implementation of programmable flexibility through the array

of distributed mixed analog/digital processing units that comprise the CNN. Further-

more, to the extent that the image shifting or scrolling functions are programmable,

the operations performed can be sequenced or altered in time. Because the resulting

data are spatiotemporally multiplexed, appropriate design techniques must be used

to ensure layer-to-layer compatibility of the data format.

Finally, spatiotemporal multiplexing techniques may prove useful for transform-

ing signal representations from the pure biological (spike train-based) substrate to the

hybrid analog/digital neural prosthesis, as described in a previous section.

Integration of the Photonic Multichip Module Components

Considerable prior research has focused on the development of both biologically

inspired and biologically emulative vision chips that implement one or more func-

tions characteristic of biological vision systems, such as dynamic range compression,

edge enhancement, and motion sensing (see, for example, Mead, 1989), and that are

fabricated using VLSI semiconductor processing techniques. In each case, consider-

able functionality has been achieved within the constraints imposed by limited lateral

connectivity and the inherent 2-D nature of the single-chip substrate. However, in

nearly every case, these 2-D implementation strategies are not amenable to general-

ization to the full 3-D interconnection problem that is characteristic of viable neural

prosthetic devices. For example, the chip real estate required to form the neural

tissue/prosthesis interface itself is likely to consume a large fraction of the surface

of the outermost chip layer. If only one chip is used, little if any surface area will be

available for the implementation of neuron unit arrays and their interconnections.

In addition, the extension to large-scale arrays of neuron units is compromised by a

single-chip approach, particularly insofar as the neural network architecture imple-

ments multiple layers with high degrees of connectivity between and among layers.

As a result, we have focused on the problem of densely interconnecting multiple hy-

brid analog/digital silicon (Si) VLSI chips in the third (out-of-plane) dimension, in

order to provide additional flexibility and functionality.

As in the algorithm and architecture development e¤ort outlined in previous sec-

tions, the principal goal of the hardware integration e¤ort is to develop a flexible

toolbox of component technologies that can be used to implement a wide variety of

smart cameras and artificial vision systems, as well as implantable neural prostheses.

In the subsections that follow, we describe the basic functionality required and the

results achieved to date in each of the component technologies that constitute the
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hardware integration platform of the photonic multichip module, as well as e¤orts to

achieve PMCM integration. Fabrication and performance details of several of the

components have been reported in part elsewhere, as noted in the references where

appropriate.

Silicon VLSI Detector/Processor Arrays

As shown schematically in figures 14.3 to 14.6, silicon VLSI chips are incorporated

in each submodule (layer) primarily to implement as-designed processing functions

[such as logarithmic transformations, sigmoidal (thresholding) transformations, dif-

ferencing operations, sample-and-hold, as well as temporal integration and di¤eren-

tiation; neuron emulation functions can also be directly incorporated, as described by

Berger et al. (2001) and in chapter 12]. In some implementations, the Si chips also

carry photodetection capability (for example, in the input image plane) as well as

device drivers for III–V compound semiconductor modulators or vertical cavity

surface-emitting lasers, as shown in figures 14.4, 14.5, and 14.13. In other implemen-

tations, the photodetection functions and/or III–V device drivers can be co-integrated

with the modulators or VCSELs.

For vision-related applications, we have focused to date on the implementation of

a test chip that implements a nonlinear sigmoidal input/output transformation (Jen-

kins and Tanguay, 1992; Tanguay et al., 1995, 2000; Tanguay and Jenkins, 1996,

1999; Tanguay and Kyriakakis, 1995; Cartland et al., 1995). The current Si chip de-

sign consists of a 16� 16 array of neuron units placed on a 100-mm pitch; figure

14.14 displays a photomicrograph of a single neuron unit. Each neuron unit contains

Readout
(reflective)

Write
(front)

Write
(back)

Epitaxial Mirror (Low R)

Indium Bump Contact

Control Electronics

 MQW Layers

Dielectric Mirror (High R)

Modulator Contact

Antireflection Coating

GaAs Substrate

Photodetectors

Silicon Substrate

n+ or p+ Layer
Modulator Common Contact

ITO Antireflection Coating

ITO Antireflection Coating

GaAs

Si

Pixellated Modulator

Figure 14.13
Schematic diagram of multilayer hybrid electronic/photonic computation/interconnection element, depict-
ing flip-chip bonding of silicon photodetector/driver chip and gallium arsenide (GaAs) multiple quantum
well (MQW) modulator array.
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silicon complementary metal oxide semiconductor (CMOS) control electronics, two

Si vertical photodiode detectors, and three bonding pads to allow vertical inter-

connection to two multiple quantum well modulators or VCSELs and an electrical

ground. The control circuitry provides a �2 to �9-V nonlinear sigmoidal response

to the di¤erence in light intensity incident on the two photodetectors. A separate sig-

moidal response characteristic is provided for each signed di¤erence, thereby allow-

ing the representation of both excitatory-like and inhibitory-like inputs as intensity

values.

The analog 16� 16 array test chip was fabricated through the Metal Oxide

Semiconductor Implementation Service (MOSIS) foundry using the 1.2-mm Hewlett-

Packard scalable CMOS n-well process. The large-signal sigmoidal response char-

acteristic has been demonstrated at frequencies up to 100 kHz, with a small-signal

response in excess of 1 MHz (test equipment limited); SPICE simulations (a software

package for simulating circuit functionality based on a schematic diagram and defi-

nition of key parametric values) indicate a small-signal response in excess of 4 MHz.

The estimated chip power dissipation is 2 mW per pixel or about 0.5 W per chip.

Significantly higher bandwidths can most likely be achieved as these chips are re-

designed in smaller minimum-feature-size processes.

Figure 14.14
Photograph of a portion of the 16� 16 array of neuron units. Shown is a single sigmoidal neuron unit that
incorporates dual photodetectors (to instantiate both excitatory-like and inhibitory-like inputs), active con-
trol circuitry and device drivers, and dual output bonding pads for flip-chip bonding.
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Inverted-Cavity MQW Modulator Arrays

In the PMCM configuration shown in figures 14.4 and 14.13, 2-D arrays of inverted-

cavity multiple-quantum-well modulators (Cartland et al., 1995; Hu et al., 1991a,b;

Karim et al., 1994, 1995; Karim, 1993; Kyriakakis, 1993) are incorporated to pro-

vide an electrical-to-optical conversion function, thereby producing a signal-encoded

array of output beams that can be individually fanned out with weights that are

implemented by proximity-coupled di¤ractive optical elements.

The inverted asymmetric Fabry-Perot cavity modulator arrays were fabricated

by molecular beam epitaxy (MBE) on III–V compound semiconductor gallium

arsenide (GaAs) substrates, and consist of a p-i-n ( p-type semiconductor, intrinsic

semiconductor, n-type semiconductor) InGaAs/AlGaAs MQW region (35 quantum

wells) sandwiched between an MBE-grown low-reflectance aluminum arsenide/

gallium arsenide (AlAs/GaAs) distributed-Bragg-reflector front mirror and an ex

situ-deposited high-reflectivity multilayer dielectric back mirror (Karim et al., 1994,

1995; Karim, 1993). The 2-D array of InGaAs/AlGaAs MQW modulators operates

at a central wavelength of 980G 1 nm in the near-infrared region of the spectrum

(with a 2-D uniformity of G0.3 nm), and exhibits an average contrast ratio of 13:1

at �9 V applied bias (the saturation value of the Si chip sigmoidal output channels)

(Cartland et al., 1995). This operational wavelength has been chosen to allow rela-

tively low-loss transmission through the GaAs substrate and the following (thinned)

Si substrate, as well as for acceptable Si photodetector quantum e‰ciency, while

retaining the high uniformity and state of technological advancement characteristic

of the InGaAs/AlGaAs modulator system.

Flip-Chip Bonding of Si and GaAs Chips

A cold-weld indium bump flip-chip bonding process has been developed and used for

the hybrid integration of the Si photodetection/control/driver chips and the GaAs

MQW modulator arrays, as shown schematically in figure 14.13. In this process,

approximately 8-mm-high indium bumps are deposited on the mating electrode pads

of both chips and patterned by a lift-o¤ photolithographic process. The thermal or

electron-beam deposition parameters are set to achieve a roughened (‘‘velcro’’) sur-

face on both indium bumps, which significantly improves both adhesion and con-

tact resistance by providing enhanced surface penetration when the two bumps are

brought into contact using a visible flip-chip aligner-bonder. Figure 14.15 shows a

scanning electron microscope (SEM) photomicrograph of the resulting bump sur-

faces and bump uniformity.

The flip-chip bonding process is based on a near-room-temperature cold-weld pro-

cedure that avoids significant heating of the modulator and Si substrates. Measure-

ments of MQW modulator reflectivity as a function of wavelength both before and

after flip-chip bonding show no significant degradation in performance (figure 14.16).
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Figure 14.15
Large-scale scanning electron microscope photomicrograph illustrating the thermally evaporated indium
bump uniformity achieved in the flip-chip bonding process.
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Figure 14.16
Measurement of both pre- and post-flip-chip-bonded modulator reflectivities, showing relatively minor per-
turbations induced by the flip-chip bonding process.
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Optical Power Bus

For the modulator implementations of the PMCM described in previous sections and

in figures 14.4 and 14.13, reflective readout of the 2-D MQW modulator array must

be provided in a highly compact manner. This function is performed by an optical

power bus, which consists of a 2-D array of 1-D rib waveguides with superimposed

outcoupling gratings. Optical intensity provided to the set of rib waveguides from

an edge-mounted semiconductor laser diode or diode array propagates along each

rib waveguide, confined in the lateral and vertical dimensions. Outcoupling gratings

are provided at each location that corresponds to an individual modulator element,

so that light is coupled out of the plane of the optical power bus, impinges on a given

modulator element within the array, and is thereby both modulated in intensity and

reflected back through the optical power bus toward the proximity-coupled di¤rac-

tive optical element (see figure 14.4). The outcoupling gratings are designed to oper-

ate in the very low di¤raction e‰ciency limit (approximately 10�3), so that only a

very small fraction of the light propagating in the waveguide is outcoupled below

each modulator element, thereby providing uniform illumination along the length of

each rib waveguide and minimizing any recoupling back into the waveguide.

Optical power buses have been fabricated to date in titanium indi¤used lithium

niobate (LiNbO3) waveguides, as well as in AlGaAs/GaAs waveguides, as shown in

figure 14.17 (Rastani, 1988; De Mars, 1995). Similar outcoupling grating arrays

Figure 14.17
Photomicrograph of one section of an optical power bus fabricated on an aluminum gallium arsenide/
gallium arsenide (AlGaAs/GaAs) multilayered substrate consisting of 660 individual rib waveguides, each
8 mm wide and 1 cm long, with 2-mm gaps; and with an integrated, continuous, 1-mm feature (2-mm pitch,
or period) outcoupling grating on top of each waveguide. In the PMCM implementation shown in figure
14.4, the outcoupling gratings are discrete and colocated with each modulator element associated with
each pixel within the array.
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have also been fabricated in polymer waveguides (Tang et al., 2000). In the case of

AlGaAs/GaAs, we have fabricated arrays of up to 660 individual 1-cm long, 8-mm

wide ribs with 2-mm gaps. Outcoupling gratings of both 2-mm (shown in the SEM

photomicrograph in figure 14.17) and 4-mm pitch have been successfully fabricated

by a double photolithographic and ion beam milling process, with good output uni-

formity (De Mars, 1995).

Vertical Cavity Surface Emitting Laser Arrays

The use of VCSEL arrays for the electrical-to-optical conversion function described

previously (as shown schematically in figure 14.5) promises increased simplicity

for photonic multichip module implementation because both the optical modulator

array and optical power buses would be replaced with a single component and at

least one additional (critical) alignment step would be eliminated. At the relatively

low operational bandwidths envisioned for these hybrid analog/digital PMCMs,

however, power dissipation considerations currently favor the use of optical mod-

ulator arrays. With continued progress in ultra-low threshold VCSEL arrays, such

arrays could be employed to advantage in future PMCMs.

In both the optical modulator and the VCSEL cases, co-integration of III–V com-

pound semiconductor photodetectors can provide natural wavelength compatibility

between the emitters or modulators on the one hand, and the detectors on the other.

This potential modification allows more flexibility in choice of operational wave-

length, provided su‰cient space can be allocated for the additional bump bonds

required within each pixel to connect the photodetector outputs back to the Si con-

trol circuitry.

Di¤ractive Optical Element Arrays

The PMCM architectures shown schematically in figures 14.4 and 14.5 incorporate

di¤ractive optical element (DOE) arrays to implement dense 3-D fan-out/fan-in in-

terconnections with fixed (nonadaptive) interconnection weights. The DOE arrays

can be designed to provide either space-invariant or space-variant convolution ker-

nels, depending on the layer-to-layer functionality required. For this application, the

DOE designs minimize the distribution of undesired di¤racted orders (Huang et al.,

1998; Huang, 1997), not only to reduce the semiconductor laser diode power require-

ments and overall PMCM power dissipation, but also to avoid illumination of light-

sensitive components that are distributed throughout the PMCM stack.

Di¤ractive optical element arrays that implement a number of di¤erent fan-out

and fan-in patterns have been designed and fabricated. For example, a computer-

calculated reconstruction pattern of a DOE that performs a 4:2:1 fan-out function

(Huang, 1997) (Gaussian-like, with a 4:2:1 ratio of intensities di¤racted to the verti-

cally displaced center pixel, four nearest-neighbor pixels, and four next-nearest-
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neighbor pixels, respectively) is shown in figure 14.18 alongside the experimental re-

construction pattern. This commercially fabricated quartz substrate DOE (QPS, Inc.,

Dorval, Canada) had a design etch depth of 192 nm and a measured etch depth

of 197.8 nm, and exhibited a root-mean-square (rms) di¤racted-spot intensity error

of approximately 5%. Extensive analysis of fabrication tolerances and errors across

multiple fabrication runs of identical DOE arrays has shown that such arrays can

be produced with minimal run-to-run variances in performance (Shoop et al., 1999).

The 4:2:1 DOE has been tested for fan-in accuracy as well, by employing two ver-

tical cavity lasers within a VCSEL array for illumination of the DOE (through a

pair of relay lenses), with the results shown in figure 14.19. The two DOE recon-

struction patterns were displaced diagonally along the next-nearest-neighbor direc-

tion, producing overlapping di¤racted spot intensities in the central four spots, with

an rms error of approximately 9%. This result demonstrates both the fan-out and

fan-in capabilities of the interconnection system, which will be further tested in a

proximity-coupled geometry with multiple elements within a DOE array.

In a multichip module such as that described in this chapter, the number of optical

surfaces is considerable, and antireflection (AR) coating techniques must be em-

ployed carefully. We have previously developed low-reflectivity indium tin oxide

(ITO) antireflection coatings for high-index compound semiconductor substrates

(Karim, 1993; Kyriakakis, 1993), and have recently used them for AR coating of

DOEs fabricated in GaAs. An example of an AR-coated GaAs DOE that provides

a 3� 3 weighted fan-out is shown in figure 14.20. Experimental measurements of the

di¤racted order intensities both before and after AR coating demonstrated not only

the expected large improvement in optical throughput e‰ciency, but also a reduction

in rms di¤racted-spot error from 15% to 6%. The use of stratified volume di¤ractive

optical elements (Tanguay et al., 1995, 2000; Tanguay and Jenkins, 1996, 1999; Tan-

guay and Kyriakakis, 1995; Chambers and Nordin, 1999) for highly nonlocal to

global interconnection functions, as described in a previous section, carries with it

a similar AR coating issue, particularly in view of the large number of additional op-

tical surfaces involved in this case. Minimization of fabrication errors is important

for successful implementation of the overall SVDOE interconnection function

(Jung, 1994).

Photonic Multichip Module Integration Issues

Given the emergence of functional components as described in this chapter, a wide

range of issues pertain to the successful integration of photonic multichip modules

that contain both hybrid substrates and mixed analog/digital representations. These

issues include the computational complexity implemented per unit power dissipation;

the analog accuracy achievable within each processing stage as well as overall after

multiple stages; the total power consumption, with resultant thermal dissipation and
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Figure 14.18
(a) Computer-calculated reconstruction and (b) experimental reconstruction of a di¤ractive optical element
that implements a weighted 3� 3 fan-out interconnection pattern, with relative intensities of 4:2:1.
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Figure 14.19
Reconstruction of a single di¤ractive optical element by two proximately placed vertical cavity surface-
emitting lasers, showing both individual fan-out interconnection patterns as well as the resulting (summed)
fan-in pattern.

Figure 14.20
Antireflection-coated gallium arsenide di¤ractive optical element (DOE) that provides a weighted 3� 3
fan-out interconnection pattern.

Hybrid Electronic/Photonic Multichip Modules 325



uniformity; the manufacturability and fabrication tolerances of hybrid-integration

alignment techniques; the development of integrated computer-aided design (CAD)

techniques for hybrid electronic/photonic systems; and the assessment of inherent de-

sign tradeo¤s.

Projected Performance Metrics for PMCMs

The assessment of projected performance for any computational device inherently

depends on the intended application. The hybrid electronic/photonic multichip mod-

ules that we envision for incorporation in neural prosthetic devices can be configured

in a wide range of architectures, and can conceivably include various combinations

of analog, digital, and hybrid computational components.

Perhaps one generic means of assessing the potential computational capacity of

such multichip modules is to estimate the total number of processing elements that

can be included with current state-of-the-art fabrication design rules, the mean con-

nectivities that can be implemented using the combined optical elements and pho-

tonic components described previously, and the operational bandwidth of the key

elements of the structure. These characteristics in turn allow an estimate of the total

number of connections per second (CPS) that can be envisioned for PMCMs, in di-

rect analogy with a common neural network implementation metric.

Table 14.1 contains estimates of each of these performance characteristics, assum-

ing a PMCM 1� 1� 1 cm in size. Within this 1-cm3 volume, approximately eight

layers can be included, allowing a layer thickness of 1.25 mm (including the Si sub-

strate, the GaAs substrate, an optical power bus if modulators are employed, the dif-

fractive optical element array, a microlens array if not included in the DOE array,

and su‰cient propagation distance within the DOE or microlens array substrates to

allow di¤ractive separation of the interconnection beams). If the neuron unit (pro-

cessor) area is set initially at 100� 100 mm, then about forty transistors can be in-

cluded, along with the requisite interconnection pads for flip-chip bonding to the

Table 14.1
Characteristics of hybrid electronic/photonic multichip modules

No. of Processing
Elements (or
Neurons)

Mean
Connectivity

Temporal
Bandwidth

Aggregate
Connection
Rate

Photonic Multichip
Module (1 cm3 active
volume)

8� 104 25 50 MHz 1� 1014

connections/
second

Human Visual System
(simplified)

5� 1010 103 100 Hz 5� 1015

connections/
second
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GaAs substrate using 0.85-mm minimum feature sizes in the VLSI semiconductor

manufacturing process. Currently, several 0.5- to 0.3-mm processes are available for

hybrid analog/digital circuits, and 0.3- to 0.18-mm processes can be employed for re-

petitive geometry structures (such as dynamic [DRAM] and static [SRAM] random

access memory). Although these processes will allow more circuit complexity, they

are unlikely to a¤ect the pixel (neuron unit) size significantly because the photodetec-

tor and interconnection pad sizes occupy most of the pixel area at present. This pixel

size yields a total of 8� 104 processing elements integrated over the eight layers of

the assumed PMCM structure.

Consideration of the physics of di¤raction, as well as signal-to-noise and cross-talk

minimization requirements at each detector location, yields approximately 25 as a

modest estimate of the fan-out ð5� 5Þ that can be expected from each DOE within

the array (Huang et al., 1998; Huang, 1997; Shoop et al., 1999). By symmetry, this

also implies a fan-in of 25 at each photodetector location within the neuron unit

arrays. Although provision is made for dual inputs and dual outputs from each neu-

ron unit as currently implemented and described in a previous section, we have not

included this factor of two in the performance estimate.

At present, digital VLSI circuitry can be configured to operate at clock speeds

greater than 1 GHz (commercially available personal computers in some cases have

clock speeds in excess of 3 GHz midway through 2005). However, the hybrid analog/

digital circuitry described here has additional constraints, primarily arising from the

analog circuitry components, that currently limit the bandwidth to 50 MHz or so.

These constraints derive from a number of sources, including the requirement to

maintain linearity (or a specific nonlinearity) over the entire range of operational fre-

quencies, the incorporation of large-scale device drivers (particularly for the case of

vertical cavity surface-emitting lasers), and the necessity of limiting the total power

dissipation within each physical layer of the photonic multichip module to approxi-

mately 1 W to avoid significant thermal e¤ects within the module. It should be noted

that the latter constraint is much more stringent than is typical in Si VLSI implemen-

tations of microprocessors and digital signal processors, which involve only a single

physical chip (layer) that can be proximity-coupled to an e‰cient heat sink on the

back surface to allow power dissipation budgets of up to 100 W/cm2.

The combination of these estimates yields an aggregate connection rate of 1� 1014

CPS. This performance parameter indicates the total number of full-scale variations

that can be accommodated in all of the weighted interconnections throughout the

photonic multichip module per unit of time. Since the PMCM was assumed to oc-

cupy a 1-cm3 volume, the aggregate connection rate density is 1� 1014 CPS/cm3.

To provide an appropriate context for this estimate, table 14.1 contains typical val-

ues for the human visual system (including the primary visual cortex and other visual

processing areas within the neocortex), as estimated from neurobiological studies and
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averaged over numerous sources (Mead, 1989; Hubel, 1988; Wandell, 1995, esp. pp.

153–193 and cover sheets; Kandel et al., 1991; Churchland and Sejnowski, 1992;

Arbib, 1995; Dowling, 1992, pp. 31, 376; Palmer, 1999). The total number of neu-

rons that comprise the human visual system is a large fraction of the total number

of neurons in the brain, and is conservatively taken here as approximately 5� 1010.

The mean connectivity of neurons throughout the brain is on the order of 103, and

the combined temporal bandwidth of the electrical activity of neurons, axons, den-

drites, and synapses in the brain is on the order of 100 Hz. Therefore the aggregate

electrical connection rate of the human visual system, from a highly simplified neural

network viewpoint, is likely to be on the order of 5� 1015 CPS, plus or minus per-

haps an order of magnitude or so.

This comparison is only suggestive because no comprehensive computational

model of the brain (or even the human visual system) has been proposed so far, and

we have of course left out all chemical (e.g., neurotransmitter) interactions in our

estimate, as well as the computational intricacies associated with spike train en-

coding. The comparison is illuminating nonetheless from the perspective provided in

an earlier section on the need for e‰cient use of temporal multiplexing techniques

within PMCMs. The volume of the human visual system is much larger than the vol-

ume assumed for the PMCMs analyzed in this chapter, but even given this disparity

and further reductions in device sizes with corresponding advances in semiconductor

VLSI and photonic technologies, the sheer density of neuron units will most likely

always favor biological brain structures over any form of envisioned neural prosthe-

sis. Likewise, the interconnection density of living neurons is di‰cult to achieve in

any current technological implementation of a prosthetic device. The temporal band-

width parameter, however, weighs heavily in favor of PMCM structures, provided

that it can be employed e‰ciently and to advantage. If so, PMCM structures may

be able to supply prosthetic functionality in local brain regions without significant

mismatches in this performance metric on a per unit-volume basis.

Neural Prosthetic Multichip Modules: Fundamental Scientific and Technological

Issues

We conclude this chapter by briefly addressing a number of the fundamental scien-

tific and technological challenges that must be met before hybrid electronic/photonic

multichip modules can form the basis of a viable neural prosthetic device. These

issues include bidirectionality, adaptivity, scalability, the neural tissue/prosthesis

prosthetic interface, biocompatibility, power consumption, and supply of electrical

power.

As described in a previous section, the PMCM modules under current develop-

ment incorporate signal feedforward from layer to layer, with explicit provision for
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feedback only locally (e.g., nearest neighbor, next-nearest neighbor) within each

layer. This lack of layer-to-layer bidirectionality strongly limits the types of neural

network architectures that can be implemented. Bidirectionality of signal propaga-

tion can be included locally if a combination of both top-emitting and bottom-

emitting VCSELs is employed in the GaAs layer, provided that the surface area on

the associated silicon driver chip is devoid of both circuitry and bonding pads di-

rectly above the top-emitting (feedback) VCSELs, at the cost of increasing the pixel

(neuron unit) size to provide this chip real estate. Alternatively, bidirectionality can

be included nonlocally for each layer by laterally transferring aggregate information

to the chip edges, where these signals could be used to drive additional chip stacks

arrayed at the PMCM perimeter and oriented in the reverse signal propagation direc-

tion. In this latter case, the form of feedback will necessarily be spatially integrative,

as a result of topological signal routing constraints.

The potential incorporation of adaptivity in the weighted interconnection patterns

is an issue of considerable importance for prosthetic device applications because it

is highly unlikely that sophisticated multilayer devices can be programmed a priori

to function in the living brain without significant behavioral retraining. The combi-

nations of optical and photonic interconnections described in previous sections pro-

vide significant capabilities for dense fan-out/fan-in connectivity between layers, but

are not easily amenable to adaptation. As such, these interconnections constitute

a ‘‘nature-like’’ architectural component that can provide a general interconnection

structure from layer to layer that instantiates, for example, center-surround connec-

tions. The ‘‘nurture-like’’ architectural component can conceivably be incorporated

in weighted lateral connections among neighboring neuron units within a given chip

(physical layer) that include the nearest neighbors as well as potentially the next

nearest neighbors. Further lateral interconnectivity among neuron units is limited

by the number of metal interconnection layers (five to seven) available in current

or envisioned semiconductor VLSI technology, as well as by the additional chip real

estate required to implement adaptively programmable weights. Should these types

of adaptive lateral connections be incorporated, one fundamental scientific question

that arises is how best to structure the architecture to make optimal use of this

unusual nature/nurture admixture, in which two separate interpenetrating network

topologies separately implement the a priori and a posteriori weights. A second fun-

damental question relates to the optimal training algorithm to employ, and how best

to map it onto the available hardware.

A neural prosthetic device technology must be inherently scalable to large numbers

of densely interconnected neuron units if the complexities and potential impairment

associated with surgical implantation are to be o¤set by the functionality sought and

regained. Ideally, the neuron unit and interconnection densities should approximate

those characteristic of human wetware, although as pointed out earlier, this goal is
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perhaps not feasible in the near future. As a result, some combination of signal trans-

formation and temporal multiplexing within the prosthetic device are most likely

required to o¤set displaced neuron density. Photonic multichip modules configured

as described in this chapter will be limited to local fan-outs (and hence fan-ins) of

25 or so from (and to) each neuron unit within the array, and to interconnections be-

tween adjacent layers only. The scientific and technological limitations that currently

proscribe the degree of fan-out should be carefully evaluated to see if alternative

implementations are feasible with enhanced fan-out capabilities (see, e.g., figure 14.6).

In addition, the current architectural limit of only adjacent layer connectivity should

be examined to develop methods that allow layer-to-layer connectivity to project

through and to multiple layers.

The issue of providing a flexible, adaptive, and potentially self-organizing neural

tissue/prosthetic device interface has been discussed extensively in this chapter. Sev-

eral fundamental issues obtain here in addition to those discussed previously, includ-

ing the key issue of providing a functional interface over as much of the surface area

of the neural prosthetic device as possible. To this end, it should be noted that if

fewer layers are incorporated, the aspect ratio of the resultant module can be biased

toward planarity, thereby allowing implantation within highly layered brain regions

with viable top and bottom interfacial layers only, assuming a parallel orientation of

the as-implanted module, and assuming further that a viable means for incorporating

signal bidirectionality can be implemented as described in this section. This interface

issue is in many ways related to the issue of overall biocompatibility, which involves

the exclusion of all potentially toxic components from the as-implanted device, the

provision for surgical and treatment methodologies that obviate rejection processes,

the essential guarantee of performance over a given patient’s lifetime, and the ade-

quate encapsulation of semiconductor and photonic components in biocompatible

as well as inorganic-material-compatible sheaths.

The total power consumption of any viable neural prosthetic device must be kept

as low as possible, both to provide an acceptable equilibrium temperature for the in-

terior of the module and the neural tissue/prosthetic device interfaces, and to require

minimal external power resources. The current PMCM implementations are de-

signed with an upper bound of 1 W per physical layer, which corresponds to a total

of 8 W in an assumed eight-layer, 1-cm3 module. It is still to be determined whether

this level of power dissipation, even spread over the approximately 6-cm2 surface

area (approximately 1.3 W/cm2) can be accommodated in the surrounding neural

tissue without compromising cellular functionality or longevity. If full-bandwidth op-

eration cannot be accommodated, it is possible that reduced bandwidth operation

(with an associated reduction in power dissipation) could still provide adequate pros-

thetic functionality.
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Associated with the issue of total power consumption (or dissipation) is the key

issue of providing electrical power to the implanted module. Stand-alone batteries

are not likely to provide adequate power for the operational periods desired (limited

by the total energy capacity of the battery), and the inclusion of batteries adds topo-

logical compromise as well. A more likely power source is the external transmission

into the cranium of convertible power signals, received by a compact power conver-

sion device that might be incorporated at either the module or single-chip level. The

ultimate challenge will be the development of electrical power cells capable of tap-

ping into the electrochemistry of the brain itself, so that e‰cient electrical conversion

can be provided at the implant site using only local metabolic processes.

In conclusion, one may hope that none of the challenges outlined in this chapter

will have to be met, in that advances in medical science may either provide therapeu-

tic means for stimulating neural repair mechanisms or develop stem (or otherwise

cytologically specific) cell injections or implants that can transform and interconnect

as necessary to replace lost neural functionality. Should these developments not

prove feasible, the artificial neural prosthetic devices described in this chapter may

provide a nonoptimal but useful solution.
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15 Reconfigurable Processors for Neural Prostheses

Jose Mumbru, Krishna V. Shenoy, George Panotopoulos, Suat Ay, Xin An, Fai Mok,

and Demetri Psaltis

The prospect of helping paralyzed patients by translating neural activity from the

brain into control signals for prosthetic devices has improved greatly in recent years

(Wolpaw et al., 2000; Barinaga, 1999; Fetz, 1999). This improvement has been

fueled by discoveries in systems neuroscience and by the rapid advance of microelec-

tromechanical systems (MEMS) and computational technologies. However, poten-

tial barriers to continued progress in neural prosthetic systems exist. These barriers

include our modest understanding of neural coding, fairly short-lived neural inter-

faces, and the relatively limited computational power available for mobile real-time

processing of neural signals. As we have seen in other chapters, systems neuroscien-

tists and MEMS engineers are rapidly lowering the first two barriers by elucidating

the fundamental mechanisms of information processing in the brain and by designing

sophisticated micromachined neural probes (Lee et al., 1998; Si et al., 1998; Hat-

sopoulos et al., 1998; Schmidt et al., 1999). In this chapter we address the third

potential barrier by proposing the use of reconfigurable processors to meet the com-

putational challenges of neural prosthetic systems.

In broad terms, neural prosthetic systems or brain/computer interfaces aim to pro-

vide disabled patients with new options for interacting with the world (Wolpaw et al.,

2000). Sensory prostheses, such as cochlear implants or artificial vision, encode infor-

mation from the environment and deliver it to the nervous system by appropriate

electrical stimulation. Motor prostheses work in reverse, by translating neural activ-

ity into control signals for prosthetic devices, to assist patients with upper spinal cord

injuries, neurodegenerative diseases, or amputations (Lauer et al., 2000; Chapin et al.,

2000; Isaacs et al., 2000; Shenoy et al., 1999). Communication systems, such as corti-

cally controlled computer cursors for locked-in brainstem stroke or amyotrophic

lateral sclerosis (ALS) patients, are closely related (Kennedy et al., 2000). Finally,

‘‘intracentral nervous system’’ (intra-CNS) prosthetic systems interact with neural

processing by stimulating brain regions (e.g., chronic thalamic stimulation to sup-

press tremor for Parkinson’s and essential-tremor patients (Benabid et al., 1996)) or

by recording from one region and stimulating another region (e.g., proposed sense or

disrupt systems for epilepsy or cortical bypass systems for stoke).



Despite the great variety of sensors and actuators needed to address the dysfunc-

tions mentioned here, sensory, motor, and intra-CNS prosthetic systems have many

computational requirements in common. From a computational perspective, these

systems will most likely grow to look even more alike as, for example, motor pros-

thetic systems evolve to include supplementary sensory feedback to the nervous sys-

tem, and all prosthetic systems incorporate learning and adaptation to contend with,

and take advantage of, neural plasticity. The anticipated similarities among these

systems, as well as the demanding requirements imposed by mobile real-time process-

ing of neural and/or sensory data, prompt the development of a processor optimized

for neural prosthetic systems.

In the following two sections we review the principles of reconfigurable processing

and discuss its potential role in neural prosthetic systems. We suggest that reconfig-

urable processors are well suited for neural prostheses for three principal reasons.

First, neural prosthetic systems require many diverse computations, and a single

processor capable of being ‘‘rewired’’ rapidly can e‰ciently perform a wide range of

calculations. Second, neural prosthetic systems run in real time, and reconfigurable

processors can meet these real-time demands by being ‘‘wired’’ nearly optimally for

any given task, which often includes a parallel-processing topology. Finally, neural

prosthetic systems are likely to require greater computational resources as, for exam-

ple, the number and variety of sensors (e.g., electrodes) used to collect information

from across neural representations expands. Reconfigurable processors, as with other

high-speed electronic systems, are likely to scale well as the number of recorded

neural signals increases, owing to the relatively slower time scale of the biological

system, which allows time-multiplexing schemes to absorb the increasing computa-

tional demands. We conclude by briefly describing how a reconfigurable processor

for a neural prothesis could function in a motor prosthetic system.

An Example of a Neural Prosthetic System

Before proceeding, however, it is useful to introduce a specific example of a neural

prosthetic system so that the relevance and potential merits of reconfigurable pro-

cessing can be seen more easily. We use a motor prosthetic system for this purpose,

but the principles are not specific to this class of system. Figure 15.1 is a block dia-

gram of a system that translates cortical activity into control signals for stimulating

the musculature in a paralyzed arm. A person typically sees (senses) an object that he

or she wishes to reach toward, forms a mental plan for where and how to move the

arm, and finally sequences through the movement commands. Di¤erent attributes of

this movement are found in di¤erent regions of cortex, with any one attribute (e.g.,

reach location) encoded across numerous neurons. This neural activity can be sensed

in many ways, typically with permanently implanted electrodes. It is thought that
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tens to hundreds of electrodes, implanted in several cortical areas, will eventually be

needed to harvest enough detail of the motor plan (i.e., information transmission

rate) to accurately reconstruct the desired movement in real time. Therefore numer-

ous neural signal channels need to be amplified, filtered, and digitized for subsequent

processing, and much of this circuitry may eventually be integrated with or near the

recording electrodes. After passing through this front end, a digitized signal stream

from each electrode must be processed to associate action potentials (spikes) with

particular neurons, to estimate spectral power density, and to estimate other spatio-

temporal signal features that researchers are continuing to relate to movement

parameters. These signals can then be compared with each neuron’s (and electrode’s)

previously characterized responses to arrive at a moment-by-moment estimate of the

desired movement parameter, such as the direction of an arm movement or location

of an end point. Common estimation methods include maximum likelihood and neu-

ral networks.

Once the movement parameters of interest have been decoded from the neural

measurements, the neural prosthetic system must generate estimates for muscle-

stimulation parameters (i.e., inverse kinematics). In this particular example, the goal

is to electrically stimulate the paralyzed arm’s musculature to achieve arm move-

ments. This prosthetic arm system is controlled through negative feedback by visu-

ally comparing the arm’s new position with the desired location and iterating as

necessary. It is important to note that even with careful calibration of the entire
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Figure 15.1
Block diagram of a motor prosthetic system (a prosthetic arm system). Each element is described in the
text. Lines indicate information flow, with arrows indicating the direction of this flow. Information can be
transmitted down subcutaneous wires or with telemetry, in which case additional transmit and receive cir-
cuitry is required.
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system, so that a person’s desired arm movements are executed accurately, the sys-

tem will change with time and experience. As time passes, recording quality changes

as a result of electrode drift and the death of neurons, and the e‰cacy of muscle

stimulation can also change. As users gain more experience, neurons will almost cer-

tainly adapt (plasticity) in order to improve the performance of the system, as the

brain does whenever it is presented with a demanding new task. Unless the neural

prosthetic system also adapts to contend with and take advantage of these changes,

system performance will eventually deteriorate to the point of being useless.

A supervisor could monitor these time-dependent and experience-dependent

changes, and adjust the system accordingly. For example, if one of the neurons con-

trolling the system drifts out of recording range or even dies, the supervisor could

remove this neuron from the database, thereby making performance robust against

such events. Then, if a new neuron becomes detectable, the supervisor could monitor

the neuron’s response to ongoing prosthetic arm movements in order to learn this

new neuron’s encoding characteristics. After a certain level of confidence is reached,

this neuron would be entered into the database of neurons whose activity is control-

ling movement. The supervisor could similarly evolve the system’s model for how

each neuron responds to account for neural plasticity e¤ects.

Reconfigurable Processing

The level of computational complexity in a neural prosthetic system, beyond what an

implanted or autonomous system would ideally have, requires a solution that allows

reusing some limited amount of hardware resources. Moreover, the need for some

kind of supervising intelligence able to correct the system for neuronal changes sug-

gests a reconfigurable prosthetic processor as a solution.

Reconfigurable processors bring a new computational paradigm in which the pro-

cessor modifies its structure to suit a given application, rather than having to modify

the application to fit the device. The reconfigurability makes it possible for these pro-

cessors to use their resources more e‰ciently by adjusting themselves, depending on

the characteristics of the input or on unsatisfactory previous results, to better imple-

ment the target task.

Given an application such as pattern recognition in figure 15.2, the reconfigurable

processor can be customized to deal with a specific class of objects, but with enough

flexibility that, if at a later time the salient class of objects becomes a di¤erent one,

the device can be reprogrammed to deal with the new problem without degradation

of its performance. Furthermore, the processor can adapt itself in order to be robust

to changes in orientation or illumination of the input object. By reprogramming, the

same hardware can be time multiplexed to sequentially carry out several tasks on the

same input, or perform di¤erent tasks for di¤erent parts of the same input image.
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Reconfiguration also makes it possible to implement learning by allowing the pro-

cessor to evolve in a controlled manner in order to learn the function that needs to

be computed.

In other applications, where it is necessary to implement di¤erent concurrent tasks

by partitioning the hardware resources among them, a reconfigurable processor can

outperform a nonreconfigurable solution by dynamically reallocating the hardware

of idle tasks to those that are temporarily overloaded. This feature, called spatial

multiplexing, becomes very attractive when partial rather than global reconfiguration

is possible because it allows part of the device to be reprogrammed without halting

execution in the rest of it.

Field-Programmable Gate Arrays

A field-programmable gate array (FPGA) is a device in which this idea of reconfig-

urable hardware can be implemented. They emerged as a new technology for the im-

plementation of digital logic circuits during the mid-1980’s. The basic architecture

of an FPGA consists of a large number of configurable logic blocks (CLBs) and a

programmable mesh of interconnections. Both the function performed by the logic

blocks and the interconnection pattern can be specified by the circuit designer. In

the beginning FPGAs were mostly viewed as large programmable logic devices

(PLDs) and they were usually employed for the implementation of the ‘‘glue-logic’’

used to tie together complex very large-scale integrated (VLSI) chips like the micro-

processors and memories used to build general-purpose computers.

While several FPGAs were configured by static random access memory (SRAM)

cells, this was generally considered a limitation by users concerned about the chip’s

volatility. For this reason, fuse-based FPGAs were also developed and for many

applications were much more attractive, both because they were faster and smaller

Pattern
recognition
(Processor)

Reconfiguration
Memory

INPUT

OUTPUT

Figure 15.2
Reconfigurable processor applied to pattern recognition. The external memory stores the configuration
templates that define the functionality of the processor. Using reconfiguration, the same processor can per-
form di¤erent tasks on the same input image.
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owing to less programming overhead, and because there was no volatility in their

configuration since this had been burned into the chip. Not until the late 1980s and

early 1990s did it become clear that the volatility of SRAM-based FPGAs was not

a liability, but could open an entirely new spectrum of applications, since the pro-

gramming of such FPGAs could be changed electrically at almost any point during

operation.

These devices have gained popularity because they are between a software-

oriented solution, such as a microprocessor running a program stored in memory,

and a hardware-oriented solution, such as an application-specific integrated circuit

(ASIC) (figure 15.3). The FPGA-based solution is faster than a microprocessor or

digital signal processor (DSP) because the FPGA is conceived as a large array of

small logic blocks working in parallel and operating at the bit level, exactly where

general-purpose processors are most ine‰cient. Even though microprocessors have

more capabilities, in order to keep their generality, they are still designed to operate

with fixed data formats (8, 16, 32, 64 bits . . .). Therefore they perform poorly when

they need to deal with problems where data have ‘‘nonstandard’’ lengths. On the

other hand, the fine granularity of the computing blocks of the FPGA allows

the user to better map the hardware resources of the chip to meet the demands of

the problem. Using FPGA platforms, speedups of several orders of magnitude have

been achieved for some applications (Stogiannos et al., 2000; Benedetti and Perona,

1998; Jean et al., 2000; Kaps and Paar, 1999). Most of the time the ASIC solution

provides the optimal implementation both in terms of speed and silicon area require-

ment; however, it has the drawback of being a single-purpose processor. Compared

with ASICs, FPGAs are much more flexible since they contain some hardware

resources that can be programmed by the user to implement a given task and, by

Figure 15.3
Tradeo¤ comparison of flexibility versus speed for di¤erent hardware implementations: microprocessors
(mP), digital signal processors (DSP), field-programmable gate arrays (FPGA), and application-specific
integrated circuits (ASIC).
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changing that configuration, the same hardware can be used to carry out something

totally di¤erent with minimal development time and cost.

Although FPGA architecture design is a field of important research in the FPGA

community, and many di¤erent implementations have already become commercially

available, it is beyond the scope of this chapter to describe all of them. To illustrate

the common features of their internal structure, one of the most widely used designs,

the symmetric array (Brown et al., 1992), will be analyzed (figure 15.4). In this case,

the CLBs are arranged in a two-dimensional array and interleaved with vertical and

horizontal buses used to establish connectivity among them. Segments in two dif-

ferent buses can also be connected by programmable interconnects in switching ma-

trices. Finally, on the periphery of the chip, there are some input-output cells.

The basic functional unit of the FPGA is the configurable logic block, which

implements an elementary Boolean operation. Despite the fact that there are CLBs

based on multiplexors or or-and arrays, the use of look-up tables (LUTs) to synthe-

size logic functions provides much greater flexibility (Brown et al., 1992). An LUT

can be seen as a small memory bank in which the inputs encode the address of a

position that stores the result of a preprogrammed logic function of the inputs. By

changing the bits stored in the LUT, the computed function can be altered.

A simple example, like the majority rule function, can be used to illustrate how

an LUT operates. In this case, the operation to be implemented has to produce an

output ‘‘1’’ if at least two of the three input bits are ‘‘1,’’ and output ‘‘0’’ otherwise.

This function could be implemented using only a three-input LUT. The LUT needs

to store the result of the computation for each of the eight possible input sequences

I/O Cell

Configurable
Logic Block

Programmable
Interconnect

Figure 15.4
Architecture of a typical FPGA. A symmetric array of configurable logic blocks (CLBs) is surrounded by a
mesh of buses and matrices of programmable interconnects that provide connectivity among the CLBs, as
well as with the input-output (I/O) cells.
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from ‘‘000’’ to ‘‘111.’’ Therefore the LUT holds logic ‘‘1’’ for the sequences ‘‘011,’’

‘‘101,’’ ‘‘110,’’ and ‘‘111,’’ and logic ‘‘0’’ for ‘‘000,’’ ‘‘001,’’ ‘‘010,’’ and ‘‘100,’’ so

table 15.1 is generated.

Since all possible input states are accounted for in the table, every time an instance

is presented, the FPGA processor only needs to look up the result. Despite the

simplicity of the problem, a general-purpose microprocessor would already perform

worse than the FPGA since the microprocessor needs to retrieve the input data and

then sequentially compare it with each one of the sequences containing at least two

logic ‘‘1’’; or alternatively, summing the three inputs and comparing the result with

the value 2, which is also slower.

In the same way as in the example, more interesting functions such as a 1-bit

full adder can be mapped in an LUT. Arbitrarily large adders and multipliers are

implemented by cascading several 1-bit full adders together with shift registers.

Higher-level functions, such as filters or correlators, are then synthesized by combin-

ing adders and multipliers.

Figure 15.5 shows the schematic of an LUT-based CLB. In this case, two sets of

inputs, on the left-hand side, feed two independent four-input LUTs. A third LUT

has the ability to combine the results of the LUTs from the previous stage, increasing

the functionality of the CLB to implement more complex logic functions. The two

outputs of the CLB are on the right-hand side and can be bu¤ered if necessary by

flip-flops. These registers allow sequential logic to be implemented in the CLB.

FPGAs have traditionally been successfully used as accelerators in many applica-

tions, such as signal processing (Stogiannos et al., 2000), image filtering (Benedetti

and Perona, 1998), automated target recognition (Jean et al., 2000), or cryptography

(Kaps and Paar, 1999). In a typical arrangement, as shown in figure 15.6, the FPGA

is set up as a coprocessor that is controlled by the microprocessor. For a given appli-

cation, if there is some task that is computationally very expensive, the microprocessor

Table 15.1
LUT definition for the majority rule function

Input Output

000 0

001 0

010 0

011 1

100 0

101 1

110 1

111 1
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Figure 15.5
Schematic of a look-up table (LUT)-based CLB. Two independent sets of inputs F[1–4] and G[1–4] feed
the LUTs on the left of the figure. The outputs of the LUTs can be combined using an additional LUT for
more complex Boolean functions. The control signals C[1–4] define the way the results of the LUTs are
routed to the output of the CLB by the multiplexers. This output can be bu¤ered, which allows sequential
logic to be implemented.

OP FPGAMemory

Configuration Data

Results

Data

Figure 15.6
FPGAs are usually used as accelerators. The master processor (microprocessor and memory) programs the
slave processor (FPGA) to perform the most computationally intense tasks.
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can program the FPGA to perform that task much faster than if it was executed by

the main processor. The configuration data of the FPGA, which specify the values in

the LUTs and the interconnection pattern, are stored in an external memory, in most

cases an electrically programmable read-only memory (EPROM), and downloaded

into the FPGA chip on demand. The microprocessor just feeds the data into the

FPGA and waits for the results; all the cumbersome computation has been hard

wired inside the FPGA.

Although the size of these devices, in logic gates, can vary among di¤erent models

and manufacturers, they can easily contain on the order of 105 gates, and the trend

is to keep increasing the logic density to go beyond the million-gate FPGA. This

means that the configuration data page for a medium-sized FPGA can be as large

as 1 Mbit. Despite the fact that the FPGA can be reprogrammed multiple times, the

user typically does not take advantage of this feature. In most cases, the FPGA is

configured only once and this configuration is downloaded into the FPGA o¿ine,

before the execution is started. The main reason for not dynamically reconfiguring

the device, that is, changing its internal configuration once the execution has started

and some data are already flowing into it, has been the small communication band-

width between the external configuration memory and the FPGA chip itself. The

configuration bandwidth of the FPGA has not scaled well enough to keep up with

the enormous data throughput.

Upon programming, the configuration data are downloaded serially by shifting

a long bitstream into the FPGA. The data transfer rate between memory and the

FPGA is only in the range of 100 megabits per second (Mbps), which results in con-

figuration times of tens or even hundreds of milliseconds. These long reconfiguration

times, if compared with clock cycles of just tens of nanoseconds and input-output

throughputs reaching 100 Gbps, become an important overhead. Some attempts to

decrease the reconfiguration times have been proposed, such as providing a dedicated

parallel bus to increase the bandwidth with the configuration memory, or having

fast-access cache memory built into the chip (Trimberger et al., 1997; Motomura

et al., 1998). Both solutions only further increase the already high power dissipation

of the FPGAs, which although application dependent, can easily be in the range of

1 to 10 W.

Holographic Memories

Holographic memories o¤er a potential solution to this demand for high-capacity

memory. Holography was invented by Gabor in 1948 (Gabor, 1948, 1949a,b) and

volume data storage was proposed already in the early 1960s (van Heerden, 1963;

Leith et al., 1966), but it was not until the early 1990s that advances in optoelectronic

devices and materials made holographic memories viable (Psaltis and Mok, 1995;

Mok, 1993). In a holographic memory, the information is recorded by the inter-
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ference of two coherent beams of light inside an optical medium (figure 15.7). One of

the beams (signal beam) is encoded using a spatial light modulator (SLM) or a mask

containing the data formatted as a page of pixels, while the other beam (reference

beam) is usually a plane wave. The unique interference pattern created between the

two beams is then recorded as a hologram inside the optical material. During read-

out, when the original reference beam illuminates the material, the hologram causes

the light to be di¤racted and to reconstruct the recorded signal beam.

Owing to the Bragg e¤ect, it is possible to superimpose several holograms on the

same location without cross-talk, achieving densities as high as 100 bits/mm2 (Pu,

1997). Several multiplexing techniques have been developed and they involve some

change in a property of the reference beam [angle (Mok, 1993; Curtis et al., 1994),

wavelength (Rakuljic et al., 1992; Yin et al., 1993), or shift (Psaltis et al., 1995; Bar-

bastathis et al., 1996) multiplexing] or in its wavefront [phase-code (Denz et al.,

1991) or speckle (Markov et al., 1999) multiplexing]. The number of holograms that

can be stored on a single location depends on the recording geometry and the dy-

namic range of the material. Further pages of data can be stored by recording in

multiple locations (spatial multiplexing), for example, on a spinning holographic

disk (Pu and Psaltis, 1996).

Another unique feature of holographic memories is that the data are written to

and retrieved from the memory in a page-oriented way. Pages can contain from just

several kilobits to a few megabits encoded as pixels whose size can be as small as

Figure 15.7
Typical holographic setup: Two beams of coherent light are crossed inside an optical material. The spatial
light modulator (SLM) transfers a page of digital data into the signal beam, while the reference beam
carries no information. The pattern displayed on the SLM is imaged onto the detector [a charge-coupled
device (CCD) camera] using two lenses with focal lengths F1 and F2.

Reconfigurable Processors for Neural Prostheses 345



1� 1 mm or even in the submicrometer range (Liu and Psaltis, 1999). This parallel-

ism provides the optical memory with gigantic data transfer rates in the range of

terabits per second.

Besides high storage capacity and fast transfer rates, it is important that holo-

graphic memories be compact in order to be able to compete with other tech-

nologies, such as magnetic storage. Even though a typical holographic system may

involve very few optical components, the space constraints imposed by the optics

result in bulky setups. One way of minimizing the volume of the system is by using

phase-conjugated readout (Feng and Sayano, 1996). Instead of reconstructing the

hologram with the same reference beam as the one used for recording, the counter-

propagating beam is used to read out the hologram. As a result, the reconstructed

signal backpropagates as well, and self-focuses on the input plane, which now be-

comes the output plane and can be separated from the former by a beam splitter (fig-

ure 15.8). Since no lens is required for the readout, the holographic module becomes

very compact (Drolet et al., 1997).

An important aspect of the memory concerns the selection of the optical mate-

rial. For read-only (or write-once-read-many, WORM) applications, polymer-based

materials can be used. In these media, readout of the stored data does not result in

erasure, so the lifetime of the holograms is limited only by the aging of the polymer

Figure 15.8
Holographic random access memory (RAM) module that makes use of the phase-conjugated readout tech-
nique. Two beam splitters (one on top of the other in the picture) direct the laser beam into the photo-
refractive crystal (on the back under the 45-degree mirror) during the write-read cycles.
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itself. The recording of successive holograms bleaches the material’s absorption spec-

trum until eventually it reaches saturation, which means that the material has used

up its dynamic range and is insensitive to further illumination.

One important metric that is commonly used to characterize optical materials is

the M/No. (Mok et al., 1996), which measures their dynamic range and is defined

as the sum of the strengths of the recorded holograms. Rewritable holographic mem-

ories are usually implemented on photorefractive materials, typically lithium niobate

(LiNbO3) crystals. They have traditionally su¤ered from the fact that the informa-

tion stored in them is volatile during readout, even in the dark; however, recent

research has successfully developed nonvolatile rewritable memories using doubly

doped crystals (Buse et al., 1998). In this class of materials, the M/No. is directly re-

lated to the asymmetry between the recording and erasure rates.

Optically Programmable Gate Array

Optical memory modules inherently possess a high degree of parallelism, since the

data are handled in the format of pages. Such parallelism results in a large com-

munication bandwidth between the memory and the array of photodetectors dur-

ing a readout cycle, or the SLM upon recording. The use of optical memories in

information-processing systems makes it necessary to consider the interface between

the holographic module and the silicon circuitry that processes the data retrieved

from the memory and stores computational results.

Traditionally, holographic systems have not addressed this issue, so even though

the information can be transferred very quickly to and from the optical memory,

this parallelism is lost in the communication between the optoelectronic chips and

the processor, becoming a bottleneck. Therefore, a direct interface between memory

and processor would be much more e¤ective since the parallelism would always be

preserved, as suggested in figure 15.9. The direct interface avoids the slow interchip

communication by simply integrating the logic circuitry and an array of photodetec-

tors on the same silicon die. However, the question now is to identify which comput-

ing devices have enough hardware parallelism to exchange data e‰ciently with the

optical memory. It is here that the distributed hardware resources of the FPGA

marry the parallelism of the optical memory.

Based on the FPGA architecture, the optically programmable gate array (OPGA)

(Mumbru et al., 1999) is a device in which the computation is still performed by pro-

grammable logic blocks and interconnects as in the conventional FPGA, but the con-

figuration data are brought into the chip optically. This optical reconfiguration

capability results from interfacing an optical memory with a silicon chip in which,

in addition to the logic resources, an array of photodetectors has been incorporated,

as illustrated by figure 15.9. The holographic memory can store a large number of

configuration templates that can be transferred down to the FPGA chip as a single
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page. By taking the reconfiguration circuitry out of the FPGA chip, the OPGA can

achieve a larger logic density, that is, more CLBs can be implemented than in the

conventional device.

In its initial implementation, the OPGA module is intended to operate as a holo-

graphic read-only memory (HROM), where a priori and for a given application, the

user will decide on the library of configuration templates that needs to be stored in

the memory. This frees the OPGA module from all the optics and optoelectronics

required to write in the memory, like the SLM, and makes it very compact. How-

ever, later OPGA designs will encompass both read and write capabilities, which

will provide an increased computational flexibility.

The OPGA is basically the integration of three main components or technologies:

an array of vertical cavity surface-emitting lasers (VCSELs) used to retrieve the

templates stored in the memory; the optical memory, which contains a large set of

configuration contexts; and the VLSI chip, which combines complementary metal-

oxide semiconductor (CMOS) logic and photodetectors. Each of these components

presents a number of issues that are discussed in this section.

VCSELs operating in the infrared wavelengths are widely used in fiber optics data

links, optical interconnects, and storage applications. In contrast to conventional

laser diodes, which emit light from the edge of the chip, VCSELs emit light vertically

from the wafer surface. Therefore, instead of having to cleave the wafer into single

elements, they can be packaged as large arrays (Krishnamoorthy, 2000). The first

VCSELs emitting in the red wavelengths were reported in 1993 (Schneider and Lott,

1993). The shift toward shorter wavelengths has presented the possibility of using

Configuration

Templates

Logic + Detectors

Holograms

ResultsData

Figure 15.9
Direct interface between the optical memory and the silicon chip carrying photodetectors and logic cir-
cuitry. The configuration templates stored as holograms (depicted as slices) can be downloaded to the
chip in parallel.
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such devices in holography, since most optical materials are sensitive in the visible

range of the spectrum.

An array of VCSELs is used as a light source for the OPGA module to selectively

retrieve one data page of the optical memory at a time. Arrays of di¤erent sizes pro-

vided by Honeywell Corporation (figure 5.10) have been tested and characterized.

Their very good power and wavelength stability over time have revealed that this

type of laser diode is suitable for holographic recording (figure 15.11). The two

most important parameters for the VCSELs, if they are to be used in the OPGA

module, are their output power and wavelength uniformity across the array. The

improvements in newer arrays have been able to meet such requirements; however,

the consistency from die to die seems to require further research in the fabrication

process.

The technique used to store and multiplex the holograms in the optical memory

determines the architecture of the entire module. For this reason it is not possible to

discuss the holographic memory without giving a more global view of the system that

encompasses both the VCSEL array and the array of photodetectors in the chip.

Owing to the limited output of optical power available from each VCSEL, we

have developed a novel technique to multiplex the holograms in which we still

achieve short reconfiguration times, in the range of tens of microseconds, but without

a demanding requirement on the power per VCSEL. This technique combines both

spatial and shift multiplexing. Upon recording (figure 15.12), a lens focuses the

Figure 15.10
Photograph of the die containing several 25� 1 arrays of red wavelength vertical cavity surface-emitting
lasers (VCSELs), arranged in columns. The size of each device, the small circles at the end of the square
pads, is 20 mm. The VCSELs operate at a wavelength of 680 nm (photo provided by Honeywell Corp.).
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Figure 15.11
Reconstruction of a hologram using VCSELs. The digital data, the 1s and 0s, are encoded as bright and
dark square pixels in the hologram. In this case, the hologram corresponds to a 34-mm pixel size mask.

Rotation
Stage

Translation
Stage

Optical
Medium

SLM

Laser
Diode

4F
System

F1

F2

Figure 15.12
Optically programmable gate array (OPGA) recorder setup. The linear translation stage in the reference
arm, combined with the rotation stage and the lenses in the 4F system in the signal arm, is used for the
shift-multiplexing of the holograms.
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beam that impinges the SLM onto a small spot on the recording medium. By chang-

ing the angle of incidence of the beam on the lens, the signal spot can be made to

focus on a di¤erent location in the material, which partially overlaps the previous

ones. The pages of data are recorded in these partially overlapping circles, which

span a stripe on the optical material. To achieve Bragg mismatch among holograms,

a converging reference beam needs to be shifted accordingly to illuminate the corre-

sponding signal spot.

In the recording setup (figure 15.12), a laser diode with enough coherence length

can be used instead of the VCSEL array. The beam emitted by the diode is colli-

mated and split into the signal and reference arm. The angle of the signal beam is

adjusted with a rotation stage before it illuminates the SLM. The reference beam is

focused by a lens mounted on a mechanical scanner used to translate the beam be-

yond the shift selectivity of the optical medium.

During readout, the system becomes very compact (figure 15.13), for two reasons.

First, we use reflection geometry for recording, so upon readout, the reading beam

from the VCSEL and the array of photodetectors are both located on the same side

of the material. Second, phase-conjugated readout makes the use of any extra com-

ponents unnecessary. The VCSEL array is placed at the plane where the converging

reference beams used for recording focus. Upon read out each VCSEL illuminates

one of the spots in the memory, and all the reconstructed images backpropagate to

the plane of the SLM, where the photodetector array is located.

As a benefit of this architecture, we obtain larger values in the di¤raction e‰ciency

per hologram, which scales, not as the total number of stored holograms, but as

the number of overlapping ones at any location. A simple system design calculation

helps to illustrate the fact that the power required per VCSEL is compatible with the

VCSEL
ARRAY

OPTICAL
MEMORY

LOGIC + DETECTORS
CHIP

10
m

m

13
.5m

m

18m
m

16mm

Figure 15.13
OPGA reader module. The light emitted by each VCSEL is used to read out a di¤erent hologram that self-
focuses, owing to phase-conjugation, on the array of photodetectors in the chip.
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levels that we have in our VCSEL arrays. Assume that we design the memory to

store 100 configuration pages; each page is 106 pixels with a pitch of 5 mm, and we

use an optical material 200-mm thick with M/5. If the number of overlapping holo-

grams is set to 20, then the di¤raction e‰ciency per hologram is as high as 6.25%.

Therefore if we consider the photon budget at the photodetectors and choose 1000

photons to be detected in order to have an acceptable signal-to-noise ratio (SNR),

we can parameterize the power per VCSEL as a function of the integration time of

the detectors. If the integration time is set to be just 1 ms, each VCSEL must output

6.4 mW. If a longer integration time is allowed, the power required per VCSEL falls

into the range of values of the present VCSEL array.

Another advantage of this architecture is the small area used on the recording me-

dium to store all the holograms. If the lens that focuses the signal beam has a focal

length of 10 mm, the signal spot size on the material is only 2.7 mm in diameter, and

100 holograms can be stored on a stripe 2.7 mm wide by 16 mm long. Given the

small dimensions of the area where the pages are recorded, the holograms are much

less sensitive to any nonuniformity on the medium and, consequently the quality of

the reconstructed images is higher.

Once the mechanism to store the configuration templates in the optical memory is

chosen, we need to consider which optical media are appropriate for the OPGA sys-

tem. Holographic polymers are interesting because they present good dynamic range

and have high sensitivity. However, polymers like DuPont or methylene blue (MB)-

doped polyvinyl alcohol (PVA) (Blaya et al., 1998) su¤er from shrinkage and poor

optical quality that is due to nonuniformity in the material, which distorts the recon-

structed images. This problem becomes more important as the pixel size is reduced,

even if phase-conjugated readout is used.

The possibility of using phenanthrenequinone (PQ)-doped polymethylmethacry-

late (PMMA) (Steckman et al., 1998) has also been explored. This material shows

good optical quality and M/No. (Steckman et al., 1998). However, the material has

extremely poor absorption in the red. This means that the material is not useful for

the OPGA unless we use green light sources, which does not seem a plausible solu-

tion at present. The most solid choice seems to be Aprilis film (Waldman et al.,

1998), which enjoys both good recording dynamics and high optical quality.

Another alternative is iron-doped lithium niobate crystals. Experiments have

revealed that their performance in the red wavelengths for reflection geometry is

fairly good in terms of dynamic range. Although there is a drop in their sensitivity

compared with polymers, this is relatively unimportant for this application. The ex-

cellent optical quality (figure 15.14), combined with the fact that LiNbO3 has very

low scattering, makes it a good alternative to be used in this project.

The development of active pixel sensors (APS) (Mendis et al., 1994) using standard

CMOS technology, the same that is used for most microprocessors and memory
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modules, enables the integration of photodetectors with on-chip processing circuitry

and has resulted in the expression ‘‘camera-on-a-chip’’ (Fossum, 1997). The OPGA

chip makes use of this idea and integrates an array of pixels to detect the recon-

structed hologram as well as the logic circuit of a conventional FPGA on the same

die, as shown in figure 15.15. The detectors must have a very small pitch to result in a

low area overhead and enough sensitivity to guarantee a reconfiguration time in the

range of 1 to 100 ms.

There are two competing topologies for the spatial layout of the detectors and the

logic. We could sparsely distribute the detectors with the logic, as shown in figure

15.15a, so the optical bits are detected exactly where they are used to program the

logic, or conversely, concentrate all the detectors on a single array and distribute

the detected signals across the chip, as in figure 15.15b. The second topology makes

the optics simpler because the quality of the hologram needs to be more uniform over

a smaller area than in the first case. However, the first case greatly simplifies the

mesh of metal buses used to deliver the detected signals to the logic blocks.

The light detected by each APS needs to be converted into a logic value of 1 or 0

by comparing this signal with some threshold. The simplest way to perform such a

conversion is to set the same threshold for all the photodetectors in the chip. How-

ever, a global threshold cannot compensate for spatial variations in intensity across

the entire data page. An alternative is to use di¤erent threshold levels across the

area of the chip. This is not a perfect solution either, even assuming that generating

many di¤erent bias voltages for the thresholds is not an issue, because the spatial

Figure 15.14
Phase-conjugated reconstruction of a random-pixel hologram stored in a lithium niobate crystal with
traces of iron. The reconstruction exhibits very good quality despite the small pixel size (4 mm) used in the
experiment.
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nonuniformity in the reconstructed hologram can change from one holographic page

to another.

An e‰cient way to be more robust to this nonuniformity of intensity is di¤erential

encoding (Heanue et al., 1994; Psaltis and Burr, 1998). In this case, a pair of pixels in

the hologram represents each single bit of information required to program the chip.

The di¤erential photodetector must have two photosensitive areas, referred to as left

and right pixels, which need to be matched to the pixel pair in the hologram. The

logic 1 is then represented by left pixel on and right pixel o¤ and logic 0 by left pixel

o¤ and right pixel on. This coding scheme makes it unnecessary to set any threshold

for the photodetectors. Since the global variation of the incident illumination is

reduced, the signal-to-noise ratio is increased and therefore the bit error rate (BER)

is improved. From the optics point of view, this type of data representation is simple

and does not increase the system’s cost.

The OPGA chip (Mumbru, 2000) (figure 15.16) mimics a small-scale FPGA. The

chip combines a 64� 32 array of di¤erential APS sensors (the large big block at the

left center in figure 15.16); the logic array (the small block on the right) containing

four logic blocks, based on five-input LUTs; and switching matrices to fully intercon-

nect the logic blocks among them and with the input-output buses, as sketched in fig-

ure 15.17. In the full OPGA chip, the strategy adopted has been to concentrate all

the photodetectors in one block separated from the logic array.

The last issue concerns the integration of the three major components—VCSELs,

optical memory, and CMOS chip—in a single package. The main goal is to make the

OPGA module small enough to be mounted on a board in a computer, or to be

easily worn in a neural prosthetic context. The main constraint is the height of the

module, and this depends only on the focal length of the lens used before the SLM.

Logic Blocks Photodetectors

Figure 15.15
Detector distribution on the OPGA chip: (a) sparse, where the photodetectors are interleaved with the
logic or (b) concentrated, where all the photodetectors are implemented as an array and the detected sig-
nals need to be delivered to the programmable elements.
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As already discussed, this distance can be made as small as 1 cm. The module is very

compact, owing to the lensless readout and to the small area of recording medium

used to store the holograms. The package shown in figure 15.18 houses the optical

memory on the top rectangular window. The VCSEL arrays, integrated on both

sides, retrieve the holograms detected on the chip located on the bottom of the pack-

age. The package also needs to be robust to ensure alignment between all the compo-

nents. It is important to preserve the one-to-one correspondence between the pixels in

the hologram and the photodetectors on the chip and also to avoid any change in the

areas illuminated by the VCSELs on the optical material.

A first prototype has been successfully developed to demonstrate that it is possible

to integrate all three elements in a compact module (figure 15.19). The module uses a

5� 1 array of VCSELs to read out the holograms that have been stored in the holo-

graphic memory, a 100-mm-thick layer of DuPont photopolymer. For this demon-

stration module, instead of the OPGA chip, a simple charge-coupled device (CCD)

chip was interfaced to the optical memory to detect the reconstructed holograms.

During recording, a laser diode stores two shift-multiplexed holograms in the

Figure 15.16
The full OPGA chip, designed by Photobit in a 0.35-mm standard complementary metal-oxide semiconduc-
tor (CMOS) process, integrates a 64� 32 array of di¤erential photodetectors (the large block at the left
center) and fully connected logic array (the small block on the right center).
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Figure 15.17
Schematic of the programmable logic array. The logic circuitry consists of a 2� 2 array of five-input LUTs
with one bu¤ered output each. The LUTs are fully interconnected by five switching matrices located in the
center, left, right, top, and bottom of the array.

Figure 15.18
Mechanical design of the OPGA module integrating in a compact package the optical memory (window
on the top), VCSEL arrays (one on each side) and the chip (bottom).
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memory at the two locations that match the position of the two VCSELs at each end

of the array. Once the recording operation is finished, the VCSELs are assembled

into the OPGA reader module and the module is removed from the setup of the re-

corder. The OPGA module is mounted on a demonstration board (figure 15.19) that

contains the additional circuitry to drive the VCSELs and select which element in the

array is active, and the interface to the monitor where the holograms are displayed as

they are read out by the VCSELs (figure 15.20).

Reconfigurable Processors Applied to Neural Prosthetic Systems

As we saw in the last section, reconfigurable processors possess a powerful blend

of speed and flexibility. Speed is achieved through optimized and often parallel

Figure 15.19
First-generation OPGA prototype mounted on the board that carries the circuitry to drive single VCSELs
in the array and to power up the module.

Figure 15.20
Reconstruction of the two holograms stored in the optical memory of the OPGA prototype. Two di¤erent
VCSELs are used to retrieve one hologram at a time.
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circuits, akin to those found in ASICs, while flexibility results from the ability to per-

form a wide range of computations, approaching the breadth found in microproces-

sors. Even greater speed and flexibility is possible by reconfiguring and optimizing

the hardware for each class of computation, with faster reconfiguration times lead-

ing to greater optimization and total processing power. Unfortunately the tradi-

tional, all-electronic reconfigurable processors available today (e.g., FPGAs) have

relatively slow reconfiguration times (1–10 ms). These slow rates are due largely

to low-bandwidth buses retrieving from serially addressable electronic memory. We

introduced an OPGA system that overcomes this reconfiguration bottleneck by pair-

ing a high-bandwidth optical bus with a page-addressable optical memory. OPGAs

achieve very fast reconfiguration times (1–10 ms) by simultaneously reading an entire

page of reconfiguration data from the holographic memory onto an FPGA circuit,

which we modified to include an array of photodetectors. The resulting increase in

speed and flexibility has important consequences for a wide range of computational

systems, including those envisioned to power emerging neural prosthetic systems.

How could reconfigurable processors in general, and OPGAs in particular, be ap-

plied to neural prosthetic systems? To be a bit more specific, we return to the pros-

thetic arm example introduced in the first section. The goal of the discussion in the

following two subsections is simply to point out a few of the central architectural

principles relevant when considering reconfigurable processors in the context of neu-

ral prosthetic systems. It is beyond the scope of this chapter to present a detailed de-

sign, and any such design would necessarily depend on the particular reconfigurable

hardware used and the specific neural prosthetic computations to be performed.

A Prosthetic Arm System Revisited

Figure 15.21 is identical to figure 15.1, except that several elements have been

grouped according to how they could be implemented. There are three of these

groups, which we refer to as subsystems. The first subsystem is the front end, which

consists of amplifiers, filters, and analog-to-digital (A/D) converter(s) needed to

transform the continuous-time and continuous-voltage neural wave form from each

electrode into discrete-time and discrete-voltage (digitized) signals. Since these func-

tions require highly specialized and optimized circuits (e.g., low-noise amplifiers, fast

high-precision A/D converters), they are best implemented in an ASIC. As we will

discuss later, it is also possible that additional front-end functions such as signal buf-

fering, which is straightforward to include on an ASIC, could simplify overall system

design.

The second subsystem is the neural prosthetic processor (NPP), which we suggest

could be implemented in a reconfigurable processor with a fast reconfiguration time

(i.e., OPGA). The reconfigurable NPP (RNPP) as drawn in figure 15.22 would

handle four major functions described previously: (1) spike sorting and spectral anal-

358 Jose Mumbru and colleagues



yses, (2) estimating (decoding) arm-movement parameters from the neural data, (3)

estimating (inverse kinematics) appropriate muscle stimulation parameters given the

estimated arm-movement parameters, and (4) supervising performance and adjusting

the system’s parameters accordingly. The RNPP could also perform two additional

functions that are needed in the system architecture envisioned for this example.

First, when a block of neural data is needed, the RNPP requests these data from the

front-end subsystem that temporarily bu¤ers data for each electrode channel. Sec-

ond, when stimulation parameters have been estimated, the RNPP sends these

parameters on to the stimulation subsystem. Both of these communications would

most likely proceed via telemetry, which is transparent in this discussion because we

assume that a transmit-receive subsystem handles all error correction. The RNPP is

described in more detail later in this chapter.

The final subsystem illustrated in figure 15.21 consists of the muscle stimulators.

Current state-of-the-art muscle stimulators, such as the BION (Loeb and Richmond,

2000), are capable of being injected into muscle with a hypodermic needle, powered

wirelessly, and receiving a wireless digital transmission, including a stimulator-

specific identifier and stimulation parameters. Thus to move the arm, the RNPP

CortexSense(s)

Supervisor

Front End 
(ASIC)

Stimulators 
(BIONs )

Neural-Prosthetics Processor
(Reconfigurable OPGA)

Amplify,
Filter,

Sample &
Buffer

Spike Sort
& Spectral
Analyses

Estimate
Arm Move.
Params.

Estimate
Musc. Stim.

Params.

Stimulate
Muscles

Arm
Position

Object to
Reach
Toward

Figure 15.21
Block diagram of the example prosthetic arm system with elements grouped according to their pos-
sible implementation. The front end requires specialized circuitry that may best be implemented as an
application-specific integrated circuit. The reconfigurable neural prosthetic processor (RNPP), which could
be implemented with a reconfigurable processor like the OPGA, performs many of the block element oper-
ations. Muscle stimulation could be performed with BION-like stimulators injected into muscles.

Reconfigurable Processors for Neural Prostheses 359



need only encode the muscle stimulation parameters appropriately and issue the data

packets.

Reconfigurable Processor Subsystem

This example applies an OPGA to the prosthetic arm system described earlier and is

intended to suggest a general architecture, not a fully functional design. Neural data

flow in from the left, through the RNPP (depicted in gray), and muscle-stimulator

commands flow out on the right. Figure 15.22 shows an OPGA chip area versus

time plot, which suggests how OPGA electronics could be reconfigured through

time, as well as the OPGA holographic memory (at the top of the figure).

When operation begins, the front-end ASIC starts storing neural data samples in

an on-chip bu¤er. This bu¤er can be thought of as a memory page, with rows corre-

sponding to sample number (time) and columns corresponding to electrode number.

The number of rows equals the sampling rate termed R (e.g., 40 kHz or 40 samples/

ms) multiplied by the period of time required to service all data in the bu¤er, which

we term T (ms). We term the number of columns (electrodes) N, which could be on
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Figure 15.22
Possible RNPP architecture employing an OPGA. Neural signals from the front-end ASIC enter from the
left (dashed lines) and muscle-stimulation parameters exit on the right (dashed lines). The OPGA is repre-
sented in two main parts, both of which are shaded gray. The electronic portion is represented as an OPGA
chip area versus time plot, which illustrates how the OPGA electronics are allocated and reconfigured
through time. The RNPP operates in cycles, with a period of T (ms). The holographic memory is depicted
at the top of the figure. Lines indicate information flow, with arrows indicating the direction of this flow.
See text for a complete description of all elements.
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the order of 10 to 100 s. Each memory element is B bytes, which is typically two

(e.g., 12–16-bit samples). From time 0–T , the first bu¤er is filled and from time T–

2T a second bu¤er is filled. This allows the RNPP T ms (T–2T in real time) to ser-

vice the neural data stored in the first bu¤er. The first bu¤er is overwritten from 2T

to 3T , while the RNPP services the second bu¤er, and so on. This architecture allows

the ASIC to implement most of the data memory (e.g., 2 bu¤ers� RT samples�N

electrodes� B bytes/sample ¼ 2RTNB bytes) freeing the RNPP to store only a small

amount of neural data at any time (e.g., RT samples� 1 electrode� B bytes/

sample ¼ RTB bytes). For example, if a 10� 10 electrode array were implanted,

and the electrical signals sampled at 40 kHz for a 20-ms time frame and afterwards

digitized with 12-bit precision, a 120-kbyte RAM memory for each page would be

enough to store all the neural data in the ASIC. The OPGA would require 1/N as

much on-chip memory, 1.2 kbytes.

As shown in figure 15.22, the RNPP must complete all of its operations within

one period (T ms). This period is bounded by the maximum allowable time be-

tween muscle-stimulator updates, which could range from hundreds of milliseconds

for coarse motor control to just a few milliseconds for fine motor control. While

T may be made as small as current technology will allow, the ultimate limit rests

with the time scale of neural representations and the information transmission rate

achieved by the front-end sensors. An important point is that while T ms pass be-

tween muscle-stimulator updates, the absolute latency of the system (i.e., time from

neural event until muscle stimulation) is 2T ms because T ms is consumed in the

front end and T ms is consumed in the RNPP. Therefore, the maximum allowable

period T must also take into consideration the maximum allowable latency in the

closed-feedback prosthetic system.

The first RNPP operation in this example architecture is to configure the OPGA to

request, receive, and store neural data. The OPGA is configured by reading a page

of configuration data from the holographic memory (the downward-directed arrow

from holographic memory at the far left of figure 15.22) and is fast enough (1–

10 ms) that we do not allocate any appreciable time to this operation in the figure.

The second OPGA operation is to request T ms of electrode 1 data from the front-

end ASIC, receive these data, and place them in OPGA memory. This operation

consumes some finite amount of time, illustrated as the width of the ‘‘Electrode 1:

Receive Data’’ bar, and occupies some fraction of the total OPGA electronics area,

illustrated by the height of the bar. Again, this figure is meant simply to be suggestive

of architectural principles. A certain fraction of the OPGA electronics area is con-

figured as memory, with raw neural data and intermediate results and supervisor

parameters each having their own reserved regions.

The next RNPP operations are to configure the OPGA for spike sorting, spike sort

T ms of electrode 1 data, and place the results in OPGA memory. Spike sorting re-

quires the OPGA electronics to be configured as an e‰cient DSP-like processor in
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order to correlate the neural data with neural wave form templates (Wheeler, 1999).

Electrodes typically sense action potentials originating from many neurons, with 1–4

of these neurons being identifiable by their voltage-time wave form shapes. Statis-

tical neural templates appropriate for each electrode can be learned o¿ine, stored in

the holographic memory, and then retrieved just before spike sorting data from a

given electrode. Cross-correlating these neural wave form templates (1–4 templates,

roughly 2–3 ms in duration) with the neural data from electrode 1 (T ms in duration)

requires shift (delay), multiplication, and addition operations that are straightfor-

ward to implement in FPGAs-OPGAs.

Let us consider a hypothetical, although not unrealistic, OPGA device containing

3500 CLBs and a 30-kbyte bank of on-chip RAM memory. In such a device, four

template-matching filters for a 2-ms-long sequence each could be simultaneously

implemented using slightly less than 1000 CLBs, assuming that we take advantage

of e‰cient distributed computing algorithms, such as the ones described in Andraka

and Berkun (1999). This low CLB count would even allow multiple electrodes to be

processed in parallel. The identity and time of each action potential in the T ms of

electrode 1 data are stored for later analysis. This does not consume large amounts

of memory since spike rates are relatively low (e.g., <100 spikes/s on average) and

identity and time information can be compact. Just 80 bytes per electrode are used,

for example, if 10 matches are found on average in each one of the filters and each

match is encoded as 2 bytes.

The final RNPP operation that must be performed on data from each electrode

is spectral analysis or digital filtering. Digital filters appropriate for estimating the

power in a given frequency band, for example, can be designed o¿ine, given o¿ine

data from each electrode. These filter coe‰cients are most likely specific to each elec-

trode. Since the power in multiple frequency bands may be of interest, the OPGA

could be configured as a DSP filter bank, which again requires delays, multiplication,

and addition operations. A 256-tap filter, using 12-bit precision complex coe‰cients,

can be implemented in the OPGA using just 715 CLBs (Andraka and Berkun, 1999).

Therefore there is enough hardware available to implement a bandpass filter bank to

obtain the spectral information for the neuronal signals in three di¤erent regions of

the spectrum simultaneously. This suggests that even fast Fourier transform (FFT)

analyses are possible. Filter coe‰cients for each electrode’s digital filters and the elec-

tronics configuration data for the filter bank are stored in the holographic memory

and downloaded just before data from a given electrode are analyzed. After analysis,

the relatively compact spectral estimates, perhaps just 16 bytes per electrode, are

stored for later use.

This sequence of operations—receive T ms of bu¤ered neural data, spike sort, and

filter—repeats until all N channels of electrode data have been processed. Together

all such operations must consume less than T ms (shown as 0.6T ms in figure 15.22)
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to allow su‰cient time to complete the remaining RNPP operations (shown as 0.4T

ms). Continuing with the example, if the OPGA could be clocked at 166 MHz, the

time required to compute the spike sorting and the spectral analysis could be as low

as 116 ms, which with the reconfiguration overhead of 2 ms for the two reconfigura-

tions, becomes 118 ms per electrode. Therefore the array of 100 electrodes could be

processed in 13 ms (within 60% of 20 ms).

We can already see the key reconfigurable processing architectural principles at

work. First, the diverse neural prosthetic computations are rapidly accommodated

by the OPGA rewiring to e‰ciently perform a range of calculations. Second, the

OPGA meets the real-time demands by being ‘‘wired’’ nearly optimally for any given

task, which includes parallel-processing topologies. Finally, the OPGA is able to

scale well with the number of electrodes (sensors) delivering neural data by time-

multiplexing its operations. The number of electrodes this OPGA can handle is

set by the speed of the processor, not by the number of parallel circuits that will fit

within the area of the chip. This ability to time-multiplex the processing of data from

increasing numbers of electrodes, as opposed to adding more physically parallel cir-

cuits that consume more chip area, is a¤orded by the relatively slower biological time

scale and by the fast and parallel circuits possible in FPGAs-OPGAs.

The next RNPP operation is to estimate the arm-movement parameters. The goal

is to estimate how the arm should move (e.g., new x; y; z location in space) given the

new neural observations extracted from the preceding T ms in time (e.g., spike times

and spectral power density). Although the best way to perform this estimation is a

matter of current research, all methods require a database for how each neuron or

electrode responds for real or intended reaches in numerous directions. This database

can be constructed o¿ine, stored in the holographic memory, and retrieved when the

RNPP needs to estimate arm movements. The OPGA should also be configured to

perform any of a number of estimation algorithms (e.g., maximum likelihood, Baye-

sian analysis, neural network) and, again, these configuration data are stored in the

holographic memory. As before, these algorithms reduce to multiplications and addi-

tions, and the FPGA can perform millions of those per millisecond (Andraka and

Berkun, 1999). The results of this estimation are quite compact, potentially as small

as the new x; y; z arm location; for example, 6 bytes. It is important to note that

estimation of arm movement scales well as the number of neurons and electrodes

increases.

After estimating and storing the new arm location, for example, the RNPP must

estimate how each of several (S) muscle stimulators should be activated to direct

the arm to this desired location. Estimates of this sort require a model for where

each muscle stimulator is implanted, how muscle stimulation leads to muscle con-

traction, and how this contraction moves the arm. These models are then run in

reverse to arrive at stimulation parameters, given the desired arm location. These
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reverse models, and the OPGA electronics needed to run them e‰ciently, are stored

in the holographic memory. Upon completion, each stimulator’s identity (1 byte) and

its stimulation current level (1 byte) and duration (1 byte) are stored in the on-chip

memory for delivery to BION-like stimulators (Loeb and Richmond, 2000).

The last RNPP operation before the arm starts moving is to send these muscle-

stimulation parameters to the transmitter. As with the front-end ASIC-to-RNPP

connection, the RNPP-to-muscle-stimulator connection is envisioned to contain a

wireless link. Therefore the RNPP must send the wireless transmitter each muscle-

stimulator’s identity and stimulation parameters, perhaps in an appropriately en-

coded packet, and the transmitter will broadcast the instructions. Each muscle

stimulator will activate accordingly.

The final RNPP operation is to perform the supervisory duties described in the

first section of this chapter. In brief, many signals and conditions are expected to

change throughout the lifetime of such a neural prosthetic system. While the system

can be initially calibrated using o¿ine analyses, as we have seen, continual adjust-

ments are almost certainly needed for adequate performance over months or years.

At the front end, electrodes may drift or become encapsulated, thereby changing the

recording characteristics. The RNPP should adjust the spike-sorting and spectral-

analysis algorithms accordingly, or even actively move the electrode tips to track

neurons when this capability is available. At the arm-movement estimation stage,

neural plasticity can change the response characteristics of neurons, and the response

database and/or estimation algorithms must learn or adapt accordingly. System per-

formance should actually benefit from such neural plasticity.

Finally, at the back end, it is likely that over time muscle stimulation will even-

tually lead to slightly di¤erent arm movements. Again, the supervisor should adapt

the model’s parameters appropriately. While the basic supervisory logic circuitry

can be stored in, and retrieved from, the holographic memory, much of the infor-

mation needed by the supervisor must be stored in OPGA electronic memory (see

‘‘Electronic Memory: Supervisor Parameters’’ in figure 15.22). The supervisor must

analyze past neural signals and system performance, store intermediate assessments,

and store numerous adjusted parameter values to be accessed by the other RNPP

operations (e.g., new spike-sort parameters). At present this information is best

stored in electronic memory because OPGA holographic memory is read-only, al-

though this is expected to change.

Here we have attempted to illustrate how a reconfigurable processor, the OPGA,

might be used in an example neural prosthetics system, the prosthetic arm system.

This so-called reconfigurable neural prosthetic processor subsystem performs most,

if not all, of the signal processing, estimation, and control essential for a prosthetic

arm system. The OPGA-based RNPP is able to achieve this level of performance by

virtue of its inherent (optical) reconfiguration speed, parallel and optimized circuitry,
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and the use of a time-multiplexing scheme. By our estimates, a single OPGA built in

current FPGA technology would be able to perform all RNPP tasks for approxi-

mately 100 electrodes. As semiconductor and optical technologies continue to ad-

vance, we expect a single OPGA to be capable of processing neural signals from

more electrodes, perform more complex computations and control, or both. We

also envision that OPGAs could contribute meaningfully to sensory prosthetic sys-

tems (e.g., transforming images into electrical-stimulation patterns) since FPGAs

have already made an important impact on image processing.

Discussion

In this chapter we have attempted to convey the unique processing demands of

neural prosthetic systems, the powerful and flexible nature of reconfigurable pro-

cessors, and the potential of applying novel reconfigurable processor technologies to

the emerging field of neural prosthetics. To address the current bottleneck in field-

programmable gate arrays, namely, long reconfiguration times, we reviewed our re-

cent e¤orts to develop optically programmable gate arrays. These devices derive their

extremely short reconfiguration times from the enormous memory bandwidth af-

forded by parallel optical interconnections between a page-readable holographic

memory and the reconfigurable electronics. Finally, we suggested a potential archi-

tecture for how OPGAs might be applied to a representative neural prosthetic sys-

tem, the prosthetic arm system.

According to our stated assumptions and approximations regarding current tech-

nology, it should be possible to process neural data from roughly 100 electrodes

(spike-sort and estimate spectral power densities) and estimate arm movements and

muscle-stimulation parameters on a single OPGA. Clearly, the next step toward real-

izing reconfigurable neural prosthetic processors would be to implement these func-

tions in current FPGA technology and verify processing speed. Processing signals

from even a few electrodes would considerably increase our understanding of how

neural processing, including online learning, should be mapped onto reconfigurable

processor architectures. The FPGA reconfiguration times are much longer than those

assumed for OPGAs, but the FPGA experiments could take this into consideration

when projecting more accurate OPGA performance metrics. With these performance

benchmarks in hand, an appropriate OPGA-based RNPP could be designed and

tested. Again, our suggestion is that the power and flexibility of reconfigurable pro-

cessors, which can behave like an e‰cient (e.g., parallel) DSP or microprocessor

at di¤erent times, may outperform other processors on neural prosthetic computa-

tions. Moreover, reconfigurable processors may scale better than other processors

as the number of sensors increases or the number of estimates grows, for similar

reasons.
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Finally, we would like to again emphasize the broad range of neural prosthetic sys-

tems that can be envisioned, and for which reconfigurable processors seem applica-

ble. Although we have chosen to focus on a particular motor prosthetic system to

more easily discuss the role of reconfigurable processors, we believe that FPGAs-

OPGAs may be well suited for many neural prosthetic functions. Returning to the

idea of an artificial vision system, a reconfigurable processor could, in some sense,

substitute for the retinal and thalamic neural processing that is circumvented when

the striate cortex is stimulated directly. Since these functions are related to other

image-processing tasks currently implemented in FPGAs, it seems plausible for

FPGAs-OPGAs to play an important role in transforming scenes derived from digi-

tal imaging into stimulation patterns appropriate for delivery to the brain.
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16 The Coming Revolution: The Merging of Computational Neural
Science and Semiconductor Engineering

Dan Hammerstrom

There is a large class of problems in merging computational engineering with neural

applications that are still only poorly solved. These involve the transformation of

data across the boundary between the real world and the digital world. They occur

whenever a computer is sampling and/or acting on real-world data. Examples of

these ‘‘boundary transformation’’ problems include computer recognition of human

speech, computer vision, textual and image content recognition, robotic control,

optical character recognition (OCR), and automatic target recognition. These are

di‰cult problems to solve on a computer, since they require the computer to find

complex structures and relationships in massive quantities of low-precision, ambigu-

ous, noisy data. ‘‘Boundary transformations’’ are important. Our inability to ade-

quately solve these problems constitutes a significant barrier to computer usage:

I claim that if you take anything that’s a human skill—speech, listening, hand-writing,

touch—it’s totally predictable that those are key technologies . . . that people should invest mil-

lions and millions of dollars in. (Bill Gates, Upside Magazine, May 1992)

We have made much progress in front-end processing (such as in the digital signal

processing of one and two-dimensional signals), but the solutions to complex recog-

nition problems still elude us. Neither artificial intelligence, artificial neural networks

(ANN), or fuzzy logic has given us e¤ective and robust solutions to these problems.

This chapter discusses an approach that has the potential to move us closer to

solving these problems. I first begin with a discussion of intelligent signal processing

(ISP), which attempts to solve complex problems in recognition and control. I then

look at biological computing models, which o¤er insight into new techniques for do-

ing intelligent signal processing. However, these biological models are radically dif-

ferent and require radically di¤erent implementations.

In parallel with these revolutionary advances in computational neurobiology,

silicon technology has been advancing at a phenomenal pace. Although previous

attempts at combining them were premature, silicon technology and computational

neurobiology are beginning to merge to create a powerful and radically new form



of computation. This synthesis will result in a large, new market in neuromorphic

silicon for solving a number of important problems ranging from genetic sequenc-

ing and Internet routing and content recognition to robotic control and speech

processing.

Intelligent Signal Processing

A new research area, intelligent signal processing, is now emerging that is devoted

to consolidating and refining existing solutions, and finding better solutions to trans-

formation problems. The term intelligent signal processing is being used to describe

algorithms and techniques that involve the creation, e‰cient representation, and ef-

fective utilization of complex models of semantic and syntactic relationships. It uses

learning and other ‘‘smart’’ techniques to extract as much information as possible

from signal and noise data (Haykin and Kosko, 1998). In other words, ISP augments

and enhances existing digital signal processing (DSP) by incorporating contextual

and higher-level knowledge of the application domain into the data transforma-

tion process. ISP techniques, in essence, enhance boundary transformations. One of

the most common ISP techniques in use today is the hidden Markov model (HMM)

(Rabiner, 1989). In an HMM, the states in the model are discrete activations, with

transition and symbol emission probabilities obtained by training on real-world

data. HMMs do not approach human capabilities. The representation of higher-level

structure is limited to keep model sizes under control. Only moderate parallelism is

used, further limiting model size.

Researchers believe that what makes human beings so good at pattern recognition

is that:

� We generate numerous hypotheses based on incomplete and noisy data.

� We select the ‘‘best’’ hypothesis based on previously observed data from the pro-

cess in question, which is remembered as a ‘‘model’’ that has evolved from repeated

encounters with a particular context.

� We make e‰cient use of historical statistical information in the selection process.

� We do all this in real time.

When attempting to recreate humanlike intelligence in a computer, an open ques-

tion is how accurately must one model the way humans perform these computations?

For many years, the symbolic, modestly parallel, approach (which has little biologi-

cal relevance) was used and has not achieved great success. Many researchers, even

in the artificial intelligence community, are beginning to agree that a key component

of human intelligence is its ability to e¤ectively use massive parallelism and statisti-

cal, fuzzy processing.
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An experiment that demonstrates the significant di¤erences between how com-

puters currently perform boundary transformations and how real neural circuitry

works is Feldman’s ‘‘100 step rule.’’ Take a simple cognitive task that involves briefly

exposing a human subject to the image of an alphanumeric character on a screen.

The subject is to push a button if the character is a numeral, but do nothing if it is a

letter. For humans, the time for processing such a task, after practice, is typically

about half a second (500 ms). Given that the typical switching time for neurons is

on the order of a few milliseconds, the brain performs this complex task in roughly

a couple of hundred sequential steps, which implies massive parallelism. Looking at

biological computing systems, this is an obvious conclusion, since the human cere-

bral cortex is estimated to consist of about 10 billion relatively slow neurons. A com-

puter program designed to accomplish the same task would be mostly sequential;

it could easily require up to a billion steps and can best be described as ‘‘massively

sequential.’’

The first attempt to create more brainlike models for knowledge representation

problems consisted of the connectionist models (Feldman et al., 1996). They are a

first step to more neural-like solutions. These models are often highly structured and

problem specific. Each node generally implies a specific meaning, each connection

a relationship. Sparsely connected and activated, computation was generally done

in parallel using constraint relaxation (for example, by energy minimization). Other

related models are spreading activation semantic networks and Bayesian networks

(Heckerman, 1996).

Computers are getting faster and can execute larger and more complex versions of

existing ISP techniques. However, we need to do more than just rely on higher clock

rates and larger memories to move to the next level in recognition capability—we

need new solutions. We know that biological computing solves complex ISP prob-

lems. Perhaps we should turn there for inspiration.

Biological Computing Models

Even the most primitive biological systems are capable of performing complex ISP.

In addition, biological computing is robust in the presence of faulty and failing

systems and requires no intrinsic synchronization.1 It is energy e‰cient, consists of

networks of sparsely connected and sparsely activated nodes, and requires only mod-

erate levels of precision (often binary).

Other current hypotheses about neurobiological computation include the following:

� Communication is expensive (mostly in energy), so biological systems tend to trade

o¤ local computation for nonlocal communication.

� It is most likely that data representation is partially distributed or ‘‘vector

encoded,’’ with each node participating in a number of representations; this

The Coming Revolution 371



enhances fault tolerance and response time, and allows more e‰cient representation

of knowledge.

� There seems to be high-level linkage (hierarchical and bidirectional) between large

subnetworks.

� They tend to be dynamic, with multiple feedback loops.

If these models are so promising, why haven’t our current batch of artificial neural

network algorithms been more successful at performing ISP? ANN models create

a powerful set of tools for solving a number of interesting problems, but most of the

models have little biological relevance. Among other things, they are too small and

not dynamic enough. In addition, they are limited to moderate levels of parallelism,

unlike biological networks that are massively parallel. For all these reasons, biologi-

cally inspired models have great potential for providing us with new, scalable ISP

algorithms.

Before we can be inspired by computational neurobiology, there have to be ab-

stract functional representations of these systems. What may actually be the most im-

portant result from the recent resurgence in neural network research, is a major shift

in perspective in the neuroscience community. In the past 10–15 years, many neuro-

scientists have been looking at functional models (‘‘what does it compute?’’) and not

just structural models (‘‘what is it connected to?’’). As researchers attempt to model

ever more complex, higher-order functionality, computational models are emerging

from neuroscience laboratories all over the world. Such models will be the primary

inspiration for the next generation of ISP algorithms.

There are a number of excellent examples of the reverse engineering of biological

computing systems. These models are abstracted from the original biology and are

scalable to large configurations.

An important model is the cortronic network, which has been developed under the

leadership of Robert Hecht-Nielsen (1999). These networks are abstract models of

the cerebral cortex that create associations. They are sparsely connected and scal-

able to extremely large networks. The basic computation is straightforward and the

models are stable. They are now being used to perform complex language-processing

tasks.

Another important set of models consists of those developed by Lynch and

Granger (Coultrip and Granger, 1994). They and their co-workers have ‘‘reverse

engineered’’ the olfactory pyriform cortex and hippocampus. Their hippocampus

model performs Bayesian classification with Parzen windows using a network of a

nonobvious and amazingly e‰cient design. It is sparsely connected and activated,

and data are represented in a partially distributed manner in which the network de-

sign uses the statistical aspects of neuron connectivity. The models are now being

used to solve many real-world pattern recognition problems.
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The third set of models includes cortical models from Douglas and Martin’s group

(Douglas and Martin, 1992). In addition to computational models, they have created

silicon implementations, and are now applying these implementations to a number of

real-world applications in areas such as robotic control and computer vision.

Other interesting and relevant models include those of Berger (Berger et al., 1994)

and von der Malsburg (Wiscott et al., 1997), as well as those of Lansner and his

group (Lansner and Holst, 1996). The latter are doing some interesting work in

reinforcement-based learning (Barto and Sutton, 1998).

Implementation Issues

It appears that one of the problems with current ANN models is a lack of su‰cient

parallelism; therefore it is most likely that successful, biologically inspired ISP will

utilize large numbers of nodes. The ability to execute such models in real time re-

quires radically new silicon architectures—even the fastest projected microprocessors

will be insu‰cient. For example, emulating a network of 1 million nodes and 1 bil-

lion connections (each node is connected to 1000 other nodes) in real time, where the

network is updated once every 100 ms, requires more than 10 tera-ops/s.2 In addition,

many of the envisioned applications require this performance in low power and in-

expensive implementations.

Many neural network chips have been built, but none have been commercial

successes. These early e¤orts were either analog (Faggin and Mead, 1995) and suf-

fered from design and technology limitations, or they were digital (Hammerstrom,

1995), with moderately parallel models and limited input-output (I/O) and transistor

counts. Thus they found themselves competing directly with mainstream micropro-

cessor and DSP technologies, where they lost.

In addition to the need to provide more powerful ISP, another reason for look-

ing to biological systems for inspiration for future very large-scale integrated (VLSI)

structures is Moore’s law, which the semiconductor industry has been following

for almost 30 years (i.e., the number of transistors that can be manufactured cost-

e¤ectively doubles every 18–24 months). It has been said that this is not really a

physical law, but an article of faith, and now there is increasing pressure on our faith.

As gate lengths shrink:

� Quantum e¤ects become more common.

� Transistors are increasingly leaky, noisy, and unreliable.

� Metal interconnects appear as long, slow transmission lines.

� Communication becomes expensive relative to computation.

� It is increasingly di‰cult to synchronize an entire chip at multiple gigahertz clock

rates.
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� It is almost impossible to perform design verification and validation of a 100

million transistor design.

Another threat to Moore’s law is fabrication cost. Intel Corporation is building

a $2.3 billion chip fabricator in Oregon; —a lot of chips need to be sold to amortize

this kind of investment.

Looking at this problem di¤erently, much of the pressure on Moore’s law results

from existing computational models, which:

� are fault intolerant,

� require high precision,

� are globally synchronized, and

� perform extensive global communication, which is required, for example, in high-

precision, parallel multiplication and score-boarding and conditional execution.

These characteristics are quite di¤erent from the capabilities that deep submicron

transistors o¤er. In short, there is an increasing discrepancy between what these tiny,

transistors can do and what we want them to do.

The Opportunity

Biological systems have figured out how to use loosely coupled, globally asynchro-

nous, distributed computing with unreliable (and occasionally failing) components.

Furthermore, even simple biological systems perform highly sophisticated ISP.

The models being derived from work in computational neurobiology, the awesome

capabilities of silicon, and the fact that transistors are starting to behave like neurons

creates a unique opportunity for radical new architectural models. These technolo-

gies, coupled with the significant need for more powerful ISP solutions, are creating

what has been referred to as a strategic inflection point. The fundamental premise of

our research project is that computational neurobiology will inspire new ISP models,

and that these models will be massively parallel and require massively parallel silicon

architectures for e‰cient execution.

The implication is not that Moore’s law will end for traditional computing struc-

tures, since it will continue for some time. In the next 5 years (SIA, 1997) we will

have the ability to place tens of thousands of simple processors on a single piece of

silicon (table 16.1), although many engineers now acknowledge that there will be a

slowing down as the fabrication of deep submicron circuits becomes ever more com-

plex and expensive, and the behavior of the transistors themselves becomes more

problematic. The main point of the discussion here is that biological computing

o¤ers models that will allow more rapid scaling because they are fundamentally tol-
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erant of many of the deleterious e¤ects of extreme scaling. These models will also

lead to significantly cheaper implementations, providing massively parallel computa-

tion using small, low-power, fault-tolerant processors.

Just as it is clear that Moore’s law will continue to hold (more or less) for tradi-

tional computational structures, so too, the biologically inspired systems discussed

here are not being considered as a replacement for current computing models.

Rather, they will augment and enhance what we currently do now with computers,

acting as ISP co-processors.

The Impact on VLSI Architecture

To create silicon structures to emulate biologically inspired computing, we need a

better understanding of biological computing models, and we need VLSI design tech-

niques that emulate these models e‰ciently. We also need to identify which aspects

of computational neurobiology are necessary and which are not. For example, ana-

log computation has advantage in low-precision computations and low-power appli-

cations, and impressive computational density. However, analog computation also

has disadvantages in stability, temperature sensitivity, communication, and ease of

design. And it is not clear that analog’s computational density is an advantage in

sparsely activated, sparsely connected networks.

Digital technology is less area e‰cient, especially for certain types of functionality

(e.g., leaky integration). It is also power intensive, and the representation of time

tends to be more complicated (events are typically synchronized to a global clock).

However, digital technology allows e‰cient multiplexing of scarce computational

and communication resources.

One of our research tasks is to determine the combination of implementation tech-

niques that is best for this architecture’s space. We suspect that hybrid, analog-digital

or ‘‘mixed-signal,’’ techniques may well constitute the optimum design.

There are numerous other implementation issues in the adaptation of biological

models for a vastly di¤erent implementation technology:

� capturing high-order and temporal information e‰ciently,

� stability,

Table 16.1
The relationship of transistors number and feature size over time

Year of First Product 1999 2003 2009

Feature size (nanometers) 180 130 70

Dynamic random access memory total bits 1.1 billion 4.3 billion 68.7 billion

Microprocessor transistors 21 million 76 million 520 million

The Coming Revolution 375



� robustness in the face of faulty hardware—silicon also has di¤erent failure modes

than biological structures, and

� connectivity—silicon does not have the same storage and connectivity capabilities

as biological systems, which could ultimately limit silicon-based ISP.

Of these, connectivity is one of the most important characteristics of biological

neural structures. As Mead expressed so eloquently in his ground-breaking book on

neural-inspired VLSI:

Computation is always done in the context of neighboring information. For a neighborhood to

be meaningful, nearby areas in the neural structure must represent information that is more

closely related than that represented by areas further away. Visual areas in the cortex that

begin the processing sequence are mapped retinotopically. Higher-level areas represent more

abstract information, but areas that are close together still represent similar information. It

is this map property that organizes the cortex such that most wires can be short and highly

shared; it is perhaps the single most important architectural principle in the brain. (Mead, 1989)

Unfortunately, connectivity is perhaps the one area where silicon is significantly

less robust than biological systems. Communication in silicon is generally limited

to a two-dimensional plane (although with several levels—six to eight with today’s

semiconductor technologies). It is still one of the most important problems as we

consider scaling to very large models. The following theorem (Bailey and Hammer-

strom, 1988) demonstrates why.

Theorem: Assume an unbounded or very large rectangular array of silicon neurons

in which each neuron receives input from its N nearest neighbors—that is, the fan-

out (divergence) and fan-in (convergence) is N. Each such connection consists of a

single metal line, and the number of two-dimensional metal layers is much less than

N. Then the area required by the metal interconnect is OðN 3Þ.

This result has profound implications for the general emulation of biological compu-

tation in silicon. If, for example, we double the fan-in from 100 to 200, the silicon

area required for the metal interconnect increases by a factor proportional to 8�.

This unfortunate result means that for even moderate connectivity, the silicon

area3 devoted to the metal interconnect will dominate. Research at Oregon Grad-

uate Institute (Bailey and Hammerstrom, 1988) has indicated that even moderate

multiplexing of communication resources would greatly decrease the silicon area

requirements without any real loss in performance. Means (1991) studied the imple-

mentation of the Lynch-Granger pyriform cortex model with multiplexed and non-

multiplexed communication and obtained a similar result.

Concurrently, Mead’s group at California Institute of Technology and others de-

veloped ‘‘address-event representation’’ or AER communication (Mahowald, 1992;

Mortara and Vittoz, 1994). The address-event technique has also been expanded
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into a hierarchical structure by Lazzaro and Wawrznyk (1995). When analog compu-

tation is used, signals can be represented by action potential-like ‘‘spikes’’ (generally

a neuron unit exceeding its threshold). These signal ‘‘packets’’ or ‘‘pulses’’ are trans-

mitted asynchronously at the moment they occur by sending the originating unit’s

address on a single multiplexed bus. This ‘‘pseudodigital’’ representation allows mul-

tiplexing of the bus and retention of temporal information, if competition for the

units sharing the bus is minimal.

The issue of synchronization and clocking is related to multiplexing. If signifi-

cant multiplexing is used, then it becomes more di‰cult to operate in real time, and

a simulated virtual clock is required. There are already some interesting techniques

that have been developed for synchronizing large-scale single-instruction multiple-

data systems that may be of use here (Bengtsson and Svensson, 1998; Söderstam

et al., 1998).

In studying potential implementations of cortical structures, we have developed an

e‰cient multiplexing architecture in which data transfer occurs via overlapping, hier-

archical buses (Bailey, 1988; Hammerstrom, 1991; Hammerstrom and Bailey, 1991;

Bailey et al., 1990). This structure, the broadcast hierarchy (TBH) allows simulta-

neous high-bandwidth local connectivity and long-range connectivity, thereby pro-

viding a reasonable match to many biological connectivity patterns.

Braitenberg (Braitenberg and Schüz, 1998) postulates two general connectivity sys-

tems in cortex: ‘‘metric’’ (high-density connections to physically local cells, based on

an actual two-dimensional layout), and ‘‘ametric’’ (low-density point-to-point con-

nections to all large groups of densely connected cells). Connectivity is significantly

denser in the metric system, but with limited extent, whereas connectivity in the ame-

tric system is very sparse and random. There are actually many other reasons for

such bimodal connectivity schemes (Anderson, 1999). One hypothesis that we will

be investigating is that these localized connectivity patterns actually enable certain

kinds of advanced cognitive processing, such as abstraction and hierarchical repre-

sentations. So it is possible that in solving the scaling problem, biological computa-

tion created a structure of great power and flexibility.

Assume the network discussed earlier with 1 million nodes and 1000 connections

per node, which is 1 billion connections. If we have a simple analog processor per

neuron, then we can compute all 1000 connections simultaneously. If we are using

micropower techniques, each processor could take a few microseconds; assume

100 ms. So we are computing 1 billion connections in 100 ms, which gives us a com-

putation rate of 10 trillion connections computed per second. Assume that 10% of

the neurons are active (i.e., they produce output pulses) and that each active neuron

communicates 10 pulses4 on average during a single network update. This is about

100,000 pulses per second per active neuron. The entire communication network

then must handle 1 million � 10%� 100,000, or 10 billion pulses per second.
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Figure 16.1 shows a simple, two-level broadcast hierarchy with four ‘‘nodes’’ (dig-

ital or analog processors) in each low-level region. A node can broadcast to any

other node in its low-level region or any node in the high-level region.

Assume we have a two-level broadcast hierarchy, and that 95% of the messages

from each node are to other nodes that can be reached by broadcasting the pulses

on the lower layer. In addition, assume that each lower level broadcast region is con-

nected to 1000 neurons; that means that each low-level broadcast region needs to

handle about 9.5 million pulses per second, which is not a terribly large bandwidth.

Recall that there are 1000 of these lower layers, so the accumulated bandwidth is 9.5

billion pulses per second.

The top broadcast region, which will cover all 1 million neurons, needs to handle

5% or 500 million pulses per second, which is certainly achievable in today’s semi-

conductor technology. Messages can be ‘‘pipelined’’ through bu¤ers and routers,

since even in neural circuitry there is often a fair amount of signal delay—although

it is important that the delay be reasonably consistent and predictable.

This example is quite simple; a real implementation would probably have several

broadcast layers and possibly even some point-to-point connectivity. We believe that

we can meet the connectivity requirements of large neural network models with cur-

rent silicon techniques. However, it is necessary that the networks being emulated ex-

hibit reasonably localized interconnections, which has been shown to be the case in

cortical structures (Braitenberg and Schüz, 1998; Anderson, 1999; Abeles, 1991).

When implementing neural-like structures in silicon, an important issue concerns

how the synapse is represented, in particular, how information is stored in the

synapse. For digital systems, such information storage is straightforward. Single bits

can be stored in dynamic, static, or floating-gate devices, since even in a noisy en-

vironment, signal restoration to a 1 or 0 is reasonably straightforward. However,

storing analog values is more error prone and complex. There has been much work

in creating floating-gate structures for analog learning systems (Diorio et al., 1997).

We intend to exploit this technology to the degree that we use mixed-signal (analog-

digital) data representations. It should be pointed out that the models we are consid-

ering here use either a single bit or at most a few bits to represent information at each

synapse. It is possible that multilevel logic would provide the best representation

compromise and the most e‰cient utilization of scarce communication resources.

Another important issue a¤ecting VLSI architecture is fault tolerance. Research

at Oregon Graduate Center (May, 1988) has shown that even with all-digital imple-

mentations, massively parallel hardware that emulates neural network models has a

reasonable degree of fault tolerance. This is because most of the silicon area contains

circuitry whose failure has a local functional impact. Another interesting question

concerns whether there is some degree of design fault tolerance. The Adaptive
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Figure 16.1
A two-level broadcast hierarchy for e‰cient emulation of cortical-like connectivity.
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Solutions connected network of adoptive processors (CNAPS) chip had two design

errors in the processor nodes arithmetic unit that were not discovered for several

years. This problem was invisible mainly because most applications did not need pre-

cise arithmetic results. More work is needed in this area as these architectures evolve.

Then there is the need to test the manufactured chip. It is not clear exactly how

one tests a faulty, mixed-signal chip like this, so the development of test methodolo-

gies optimized for this kind of architecture is important. Although the e‰cient testing

of such chips is challenging, we do not view this as an impediment to the long-range

success of the technology. However, we do foresee a fair amount of work required to

create the necessary testing techniques.

Commercial Realization

The goal of our project is to create a family of commercial integrated circuits for

use in a range of ISP solutions. Tentatively we expect the first commercial chip to

be derived from this work to be the associative data processor (ADP).5 The ADP

will implement high-speed, high-capacity, best-match, associative memory. Because

of algorithm and application dependencies, it is di‰cult to estimate at this time the

implementation parameters of the resulting chip. However, Palm (Palm et al., 1997)

has shown that these networks operate best with a very large number of nodes. Our

goal will be tens of thousands of nodes for preliminary implementation.

In addition to large numbers of nodes, associative memory operation is highly

dependent on having a sparse data representation. Since few natural data representa-

tions are sparse, we will need input and output pre- and postprocessing to ‘‘sparsify’’

and then ‘‘desparsify’’ input and output. Fields (1999) has shown that sparse repre-

sentations may be a more suitable representation for preprocessed data. Small net-

works with a moderate number of inputs and a large number of outputs can be

trained to e‰ciently map application-specific external representations to the distrib-

uted internal representations used by the network. A similar technique would be used

for system output. Also, the input-output networks can be used to convert temporal

to spatial information and vice versa.

For the first generation of ADPs we envision that the basic functionality will be

‘‘best-match’’ associative processing. For the most part, the ‘‘content-addressable’’

memory function that has been implemented to date is considered an ‘‘exact’’ match.

Examples include cache and virtual page addressing in modern microprocessors, and

domain name to internet protocol address look-up in Internet domain servers where

a portion of a record is used as input and the memory returns the rest of the record.

In contrast, with best-match processing, an arbitrary subset of a record is input,

which may not match any record in the memory. In this case then, the memory

returns the closest match (or matches) according to some metric. Incidentally, a

best-match memory will always return the exact match first if such a match exists.
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Best-match is significantly more powerful and more di‰cult to implement using

traditional computing structures (it generally requires a complete search of the data

in the memory). However, it can gracefully deal with errors and missing data and

perform reasonable ‘‘generalization.’’

The metric used to determine how ‘‘close’’ an input vector is to a stored vector is

generally an emergent property of the interconnection structure and the methods

used in setting the connection or ‘‘synaptic’’ weights between nodes. For many appli-

cations, the metric can be a simple measure of vector distance. However, for more

complex applications, the metric becomes a function of the higher-order internal

data representation.

For the algorithms we are considering, the resulting weights tend to create a

‘‘distance-likelihood’’ metric that approximates Bayesian6 classification. That is, the

ADP will return the match (or set of matches) that is the most likely according to

Bayesian rules.

A common operation in the applications being developed in other groups at

Oregon Graduate Institute is that of finding complex higher-order structures in data

(sound waves, image pixels, Internet text). Although limited in capability, and com-

putation intensive, hidden markov models (Rabiner, 1989) are currently the best ISP

technique for this task. One possibility we are considering is using a temporal version

of best-match to approximate HMM functionality. Most of the neural models we are

considering are capable of some form of this type of processing. For example, one

of the Lynch-Granger models has already been used in simple speech applications

(Aleksandrovsky et al., 1996). Just demonstrating superior results emulating HMMs

would be a powerful proof of existence for this technology, and implementing

HMMs on an ADP would provide marketable functionality since HMMs have a

ready set of applications in speech recognition, OCR, handwriting recognition, and

genetic sequencing.

We also intend to exploit the significant fault tolerance of these models to increase

yield. All but large area faults, such as those that are due to wafer processing and

power or ground shorts, should be correctable. For this reason, no chip will be ex-

actly the same. Therefore, ADP chips will need to be trained rather than programmed.

Although the training process will be nontrivial, we view this as an advantage, since

it will be easier than programming a large parallel processor array. However, it will

be a custom operation performed by the customer (much like burning a particular set

of words into an electrically erasable–programmable read-only memory).

Conclusion

It is my belief that the convergence of high-density silicon and advanced computa-

tional models will lead to exciting new capabilities in intelligent signal processing.
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In the research proposed here, our goal is to create a commercial product, based

on simple models, that performs high-speed, adaptive, best-match, high-capacity as-

sociative data processing—the associative data processor.

Returning to Moore’s law, Moore says there will be exponential progress and that

doublings will occur every year and a half (Lucky, 1998). At first achieving exponen-

tial progress is easy, but later it becomes overwhelming—and we are starting to enter

the ‘‘overwhelming’’ phase in semiconductors. Since the invention of the transistor,

there have been about thirty-two doublings of the technology—the first half of a

chessboard. The exciting question is, what overwhelming implications await us now

as we begin the second half of the board?

The next 10 years will be an extraordinary time for silicon engineers and com-

puter scientists. The challenges of Moore’s law, and the search for quantitatively

better ISP solutions will lead to more experimentation in new silicon architectures,

fueled in part by ideas from biological computation. Understanding and mapping bi-

ological computing models to silicon, and then to real applications, will be di‰cult

but the rewards will be great. By 2010, massively parallel, biologically inspired com-

putational models will account for a significant portion of the global semiconductor

business.

At the centenary of the Institute of Electrical and Electronics Engineers in 1984,

Dr. Robert Noyce, co-founder of Intel and co-inventor of the integrated circuit,

said: ‘‘Until now we have been going the other way; that is, in order to understand

the brain we have used the computer as a model for it. Perhaps it is time to reverse

this reasoning: to understand where we should go with the computer, we should look

to the brain for some clues’’ (Noyce, 1984).

Notes

1. Some neuromodels exhibit synchronization, but it is generally part of the model, not a given supported
by the underlying hardware.

2. It is possible that in some digital implementations, sparsely activated networks may lead to savings by
having to emulate only parts of the network at any one time. However, that possibility is not considered in
this simple example.

3. The cost of producing a silicon chip is directly related (in a complex, nonlinear manner) to the area of
the chip.

4. In the address-event representation, each pulse is represented by the address, possibly of varying length,
of the sender.

5. We intend to create a family of ADP chips that will cover a range of cost-to-performance ratios. In ad-
dition, one can envision using a variety of ‘‘intellectual property’’ library components such as digital signal
processors and analog-to-digital converters, all integrated on a chip with the ADP circuitry.

6. Bayesian statistics guide the memory to return the stored vector most likely to have caused the input
(assuming the input is a corrupted version of the returned value). Bayesian selection is optimal under cer-
tain conditions.
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